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Pontos de tensão de uma interface oronasal para ventilação não invasiva: 
uma análise através de um modelo computacional
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Abstract
Objective: To study the effects of an oronasal interface (OI) for noninvasive ventilation, using a three-dimensional 
(3D) computational model with the ability to simulate and evaluate the main pressure zones (PZs) of the OI on 
the human face. Methods: We used a 3D digital model of the human face, based on a pre-established geometric 
model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D 
laser scanning and post-processed for use in the model created, with the objective of separating the cushion 
from the frame. A computer simulation was performed to determine the pressure required in order to create the 
facial PZs. We obtained descriptive graphical images of the PZs and their intensity. Results: For the graphical 
analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer 
model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue 
depth had a direct impact on the amount of pressure applied (438-724 cmH2O). Conclusions: The computer 
simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of 
skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability 
of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to 
choose the interface that best minimizes the risk of skin lesion.
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Resumo
Objetivo: Estudar os efeitos de uma interface oronasal (IO) durante a ventilação não invasiva usando um modelo 
computacional tridimensional (3D) com a capacidade de simular e avaliar os principais pontos de pressão (PP) 
na face humana. Métodos: Foi utilizado um modelo digital 3D da face humana, baseado em um geométrico 
pré-estabelecido. O modelo simulava tecidos moles, crânio e cartilagem nasal. O modelo geométrico foi obtido 
por varredura a laser 3D e pós-processado para uso no modelo criado. Uma simulação computacional foi 
realizada para determinar a pressão necessária para criar os PP faciais com o objetivo de separar a almofada da 
parte rígida da IO. Imagens gráficas descritivas dos PP e de sua intensidade foram obtidas. Resultados: Para as 
análises gráficas de cada par de modelos face-IO e suas respectivas avaliações, foram realizadas 21 simulações. O 
modelo computacional identificou vários PP com alto impacto sobre a ponte nasal e área paranasal. A variação 
da profundidade nos tecidos moles teve um impacto direto na quantidade da pressão aplicada (438-724 cmH2O). 
Conclusões: Os resultados da simulação computacional indicam que, em pacientes submetidos à ventilação 
não invasiva com uma IO, a probabilidade de ocorrência de lesões cutâneas é maior na ponte nasal e nas áreas 
paranasais. Esta metodologia pode aumentar a aplicabilidade na investigação biomecânica das interfaces de 
ventilação não invasiva, fornecendo informações necessárias para a escolha de uma IO que minimize o risco 
de lesão na pele.
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be of one-, two-, or three-dimensions and can 
assume distinct geometries (lines, tetrahedrons, 
shells, plates, etc.) The behavior of each element 
is analyzed in terms of the loads and responses at 
the nodes, and is described by an elemental small 
matrix, relating a vector nodal displacement to 
a vector of applied nodal forces. The geometry 
is so represented in a simplified and discrete 
way, although still characterizing the object to 
be modeled.

We hypothesized that the use of a three-
dimensional (3D) computational model would 
increase the likelihood of accurately assessing 
problematic pressure zones (PZs) in patients 
submitted to NIV with an oronasal interface 
(OI), because it would allow the facial anatomy 
and the corresponding points on the mask to be 
taken into account. The objective of this study 
was to evaluate the effects of an OI using a 3D 
computational model with the ability to simulate 
and evaluate the main PZs.

Methods

For this study, we used a digital model of 
a human face, based on a geometric model 
described previously.(11,12) The facial geometry 
was extracted and simplified for our analysis. 
The 3D model was created with three main parts: 
soft tissues (part of the scalp, muscle tissue, 
fat, and skin tissue); skull; and nasal cartilage. 
The soft tissue part used four-node tetrahedral 
elements, whereas the skull and nasal cartilage 
parts used shell elements. We connected the parts 
using the common nodes in the interfaces. The 
mandible was free to move relative to the skull, 
according to the human anatomy (for model 
performance and discretization of the data, no 
mouth aperture was modeled). The mechanical 
properties of the types of formulations used in 
the model are presented in Table 1. The head 
was selected along the dorsal plane near the 
geometrical reference of the head and along the 
transverse plane below the mandible.

