Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations. Part 2: Second-line drugs*

Drogas antituberculose: Interações medicamentosas, efeitos adversos e utilização em situações especiais. Parte 2: Fármacos de segunda linha

Marcos Abdo Arbex, Marília de Castro Lima Varella, Hélio Ribeiro de Siqueira, Fernando Augusto Fiúza de Mello

Abstract

The main objectives of tuberculosis therapy are to cure the patients and to minimize the possibility of transmission of the bacillus to healthy subjects. Adverse effects of antituberculosis drugs or drug interactions (among antituberculosis drugs or between antituberculosis drugs and other drugs) can make it necessary to modify or discontinue treatment. We describe the general mechanism of action, absorption, metabolism, and excretion of the drugs used to treat multidrug resistant tuberculosis (aminoglycosides, fluoroquinolones, cycloserine/terizidone, ethionamide, capreomycin, and para-aminosalicylic acid). We describe adverse drug reactions and interactions (with other drugs, food, and antacids), as well as the most appropriate approach to special situations, such as pregnancy, breastfeeding, liver failure, and kidney failure.

Keywords: Tuberculosis; Drug interactions; Antibiotics, antitubercular; Pharmacologic actions; Drug toxicity, Tuberculosis, multidrug-resistant.

Introduction

In Brazil, tuberculosis treatment regimens have been standardized by the Brazilian National Ministry of Health (NMH) since 1979. According to the latest technical norms published by the NMH (in October of 2009), and to the guidelines issued by the World Health Organization (WHO), patients with bacilli resistant to the rifampin-isoniazid combination or to the rifampin-isoniazid combination and at least one other first-line drug, as well as patients in whom the basic regimen fails, are classified as having multidrug-resistant tuberculosis. It has been proposed that a combination regimen of streptomycin, ethambutol, terizidone, pyrazinamide, and one fluoroquinolone (levofloxacin or ofloxacin) be used in cases such as these. If streptomycin cannot be used, it should be replaced with amikacin. Patients with extensively drug-resistant tuberculosis should be referred to a tertiary referral center, and individualized salvage drug regimens (which include capreomycin, moxifloxacin, para-aminosalicylic acid, and ethionamide) should be used.

In this review article, we describe the principal characteristics of each of the drugs...
that constitute the alternative regimen for tuberculosis treatment proposed by the Brazilian National Ministry of Health and the Brazilian Thoracic Association, as well as the relevant aspects of the pharmacokinetics of the drugs in order to understand the mechanisms of interaction and possible adverse effects.

Aminoglycosides (streptomycin, amikacin, and kanamycin)

Streptomycin, which was discovered in 1944, was the first drug that was effective in treating tuberculosis. Kanamycin was synthesized in 1957. Amikacin is a semi-synthetic compound derived from kanamycin and has been used since 1972. Aminoglycosides act on extracellular bacilli, and their intracellular activity is therefore irrelevant. The minimum inhibitory concentrations (MICs) of streptomycin, kanamycin, and amikacin for *Mycobacterium tuberculosis* are 4-8 µg/mL, 1-8 µg/mL, and 0.5-1.0 µg/mL, respectively. These drugs are bactericidal, and their effects are concentration-dependent and residual, which means that they have a bactericidal effect even when their serum concentrations are below the MICs. Although there have been reports of cross-resistance between amikacin and kanamycin, there have been no reports of such cross-resistance between streptomycin and amikacin or kanamycin.

Mechanism of action

Aminoglycosides inhibit protein synthesis by irreversibly binding to the 30S ribosomal subunit of *M. tuberculosis*, interfering with the integrity of the cell membrane. Resistance is due to mutations in the *rrs* gene, which encodes 16S ribosomal RNA, and in the *rpsL* gene, which encodes the S12 ribosomal protein gene.

Metabolism and excretion

Oral absorption of aminoglycosides is minimal, and the drugs are administered parenterally. Absorption is complete when aminoglycosides are administered i.m., and the serum levels of the drugs peak within 30-90 min after their administration; however i.m. absorption can be slower, requiring successive injections at the same site. It is recommended that i.v. administration of aminoglycosides be carried out over a period of 15-30 min in order to reduce the risk of adverse effects, such as neuromuscular blockade (see also Adverse effects). The binding of aminoglycosides to plasma proteins is low (approximately 10%). Over a 24-h period, 80-98% of the drug is excreted, unaltered, by the kidneys (glomerular filtration), 1% is excreted in bile, and 1% is excreted in feces. The half-life of streptomycin is 2-3 h, and the half-life of amikacin is 2 h, although the latter can be as long as 86 h in patients with kidney failure.

Central nervous system

The penetration of aminoglycosides into the cerebrospinal fluid (CSF) is low, except in cases of meningitis.

Adverse effects

Ototoxicity

The most severe adverse reaction caused by aminoglycosides is ototoxicity due to damage to cranial nerve VIII, including vestibular damage (vertigo, ataxia, and nystagmus) and cochlear damage that can lead to hearing loss. The risk increases with age, prolonged duration of treatment, and high total accumulated dose. The risk also increases in patients who use aminoglycosides in association with diuretics (furosemide and ethacrynic acid), in dehydrated patients, and in patients with a history of hearing impairment. Vestibular damage is more common than is cochlear damage and occurs earlier. In addition, vestibular damage is more common in patients using streptomycin than in those using amikacin. Ototoxicity requires immediate discontinuation of the drug.

Neurotoxicity

Aminoglycosides can cause perioral paresthesia immediately after their administration. This adverse effect is benign.