The OI modeled was a simplified version of 
the QuattroTM FX (ResMed, Bella Vista, Australia). 
The simplified version was used because it has 
no internal membrane, which can improve the 
adjustment of the mask. This geometrical model 
was obtained by 3D laser scanning and post-
processed for subsequent use in the created 
model (Figure 1). The mask surface obtained 
was selected with the objective of separating the 

Introduction

Noninvasive ventilation (NIV) plays an 
important role in the treatment of acute and 
chronic respiratory failure.(1,2) Nevertheless, NIV 
has been shown to fail in 40-60% cases in the 
acute setting.(2-4) Interface-related problems 
are one of the most common adverse effects, 
accounting for 50-100% of all NIV-associated 
complications.(4,5)

The choice of interface is a major determinant 
of NIV success, mainly because it adversely affects 
patient comfort.(6) Oronasal masks are preferred 
for patients with acute respiratory failure, because 
such patients generally breathe through the mouth 
to bypass nasal resistance,(7,8) whereas nasal masks 
are reportedly used in 73% of patients with chronic 
respiratory failure.(1,4,8) The choice of interface can 
also play a major role in NIV complications, such 
as air leak, claustrophobia, facial skin erythema, 
acne-form rash, skin damage, and eye irritation.
(4,8) The most common sites of friction and skin 
damage are the bridge of the nose and the upper 
lip (nasal mask); the nasal mucosa (nasal pillow 
mask); and the axillae (helmet).(1) The creation 
of a more objective model to aid in the selection 
of an NIV interface—depending on the setting, 
the patient circumstances, or even the materials 
used—is warranted. Promising software and the 
evolution of computational models over the last 
decades have made a significant contribution to 
the development of medical products, creating a 
link between mechanical engineering and clinical 
practice. One of the advances in engineering that 
shows the greatest potential for biomechanical 
applications is the finite element method (FEM).
(9) The FEM was developed by engineers in the 
1990s as a means of analyzing the mechanical 
behavior of complex structures.(10) At present, 
the FEM is applied in the fields of engineering, 
science, and medicine. It is a computerized 
numerical technique that can be used in order 
to establish the stress and displacement fields 
in a specific structure. In simpler terms, one can 
say that the FEM solves complex problems by 
redefining them as the summation of a series of 
simpler, interrelated problems. In brief, the FEM 
subdivides an object into a suitable set of small 
of discrete regions (the finite elements), which are 
linked by common points (the nodes). Although 
the structure under study can be complex and 
irregularly shaped, the individual elements should 
be simple and easily analyzed. The elements can 
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a mechanical point of view, one progressively 
tightens the strap system until there is no 
air leakage at peak inspiratory pressures. The 
pressure was preset at 25 cmH2O to insure that 
it was lower than the skin capillary perfusion 
pressure. (11) Descriptive graphical (descriptive 
analysis) images from the local areas of the PZs 
and their intensity were obtained. The results 
presented were recorded for an interval of 40 ms, 
after the model had stabilized (Video 1; available 
in the online version of the Brazilian Journal of 
Pulmonology; http://jornaldepneumologia.com.
br/detalhe_video.asp?id=2355/).