Nephrotoxicity

Aminoglycosides produce renal toxic effects due to their accumulation in the renal tubules. Such effects are more common in elderly individuals and in patients with a history of kidney disease. Clinical and laboratory manifestations of nephrotoxicity include oliguria, urinary casts, proteinuria, and decreased creatinine clearance, as well as increased serum levels of urea and creatinine. Patients who receive
more than one daily dose of the drug, patients under long-term treatment, and patients with high total accumulated dose are more likely to develop nephrotoxicity. Nephrotoxicity is more common in patients using amikacin (occurring in 3.4–8.7%) than in those using streptomycin (occurring in 2%). Discontinuation of the drug is recommended.\(^2,10,14,16\)

Neuromuscular blockade

Aminoglycosides can cause neuromuscular blockade, leading to respiratory failure. Neuromuscular blockade can occur due to rapid i.v. injection of the drug in patients who concomitantly use anesthetics or neuromuscular blocking agents (curare or succinylcholine) or in those who have received massive blood transfusions in which citrate is used as an anticoagulant. Although calcium salts can reduce this effect, mechanical ventilation might be necessary.\(^2,10\)

Hypersensitivity

Hypersensitivity is rare in patients treated with aminoglycosides. However, there are hypersensitivity cross-reactions among the different aminoglycosides.\(^2,10,11\)

Use during pregnancy

Aminoglycosides are category D drugs. They rapidly cross the placental barrier and are contraindicated during pregnancy because they can induce ototoxicity and nephrotoxicity in neonates.\(^2,10,11\)

Use during breastfeeding

Aminoglycosides should be avoided during breastfeeding. Although aminoglycosides are poorly absorbed when administered orally, changes in the intestinal flora of neonates can occur.\(^2,10,11\)

Use in patients with liver failure

Aminoglycosides can be administered at full doses. However, patients with severe liver failure should be screened for concomitant hepatorenal syndrome.\(^2,10,11\)

Use in patients with kidney failure

Aminoglycosides are almost exclusively eliminated by the kidney. Therefore, in patients with a creatinine clearance < 30 mL/min, the dose of the drug should be adjusted to 12–15 mg • kg\(^{-1}\) • day\(^{-1}\), administered two to three times a week. The drug is removed by peritoneal dialysis and hemodialysis. In patients on peritoneal dialysis or hemodialysis, the dose should be adjusted and administered after the procedure.\(^2,10,11\)

Interactions

Other drugs

The ototoxicity and nephrotoxicity of aminoglycosides can be potentiated by concomitant administration of amphotericin B, vancomycin, cephalosporin, cisplatin, and loop diuretics (ethacrynic acid and furosemide). Aminoglycosides can themselves potentiate the effects of neuromuscular blocking agents. Concomitant administration of aminoglycosides and neuromuscular blocking agents can cause respiratory depression due to respiratory muscle weakness. Patients with myasthenia gravis, botulism, hypocalcemia, severe hypokalemia, or hypomagnesemia are particularly susceptible to such adverse effects. The interaction between aminoglycosides and neuromuscular blocking agents is independent of the order of their administration. Patients using aminoglycosides should be monitored for the occurrence of respiratory depression in the perioperative and postoperative periods.\(^2,4,10,11,17,18\)

Fluoroquinolones

Fluoroquinolones have been used as salvage drugs in the treatment of tuberculosis since 1985.\(^19\) However, recent studies involving third-generation and fourth-generation fluoroquinolones (levofloxacin, moxifloxacin, and gatifloxacin) have demonstrated the enormous potential of these drugs and, consequently, the great interest of the scientific community in using these drugs for the treatment of tuberculosis. After their administration, fluoroquinolones are widely distributed to the body and have the remarkable property of reaching the interior of the cells, including macrophages, which explains the strong effect of these drugs on intracellular mycobacteria.\(^20–22\) There is no cross-resistance between fluoroquinolones and other antituberculosis drugs, and, although in vitro studies have reported cross-reactions among the different fluoroquinolones,\(^20–22\)
levofloxacin and moxifloxacin have been used even in cases of previous *M. tuberculosis* resistance to ofloxacin.\(^{(23,24)}\) Fluoroquinolones are bactericidal and show different degrees of effectiveness against *M. tuberculosis*. The most effective fluoroquinolones are moxifloxacin and gatifloxacin, followed by levofloxacin, ofloxacin, and ciprofloxacin.\(^{(20,22,25)}\) In vitro, the MICs of ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin for *M. tuberculosis* are 0.5–4.0 µg/mL, 1.0–2.0 µg/mL, 1.0 µg/mL, 0.20–0.25 µg/mL, and 0.12–0.50 µg/mL, respectively.\(^{(21,26)}\) Recent studies have shown that ciprofloxacin should not be included in the antituberculosis regimen.\(^{(27)}\) In regions where the prevalence of tuberculosis is high, fluoroquinolones have been administered as monotherapy for the empirical treatment of patients under clinical and radiological suspicion of having bacterial pneumonia; however, the respiratory symptoms can temporarily improve in patients with unsuspected or undiagnosed pulmonary tuberculosis, thus delaying the diagnosis of tuberculosis and selecting fluoroquinolone-resistant bacilli.\(^{(28–30)}\)

Mechanism of action

Fluoroquinolones inhibit *M. tuberculosis* DNA gyrase activity or topoisomerase II activity, which regulates DNA topology and is essential to the survival of *M. tuberculosis*. The DNA molecule of *M. tuberculosis* is compacted by DNA gyrase and becomes biologically active. When fluoroquinolones inhibit this enzyme, the DNA molecule stops supercoiling in order to occupy a small cellular space for its expression, recombination, and replication. Free DNA ends induce uncontrolled mRNA synthesis, protein synthesis, exonuclease production, and chromosome degradation. These factors lead to cell death. In vitro, fluoroquinolones also inhibit topoisomerase IV; however, this does not contribute to the bactericidal effect on *M. tuberculosis*, since this enzyme is absent in the bacillus.\(^{(20,21)}\) Bacterial resistance occurs rapidly when a fluoroquinolone is used as monotherapy or when it is included in regimens that failed. Three principal mechanisms explain resistance: mutations in the DNA gyrase enzyme, which becomes immune to the effect of the antibiotic; changes in the bacterial cell membrane, which becomes impermeable to fluoroquinolones, decreasing the diffusion of the drug to the interior of the cell; and the existence of an efflux mechanism that removes the drug from the interior of the bacterial cell.\(^{(20)}\)

Metabolization and excretion

Fluoroquinolones are rapidly absorbed after oral administration, and their serum levels peak within 1–3 h. The bioavailability of fluoroquinolones ranges from 90% for moxifloxacin to 99% for levofloxacin. Only a small proportion is metabolized in the liver into d-ofloxacin, which has a limited bactericidal effect. Fluoroquinolones are excreted principally by the kidney through tubular secretion or glomerular filtration, and 65–80% of the drug is eliminated unaltered. A small proportion (4–8%) is excreted in bile and feces. Moxifloxacin, however, is metabolized in the liver, and 60% of the drug is excreted in bile, 45% being excreted unaltered (25% in urine and 20% in feces). The half-life of fluoroquinolones ranges from 4 h for ciprofloxacin to 10–13 h for moxifloxacin.\(^{(20–22)}\)

Central nervous system

The penetration of fluoroquinolones into the CSF is poor. The CSF concentration of levofloxacin is at 16–20% of the serum concentration of the drug. However, in cases of meningitis, the CSF levels of ciprofloxacin and ofloxacin can be as high as 40–90% of the plasma levels of these drugs.\(^{(10,21)}\)

Adverse effects\(^{(10,20,32–36)}\)

Gastrointestinal effects

The most common side effects of fluoroquinolones are gastrointestinal. Patients can present with nausea, vomiting, aerophagy, anorexia, abdominal discomfort, and diarrhea. Gastrointestinal effects occur in 3–17% of the patients. Pseudomembranous colitis is rare.

Central nervous system effects

Dizziness, headache, insomnia, tremors, and mood disorders occur in 0.9–11% of patients treated with fluoroquinolones. Hallucinations, delusions, and convulsions are rare. Greater attention should be paid to these effects in elderly patients and in those using theophylline or nonsteroidal anti-inflammatory drugs (NSAIDS).
Skin reactions and allergies

Erythema, pruritus, and skin rash occur in 0.4–2.2% of patients treated with fluoroquinolones. Phototoxicity can occur when patients are exposed to ultraviolet light. Urticaria, angioedema, anaphylactic reactions, and vasculitis are uncommon.

Musculoskeletal effects

Arthropy and cartilage erosion have been observed in young animals treated with fluoroquinolones (especially for prolonged periods or at high doses), and the use of fluoroquinolones in children is therefore restricted. However, the use of fluoroquinolones in special situations (e.g., in children with cystic fibrosis) has increased. Arthralgia and Achilles tendon rupture have been reported to occur. These are rare and bilateral, occurring in 50% of the cases. These are often associated with predisposing factors such as previous corticosteroid use, rheumatoid arthritis, kidney failure, and hemodialysis.

Cardiovascular effects

In patients treated with fluoroquinolones, prolongation of the electrocardiographic QT interval can occur, leading to ventricular tachycardia, including polymorphic ventricular tachycardia (torsades de pointes). This is a rare event. Electrocardiographic QT interval prolongation is dose-dependent. Patients with kidney failure, liver failure, cardiomyopathy, hypomagnesemia, or hypokalemia, as well as those using class IA antiarrhythmic drugs (procainamide and quinidine) or class III antiarrhythmic drugs (amiodarone and sotalol), together with those using terfenadine, erythromycin, cisapride, or tricyclic antidepressants, should receive special attention.

Urinary tract effects

Interstitial nephritis, characterized by the presence of eosinophils and crystals in urine, can occur in patients treated with fluoroquinolones. These are rare events. However, patients using fluoroquinolones who present with dehydration, diarrhea, and vomiting should receive appropriate fluid supplementation.

Endocrine effects

Changes in glycemia levels, including symptomatic hypoglycemia and, less commonly, hyperglycemia, have been reported to occur in patients with diabetes who use fluoroquinolones in conjunction with oral hypoglycemic agents or insulin.

Biochemical effects

Leukopenia and eosinophilia occur in less than 1% of the cases, and increased transaminase levels occur in 1–3% of the patients. Therapy is rarely discontinued due to these changes.

Use during pregnancy

Fluoroquinolones are category C drugs. In principle, fluoroquinolones should not be used during pregnancy. There is no evidence that the incidence of abnormalities is higher in children treated with fluoroquinolones. However, studies involving animals and ciprofloxacin have suggested that there are risks of damage to the articular cartilages of the fetus and, consequently, of juvenile arthritis and joint lesions. Fluoroquinolones should be used during pregnancy only when the benefits of the treatment outweigh the potential risks. The decision to use a fluoroquinolone can be made only after clinicians who have considerable experience in managing tuberculosis have been consulted.

Use during breastfeeding

Ofloxacin is excreted in breast milk. There are no data regarding breastfeeding and the use of levofloxacin or moxifloxacin. Considering the potential adverse effects of the drugs on infants, the WHO suggests that fluoroquinolones be used only in cases in which they are vital to the health of the mother.

Use in patients with liver failure

Fluoroquinolones can be used without restrictions in patients with mild or moderate liver failure (Child–Pugh classes A and B). However, in cases of severe liver disease (Child–Pugh class C), as occurs with any other drug, patients should be closely monitored, through clinical evaluation and laboratory testing.

Use in patients with kidney failure

The dose of any given fluoroquinolone should be adjusted in patients with kidney...
failure. The WHO suggests that, in patients with kidney failure and creatinine clearance < 30 mL/min, the dose of ofloxacin be adjusted to 600-800 mg, administered three times a week, and the dose of levofloxacin be adjusted to 750-1,000 mg, administered three times a week. It is not necessary to adjust the dose of moxifloxacin. Fluoroquinolones are not removed by peritoneal dialysis or hemodialysis.\[13\]

Interactions\[2,34,15,38,39\]

Foods

Foods, with the exception of dairy products with a high concentration of calcium, do not interfere with the absorption of ofloxacin, levofloxacin, or moxifloxacin, as they do with the absorption of other fluoroquinolones. Patients using ciprofloxacin should be instructed to avoid excessive use of foods with high caffeine content, since ciprofloxacin inhibits the cytochrome P450 system, thereby reducing caffeine clearance.

Antacids

Antacids containing calcium, aluminum, or magnesium interfere with the absorption and concentration of fluoroquinolones. Sucralfate inhibits the absorption of the drugs. Fluoroquinolones should not be administered until 2 h after the use of antacids. The administration of H\(_2\) receptor blockers does not interfere with the absorption of fluoroquinolones.

Other drugs

Vitamin supplements containing zinc or iron interfere with the gastrointestinal absorption of fluoroquinolones. Fluoroquinolones can inhibit numerous cytochrome P450 subfamilies, which increases the plasma concentrations of drugs that are metabolized via the cytochrome P450 system. Fluoroquinolones increase the serum levels of theophylline, glibenclamide, and cyclosporine, as well as increasing the effect of oral anticoagulants. Third-generation and fourth-generation fluoroquinolones (levofloxacin and moxifloxacin) do not inhibit the cytochrome P450 enzyme system and therefore do not interact with the aforementioned drugs. However, when a fluoroquinolone is concomitantly administered with oral anticoagulants, the international normalized ratio should be closely monitored. Probenecid and cimetidine can increase the serum levels of fluoroquinolones. Concomitant administration of fluoroquinolones and NSAIDS can increase central nervous system stimulation and the possibility of convulsions.

Cycloserine/terizidone

Cycloserine/terizidone, synthesized in 1952, is a structural analogue of D-alanine amino acid, a component that is important to the formation of the bacterial cell wall. Terizidone results from the combination of two cycloserine molecules. There is no cross-reaction between cycloserine/terizidone and other antituberculosis drugs. The MIC of cycloserine/terizidone for *M. tuberculosis* is 5-20 mg/mL. At the usual doses, cycloserine/terizidone has a bacteriostatic effect.\[2,5,40,41\]

Mechanism of action

Cycloserine/terizidone acts by competition, inhibiting the enzymes D-alanyl-D-alanine synthetase, alanine racemase, and alanine permease, which are indispensable for the synthesis of the peptidoglycan that confers rigidity and stability to the *M. tuberculosis* cell membrane. Although the mechanisms of *M. tuberculosis* resistance to cycloserine/terizidone have yet to be fully clarified, it is presumably due to genetic mutations in the aforementioned enzymes.\[2,5,41\]

Metabolism and excretion

Cycloserine/terizidone is rapidly absorbed after oral administration, and the bioavailability of the drug ranges from 70% to 90%. Plasma levels of the drug peak within 3-4 after ingestion. The half-life of cycloserine/terizidone is 10 h. The drug does not bind to plasma proteins. Only a small proportion of cycloserine/terizidone is metabolized in the liver. Most of the dose (70%) is excreted by the kidney, unaltered, within 72 h. A small proportion of the drug is excreted in feces.\[2,10,41\]

Central nervous system

The CSF and serum concentrations of cycloserine/terizidone are similar.\[10\]

Adverse effects

Central nervous system effects

Cycloserine/terizidone has neurological adverse effects (headache, vertigo, dysarthria,
breastfeeding. Infants exposed to cycloserine/terizidone must receive supplemental doses of pyridoxine.[2,10,42,44]

Use in patients with liver failure

In patients with liver failure, cycloserine/terizidone can be used without precautions, except in patients with hepatitis due to alcoholism or in those at a high risk for convulsions.[2,10]

Use in patients with kidney failure

The dose of cycloserine/terizidone should be adjusted in patients with kidney failure. In patients with creatinine clearance < 30 mL/min, the recommended dose is 250 mg/day or 500 mg three times a week. These doses are not well-established. Patients should be closely monitored for signs of neurotoxicity. Hemodialysis removes 56% of the drug, and patients on hemodialysis should receive cycloserine/terizidone after the procedure, at a dose of 500 mg administered three times a week.[45]

Interactions

Foods

Foods increase the time required for cycloserine/terizidone to be absorbed by 3.5 times, and there can be a 35% reduction in the maximum concentration of the drug. Orange juice (and probably other acidic beverages) reduces the maximum concentration of the drug by 15%. Whenever possible, the drug should be ingested with water, well before or after meals.[46]

Antacids

Antacids do not significantly interfere with the absorption and concentration of cycloserine/terizidone.[46]

Other drugs

There is evidence that combining cycloserine/terizidone with ethionamide and isoniazid can potentiate the neurotoxic effects. Cycloserine/terizidone can increase the serum levels of phenytoin and oral anticoagulants, as well as decreasing those of pyridoxine. In patients using anticonvulsants and neuroleptics, the dose of cycloserine/terizidone should be adjusted.
Chart 1 - Approach to the secondary effects of the most common antituberculosis drugs, according to the symptoms.\(^{(52,58,59)}\)

<table>
<thead>
<tr>
<th>Secondary effects</th>
<th>Probable causative drug</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorexia, nausea, and abdominal pain</td>
<td>Rifampin, pyrazinamide, and isoniazid</td>
<td>Continue the treatment and reevaluate the doses.</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Pyrazinamide</td>
<td>Prescribe acetylsalicylic acid, nonsteroidal anti-inflammatory drug, or paracetamol.</td>
</tr>
<tr>
<td>Burning sensation, hypesthesia, or tingling in the hands and feet</td>
<td>Isoniazid</td>
<td>Prescribe a daily dose of 50-75 mg of pyridoxine.</td>
</tr>
<tr>
<td>Somnolence</td>
<td>Isoniazid</td>
<td>Tranquilize patients. Advise patients to take the drug at bedtime.</td>
</tr>
<tr>
<td>Orange or red urine</td>
<td>Rifampin</td>
<td>At the initiation of the treatment, patients should be told that this often occurs and is to be expected.</td>
</tr>
<tr>
<td>Flu-like syndrome (fever, chills, headache, indisposition, and arthralgia)</td>
<td>Rifampin at intermittent doses</td>
<td>Patients should be instructed to use rifampin daily.</td>
</tr>
<tr>
<td>Cutaneous pruritus</td>
<td>Isoniazid and rifampin</td>
<td>Instruct patients. Preserve anthistamines.</td>
</tr>
<tr>
<td>Hyperuricemia (with or without symptoms)</td>
<td>Pyrazinamide</td>
<td>Instruct patients to go on a low purine diet and prescribe acetylsalicylic acid.</td>
</tr>
<tr>
<td>Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin rash with or without pruritus</td>
<td>Streptomycin, isoniazid, rifampin, and pyrazinamide</td>
<td>Discontinue the drugs.</td>
</tr>
<tr>
<td>Hearing loss (if the possibility of cerumen impaction has been ruled out by otoscopy)</td>
<td>Streptomycin</td>
<td>Discontinue streptomycin.</td>
</tr>
<tr>
<td>Vertigo and nystagmus</td>
<td>Streptomycin</td>
<td>Discontinue streptomycin.</td>
</tr>
<tr>
<td>Jaundice (if other causes have been ruled out) and hepatitis</td>
<td>Rifampin, isoniazid, and pyrazinamide</td>
<td>Discontinue the antituberculosis drugs. Reinitiate the drugs in sequence.</td>
</tr>
<tr>
<td>Confusion (suspect drug-induced acute liver failure if there is jaundice)</td>
<td>Most antituberculosis drugs</td>
<td>Discontinue the drugs and do not reinitiate them until the symptoms have disappeared. Request liver function tests and a prothrombin time test. Reinitiate the drugs in sequence.</td>
</tr>
<tr>
<td>Visual disorders (if other causes have been ruled out)</td>
<td>Ethambutol</td>
<td>Discontinue ethambutol.</td>
</tr>
<tr>
<td>Shock, purpura, and acute kidney injury</td>
<td>Rifampin</td>
<td>Discontinue rifampin.</td>
</tr>
<tr>
<td>Oliguria</td>
<td>Streptomycin</td>
<td>Discontinue streptomycin.</td>
</tr>
<tr>
<td>Rhabdomyolysis with myoglobinuria and kidney failure</td>
<td>Pyrazinamide</td>
<td>Discontinue pyrazinamide.</td>
</tr>
</tbody>
</table>
Central nervous system

The central nervous system (CNS) effects of ethionamide are similar to those of isoniazid. The CSF and plasma levels of ethionamide are similar. Ethionamide has been shown to cross the blood-brain barrier and reach therapeutic concentrations in the CNS. However, due to the potential effect that cycloserine/terizidone has on the central nervous system, patients should be closely monitored for side effects of this drug combination. Concomitant use of cycloserine/terizidone and fluoroquinolones can worsen the effects on the central nervous system. Concomitant use of cycloserine/terizidone and alcohol increases the risk of convulsions.

Adverse effects

Gastrointestinal effects

Ethionamide produces intense gastrointestinal effects, including a metallic taste in the mouth, excessive salivation, nausea, vomiting (commonly severe), loss of appetite, and abdominal pain. The symptoms improve if the drug is taken at mealtime or at bedtime. In some cases, it might be necessary to increase the doses progressively until the full dose is reached or to use antiemetics (or to do both).

Hepatotoxicity

Ethionamide and isoniazid have a similar structure. Therefore, the two drugs can cause similar side effects. Hepatotoxicity (toxic hepatitis) occurs in approximately 4.3% of the patients, especially in those with a history of liver disease or alcoholism. Liver changes can occur up to five months after the initiation of treatment with the drug, and it remains unclear whether these changes are due to direct toxicity or to hypersensitivity. Hepatotoxicity habitually resolves when the drug is discontinued.

Neurotoxicity

Peripheral neuritis, optic neuritis, diplopia, irritability, anxiety, depression, hallucinations, convulsions, and psychosis have been reported to occur in 1-2% of the patients. In patients with a history of mental instability, ethionamide should be administered with caution. The neurological effects can be minimized by administering 50-100 mg/day of pyridoxine.

Metabolization and excretion

Ethionamide is rapidly and completely absorbed when administered orally, and serum levels of the drug peak within approximately 1 h after its administration. Approximately 30% of the drug binds to plasma proteins, and the bioavailability of the drug is 80%. Ethionamide is metabolized in the liver and excreted in urine, 1-5% being excreted as active drug (unaltered) and the remainder being excreted as metabolites. The half-life of ethionamide is 2 h.

Ethionamide

Ethionamide has been used as a second-line drug in the treatment of tuberculosis since 1956. It is an inactive prodrug, the structure of which is analogous to that of isoniazid. However, there is no cross-resistance to ethionamide and isoniazid. Ethionamide needs to be activated by the bacterial enzyme EthA ([a monooxygenase containing flavin adenine dinucleotide, and it is NADPH-specific. Ethionamide acts on intracellular and extracellular bacilli. The MIC of ethionamide for M. tuberculosis is 0.6-2.5 µg/mL. At the usual doses, ethionamide is bacteriostatic.

Mechanism of action

Although ethionamide is similar to isoniazid, the former inhibits the activity of the inhA gene of M. tuberculosis. Although the mechanisms of action are different, the result is the same: the two drugs inhibit protein synthesis, preventing mycolic acid biosynthesis and affecting the bacterial cell membrane. Resistance to ethionamide is due to genetic alterations in EthA. M. tuberculosis strains that are resistant to isoniazid due to alterations in the katG gene (catalase/peroxidase enzyme) remain sensitive to ethionamide, which indicates that the enzymes that are responsible for the activation of isoniazid and ethionamide are different.

Endocrine effects

Patients receiving ethionamide can develop gynecomastia, alopecia, hypothyroidism, impotence, or menorrhagia. Ethionamide makes
Antacids

Antacids do not interfere with the absorption of ethionamide.\(^{(34)}\)

Other drugs

Concomitant use of ethionamide and terizidone or isoniazid can potentiate the neurotoxic effects (hallucinations, irritability, tremors, depression, convulsions, psychosis, and peripheral neuropathy). Concomitant use of ethionamide and para-aminosalicylic acid can increase hepatotoxicity and the possibility of hypothyroidism. Concomitant use of ethionamide and alcohol can produce psychotic reactions.\(^{(2,44)}\)

Capreomycin

Capreomycin is a polypeptide antibiotic that is obtained from Streptomyces capreolus and has been used as an antituberculosis drug since 1959. The MIC of capreomycin for \(M. \) tuberculosis is 10 µg/mL. The chemical structure of capreomycin is different from that of aminoglycosides. However, capreomycin and aminoglycosides are quite similar in terms of their antibacterial activity and adverse effects. There is no cross-reaction between capreomycin and streptomycin; however, there might be a cross-reaction between capreomycin and certain strains resistant to amikacin and kanamycin.\(^{(8,52,52)}\)

Mechanism of action

The mechanism of action of capreomycin has yet to be fully understood. It is believed that the drug is active because it interferes with bacterial protein synthesis.\(^{(6,2)}\)

Metabolism and excretion

Capreomycin is not absorbed when taken orally. Capreomycin is administered i.m., and absorption can be delayed in cases in which the same site of application is used repeatedly. Tissue distribution has yet to be fully understood. The serum levels of capreomycin peak within 1–2 h after the administration of the drug. The plasma half-life of capreomycin is 4–6 h in patients with normal renal function, and it can be as long as 55 h in patients with kidney failure. Most of the dose (50–60%) is excreted through glomerular filtration 12 h after administration, and a small proportion is excreted via the biliary tract.\(^{(2,52)}\)
Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations.
Part 2: Second-line drugs

Central nervous system

Capreomycin reaches the CSF only in patients with meningitis.\(^2\)

Adverse effects

In patients treated with capreomycin, common side effects include nephrotoxicity (in 20–25% of the patients), renal tubular damage, proteinuria, electrolyte disturbances, urticaria, and maculopapular rash.\(^2\)

Ototoxicity (especially vestibular), electrolyte changes (decreased serum levels of calcium, magnesium, and potassium), pain, edema, and abscess at the site of application occasionally occur.\(^2,10\)

Use during pregnancy

Capreomycin is a category C drug. In adults, capreomycin is less ototoxic than are aminoglycosides. However, capreomycin should be avoided during pregnancy, since it is unknown whether this can be extrapolated to the health of the fetus. If it is essential to use any given injectable antituberculosis agent during pregnancy, capreomycin should be the drug of choice.\(^2,10\)

Use during breastfeeding

The concentrations of capreomycin in breast milk are unknown. Capreomycin should therefore be avoided during pregnancy.\(^2,10\)

Use in patients with liver failure

It is not necessary to adjust the doses of capreomycin in patients with liver failure.\(^10\)

Use in patients with kidney failure

Capreomycin should be used with extreme caution in patients with creatinine clearance < 30 mL/min and in those on hemodialysis. In these situations, the dose should be adjusted to 12–15 mg/kg, administered twice or three times a week. The drug is removed by dialysis and should be administered after the procedure.\(^2,10\)

Interactions

Other drugs

Capreomycin should not be administered concomitantly with neuromuscular blocking agents, aminoglycosides, or polymyxin B due to the possibility of additive toxic effects.\(^2,10\)

Para-aminosalicylic acid

Para-aminosalicylic acid has been used as an antituberculosis drug since 1946. Beginning in 1955 and for nearly 15 years, para-aminosalicylic acid was considered a first-line drug in a combination regimen with isoniazid and streptomycin. Para-aminosalicylic acid is bacteriostatic, and the MIC of the drug for M. tuberculosis is 1 µg/mL. Para-aminosalicylic acid acts preferentially on extracellular bacilli. The drug can currently be administered in granules stored in 4-mg envelopes, replacing the former 500-mg capsules.\(^2,5,8,54\)

Mechanism of action

The mechanism of action of para-aminosalicylic acid has yet to be elucidated, and it is believed that the mechanism is related to interference with bacterial folic acid synthesis and inhibition of iron uptake.\(^2,54\)

Metabolization and excretion

Para-aminosalicylic acid is administered orally. Para-aminosalicylic acid granules are better tolerated than are para-aminosalicylic acid capsules. The ingestion of 4 g of para-aminosalicylic acid granules leads to a maximum serum concentration of 20–60 µg/mL after 4–6 h. The serum levels of para-aminosalicylic acid peak within 90–120 min after the ingestion of para-aminosalicylic acid capsules. The half-life of para-aminosalicylic acid is 1 h, and the plasma concentrations of the drug after 4–5 h are minimal, which justifies the need for doses of 10–12 g in order to maintain the bacteriostatic activity. Para-aminosalicylic acid is metabolized in the intestines and liver, via acetylation, into N-acetyl-para-aminosalicylic acid. More than 80% of the drug is excreted by the kidney through glomerular filtration and tubular secretion.\(^2,54–56\)

Central nervous system

In the presence of meningitis, the CSF concentration of para-aminosalicylic acid is 10–50% of the plasma concentration of the drug.\(^2,10\)
Adverse effects

In patients treated with para-aminosalicylic acid, gastrointestinal effects (anorexia, diarrhea, nausea, and vomiting) and hypothyroidism, the latter occurring especially when para-aminosalicylic acid is administered concomitantly with ethionamide, are common. Thyroid function returns to normal when the drug is discontinued.[2,10]

Hepatitis (in 0.3-0.5% of the cases), allergic reactions (fever, rash, and pruritus), hemolytic anemia, agranulocytosis, leukopenia, thrombocytopenia, malabsorption syndrome, and increased thyroid volume are rare, as are cardiovascular adverse effects (pericarditis), neurological adverse effects (encephalopathy), respiratory adverse effects (eosinophilic pneumonia), and ocular adverse effects (optic neuritis). Para-aminosalicylic acid should be used with caution in patients with glucose-6-phosphate dehydrogenase deficiency and in those who are allergic to aspirin.[2,10,55]

Use during pregnancy

Para-aminosalicylic acid is a category C drug. There have been reports of congenital anomalies associated with the administration of the drug in the first trimester of pregnancy. Therefore, the drug should be used in pregnant women only when there is no therapeutic alternative.[2,10]

Use during breastfeeding

Para-aminosalicylic acid is secreted in breast milk (at 1.4% of the maternal plasma concentration of the drug). Para-aminosalicylic acid can be used during breastfeeding.[44]

Use in patients with liver failure

Para-aminosalicylic acid should be used with caution in patients with liver failure. Hepatic enzyme levels should be monitored.[10]

Use in patients with kidney failure

It is not necessary to adjust the doses of para-aminosalicylic acid in patients with kidney failure. However, the drug can exacerbate acidosis and crystalluria in patients with severe kidney failure. Sodium para-aminosalicylate can also increase blood volume in this situation.[2,10]

Interactions

Foods

Foods increase the absorption of para-aminosalicylic acid. The drug can be administered with water, orange juice, or fatty foods.[46]

Antacids

Antacids do not interfere with the absorption of para-aminosalicylic acid.[46]

Other drugs

Digoxin can reduce the absorption of para-aminosalicylic acid. Ethionamide can increase hepatotoxicity and hypothyroidism in patients treated with para-aminosalicylic acid. Isoniazid increases acetylation, which results in an increase in the serum levels of para-aminosalicylic acid. Concomitant use of angiotensin-converting enzyme inhibitors and para-aminosalicylic acid can reduce the antihypertensive effect of the latter, and the use of calcium channel blockers can increase the anticoagulant effect of para-aminosalicylic acid. Concomitant use of para-aminosalicylic acid and carbonic anhydrase inhibitors potentiate the adverse effects of both drugs, and concomitant use of para-aminosalicylic acid and systemic corticosteroids can also increase the number and severity of adverse effects, especially gastrointestinal effects. Para-aminosalicylic acid can reduce the effect of loop diuretics, and, conversely, loop diuretics can increase the serum levels of para-aminosalicylic acid. With the exception of dicyfenac, nonselective NSAIDs can increase the adverse effects of para-aminosalicylic acid. Para-aminosalicylic acid can increase the hypoglycemic effects of sulfonylurea, as well as increasing the risk of bleeding when administered in conjunction with oral anticoagulants, thrombolytics, or salicylates.[2,10]

Chart 1 shows the most common adverse effects of the principal antituberculosis drugs, as well as the recommended practices according to the symptoms.[57-59]

Appendix 1 summarizes the interactions among antituberculosis drugs.[10,17,38,39,60]

Final considerations

The drugs used for the treatment of multidrug-resistant tuberculosis are generally less...
effective, more toxic, and more expensive than the drugs that constitute the basic regimen. These characteristics prolong the treatment and increase its cost (which can be up to one hundred times higher), as well as increasing the possibility of adverse events. In addition, these characteristics reduce treatment adherence and increase treatment failure rates. The relationship between the patient and the health care team, the early recognition of adverse effects, and the knowledge of the pharmacological properties of the drugs involved allow professionals to tailor their approach to each individual case, thus avoiding potentially fatal reactions.

References

6. Rieder HL. Intervenciones para el control y la eliminación de la tuberculosis y enfermedades respiratorias. 2007; p. 32-5.

About the authors

Marcos Abdo Arbex
Physician. Clinical Medicine Section of the Department of Internal Medicine, Federal University of São Paulo/Paulista School of Medicine, São Paulo, Brazil. Pulmonologist. Nestor Goulart Reis State Hospital, São Paulo State Department of Health, Américo Brasiliense, Brazil.

Marília de Castro Lima Varella
Assistant Professor. Department of Clinical Medicine, University of Mogi das Cruzes School of Medicine, Mogi das Cruzes, Brazil.

Hélio Ribeiro de Siqueira
Visiting Professor. Department of Pulmonology and Phthisiology, Rio de Janeiro State University School of Medical Sciences. Physician in Charge of the Tuberculosis Outpatient Clinic of the Rio de Janeiro State University Pedro Ernesto University Hospital, Rio de Janeiro, Brazil.

Fernando Augusto Fiúza de Mello
Director. Clemente Ferreira Institute, Disease Control Committee, São Paulo State Department of Health, São Paulo, Brazil.
Appendix 1 - Interactions between antituberculosis drugs and foods, as well as between antituberculosis drugs and other drugs.\(^{(10,17,38,39,60)}\)

Rifampin
- Foods (decreased absorption of rifampin)
- Para-aminosalicylic acid (decreased absorption of rifampin)
- Amiodarone (decreased serum levels of amiodarone)
- Oral anticoagulants (decreased serum levels of the anticoagulant)
- Contraceptives (decreased serum levels of the contraceptive)
- Anticonvulsants (decreased serum levels of the anticonvulsant)
- Tricyclic antidepressants (decreased serum levels of the antidepressant)
- Antipsychotics (decreased serum levels of the antipsychotic)
- Barbiturates and benzodiazepines (decreased serum levels of the barbiturate and benzodiazepine)
- Beta blockers (decreased serum levels of the beta blocker)
- Cyclosporine (reduced effect of cyclosporine)
- Ketoconazole (decreased serum levels of ketoconazole)
- Codeine (decreased serum levels of codeine)
- Corticosteroids (decreased serum levels of the corticosteroid)
- Dapsone (possible decrease in the serum levels of dapsone)
- Digital (decreased serum levels of digital)
- Diltiazem (decreased serum levels of diltiazem)
- Enalapril (decreased serum levels of enalapril)
- Statins (decreased serum levels of the statin)
- Fluconazole (decreased serum levels of fluconazole)
- Haloperidol (decreased serum levels of haloperidol)
- Oral hypoglycemic agents (decreased serum levels of the hypoglycemic agent)
- Itraconazole (decreased serum levels of itraconazole)
- Methadone (decreased serum levels of methadone)
- Morphine (decreased serum levels of morphine)
- Narcotics and analgesics (decreased serum levels of the narcotic and analgesic)
- Propafenone (decreased serum levels of propafenone)
- Nifedipine (decreased serum levels of nifedipine)
- Quinidine (decreased serum levels of quinidine)
- Theophylline (decreased serum levels of theophylline)
- Verapamil (decreased serum levels of verapamil)
- Isoniazid + ketoconazole (greater hepatotoxicity)
- Ethionamide (greater hepatotoxicity)
- Phenytoin (greater hepatotoxicity)
- Isoniazid (greater hepatotoxicity)
- Sulfonamides (greater hepatotoxicity)
- Pyrazinamide (greater uric acid excretion)
- Efavirenz (decreased serum levels of efavirenz)
- Indinavir (decreased serum levels of indinavir)
- Lopinavir/Ritonavir (decreased serum levels of lopinavir)
- Nelfinavir (decreased serum levels of nelfinavir)
- Saquinavir (decreased serum levels of saquinavir)
- Zidovudine (decreased serum levels of zidovudine)

Isoniazid
- Foods (decreased absorption of isoniazid)
- Valproic acid (increased serum concentration of valproic acid)
- Antacids/aluminum hydroxide (decreased absorption of isoniazid)
- Oral anticoagulants (increased serum concentration of the anticoagulant)
- Benzo diazepines (increased serum concentration of the benzodiazepine)
- Enflurane (possibility of nephrotoxicity)
- Carbamazepine (increased serum concentration of carbamazepine)
- Corticosteroids (decreased serum levels of isoniazid)
- Ketoconazole (decreased serum concentration of ketoconazole)
- Cyclosporine (greater neurotoxicity)
- Diazepam (increased serum concentration of diazepam)
- Disulfiram (possibility of psychotic events)
- Phenytoin (increased serum concentration of phenytoin)
- Levodopa (increased serum concentration of catecholamines)
- Paracetamol (greater hepatotoxicity)
- Rifampin (greater hepatotoxicity)
- Theophylline (increased concentration of theophylline)
- Cheese and red wine (inhibition of monoamine oxidase)
- Fish (increased concentration of histamine)
<table>
<thead>
<tr>
<th>Pyrazinamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allopurinol (decreased effect of allopurinol, pyrazinamide increases the serum levels of uric acid)</td>
</tr>
<tr>
<td>Colchicine (decreased effect of colchicine, pyrazinamide increases the serum levels of uric acid)</td>
</tr>
<tr>
<td>Cyclosporine (decreased serum concentration of cyclosporine)</td>
</tr>
<tr>
<td>Ketoconazole (greater hepatotoxicity)</td>
</tr>
<tr>
<td>Ethionamide (the adverse effects of ethionamide can increase)</td>
</tr>
<tr>
<td>Isoniazid (greater hepatotoxicity)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethambutol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antacids (decreased absorption of ethambutol)</td>
</tr>
<tr>
<td>Ethionamide (increased possibility of neurotoxic effects of ethambutol)</td>
</tr>
<tr>
<td>Pyrazinamide (increased possibility of hepatotoxicity)</td>
</tr>
<tr>
<td>Didanosine and zalcitabine (peripheral neuritis is potentiated)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aminoglycosides (streptomycin and amikacin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir (increased possibility of nephrotoxicity)</td>
</tr>
<tr>
<td>Ethacryninc acid (increased possibility of ototoxicity)</td>
</tr>
<tr>
<td>Amphotericin (increased possibility of nephrotoxicity)</td>
</tr>
<tr>
<td>Oral anticoagulants (greater effect of the anticoagulant)</td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory drugs (increased possibility of ototoxicity and nephrotoxicity)</td>
</tr>
<tr>
<td>Capreomycin (increased possibility of ototoxicity and nephrotoxicity)</td>
</tr>
<tr>
<td>Cephalosporins (increased possibility of nephrotoxicity)</td>
</tr>
<tr>
<td>Cisplatin (increased possibility of nephrotoxicity)</td>
</tr>
<tr>
<td>Cyclosporine (increased possibility of nephrotoxicity)</td>
</tr>
<tr>
<td>Furosemide (increased possibility of ototoxicity)</td>
</tr>
<tr>
<td>Methotrexate (possible increase in the toxicity of methotrexate)</td>
</tr>
<tr>
<td>Polymyxins (greater nephrotoxicity)</td>
</tr>
<tr>
<td>Vancomycin (greater ototoxicity and nephrotoxicity)</td>
</tr>
<tr>
<td>Neuramnuscular blocking agents (additive effect)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethionamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (increased possibility of psychotic reactions)</td>
</tr>
<tr>
<td>Antituberculosis drugs (greater adverse effects)</td>
</tr>
<tr>
<td>Isoniazid (temporarily increased serum concentration of isoniazid)</td>
</tr>
<tr>
<td>Para-aminosalicylic acid (increased possibility of hypothyroidism)</td>
</tr>
<tr>
<td>Terazolone (increased possibility of toxic effects on the central nervous system)</td>
</tr>
<tr>
<td>Dapsone (peripheral neuritis is potentiated)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cyclosporine (terazolone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (increased effects of alcohol and dizziness)</td>
</tr>
<tr>
<td>Anticoagulants (increased serum concentration of the anticoagulant)</td>
</tr>
<tr>
<td>Ethionamide (possibility of increased toxic effects on the central nervous system)</td>
</tr>
<tr>
<td>Phenytoin (increased serum concentration of phenytoin)</td>
</tr>
<tr>
<td>Isoniazid (possibility of increased toxic effects on the central nervous system)</td>
</tr>
<tr>
<td>Vitamin B6 (increased vitamin B6 clearance)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluoroquinolones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antacids with cations Ca, Mg, Al, and Fe (decreased absorption of fluoroquinolones)</td>
</tr>
<tr>
<td>Sucralfate (decreased absorption of fluoroquinolones)</td>
</tr>
<tr>
<td>Drugs metabolized by cytochrome P450: cyclosporine, theophylline, warfarin, phenytoin, and sulfonylurea (increased effect of these drugs)</td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory drugs (increased stimulation of the central nervous system and possibility of convulsions)</td>
</tr>
<tr>
<td>Probenecid (increased serum levels of the fluoroquinolone)</td>
</tr>
<tr>
<td>Theophylline (increased serum levels of theophylline)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capreomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuramnuscular blocking agents (increased adverse effects of the two drugs)</td>
</tr>
<tr>
<td>Aminoglycosides (increased adverse effects of the two drugs)</td>
</tr>
<tr>
<td>Polymyxin B (increased adverse effects of the two drugs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Para-aminosalicylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulants (possibility of increased anticoagulant effect)</td>
</tr>
<tr>
<td>Digoxin (decreased serum levels of digoxin)</td>
</tr>
<tr>
<td>Corticosteroids (possibility of increased adverse effects of the corticosteroid)</td>
</tr>
<tr>
<td>Ethionamide (increased possibility of hypothyroidism and hepatotoxicity)</td>
</tr>
<tr>
<td>Isoniazid (possibility of increased serum levels of isoniazid)</td>
</tr>
<tr>
<td>Probenecid (increased serum concentration of para-aminosalicylic acid)</td>
</tr>
<tr>
<td>Vitamin B12 (decreased serum levels of vitamin B12)</td>
</tr>
<tr>
<td>Sulfonylurea (possibility of increasing hypoglycemic effects of sulfonylurea)</td>
</tr>
</tbody>
</table>