Results

For the graphical analyses of each face-OI 
model pair and their respective evaluations, we 
ran 21 simulations. That was the number of 
simulations deemed necessary in order to adjust 
the pre-positioning of the mask; characterize 
the contact; determine how fast the load and 
pressure should be applied; and ensure that the 
software would yield a sufficient number of results 
without errors (the software itself evaluates and 
demonstrates errors regarding the simulation). 
Descriptive graphical images of PZs were obtained 
(Figure 3). The OI presented several PZs with 
major relevance in the nasal bridge, paranasal, 
and mandibular regions (Figure 3). There was 
a significant pressure increase at the point of 
contact between the mask membrane and the 
nose (Figure 3). In a graphical analysis of the 
contact pressure, we observed that the pressure 
distribution is relatively homogeneous across 
the entire OI contact area, the contact being 
broken only at the lateral lip commissure and 
the frontal zone of the maxilla (Figure 3). In 
the frontal zone of the maxilla, we observed a 
large section in which the contact pressure was 
low or absent. In the nasal bridge and paranasal 

cushion from the frame. The cushion was then 
pre-processed (transformed into computer-aided 
design models that can be manipulated) to create 
the finite element model (Figure 2). The cushion 
model is composed of shell elements based on 
a large deformation formulation.

After the FEM models of the human face and 
OI had been constructed, we ran a simulation of 
the interaction between the two in the RADIOSS® 
multidisciplinary finite element solver (Altair 
Engineering, Troy, MI, USA). At the initial stage, 
the models are assembled in such a way that there 
is a gap of approximately 22 mm between the 
OI model and the human face model, in order 
to prevent penetration. At the next stage, loads 
and boundary conditions are applied and the OI 
is moved toward the human face. Interactions 
between the two occurred primarily in the frontal 
region (including the nasal bridge), the maxillary 
region, and the mandible region. At the third 
stage (the OI stage), the OI is nearly stable on 
the human face, with an increasing PZ. The 
pressure distribution over the contact areas was 
then determined (Figure 1). As described in the 
literature,(11) we subsequently applied a pressure 
load of 25 cmH2O to the mask, in order to 
simulate the tension created by tightening the 
elastic straps, which is the standard method of 
attaching OIs during NIV. These elastic strap 
systems hold the mask to the face while the 
ventilator pressure is pushing it away from the 
face, the two operating as opposing forces. From 

A B C

Table 1 - Mechanical properties of the types of 
formulations used in the model.

Material Property Characterization
Soft tissue Elastoplastic Johnson-Cook
Cartilage Linear elastic Hooke’s Law
Cortical bone Viscoelastic Maxwell-Kelvin-Voigt
Mask cushion Viscoelastic Maxwell-Kelvin-Voigt

Figure 1 - 1A: QuattroTM FX mask (no elbow), size 
L; B: finite element model of A (head and simplified 
cushion); C: geometric model of A obtained by three-
dimensional laser digitalization. 

A B

Figure 2 - A: QuattroTM FX mask cushion, size L; B: 
finite elements model of the cushion (A), simplified.
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the literature in terms of the area where skin 
lesions typically occur (the nasal bridge).(5,12) 
Nasal bridge ulceration, as depicted in Figure 
3, is a relatively common complication of NIV, 
occurring in up to 10% of ventilated patients.(5)

Skin lesion at the site of mask contact is the 
most common complication of NIV,(4) and skin 
necrosis is normally due to excessive mask-fit 
pressure, which prevents adequate tissue perfusion.
(11) Schettino et al.(11) described a simple method 
of ensuring appropriate mask attachment during 
NIV, which is to measure the mask-fit pressure 
within the pneumatic cushion of the mask. To our 
knowledge, ours is the first study accessing the 
behavior of an OI on PZs and contact pressure 
during NIV using the FEM techniques. The PZ 
at the point of contact between the mask and 
nose is often evaluated only as incorrect use of 
the OI. Our preliminary results indicate PZs in 
the nasal bridge and paranasal regions, as well 
as disproportionate contact pressure between the 

regions, we observed a PZ associated with an 
increased density of > 204 cmH2O. 

As can be seen in Figure 4, a variation in 
soft tissue depth translated to a variation in 
the pressure applied, which ranged from 438 
cmH2O to 724 cmH2O. In a sagittal view, the 
pressure effects observed that in the upper-lateral 
zone of the nose were seen to extend to the 
bone tissue (nasal bone). A similar phenomenon 
was observed where the cushion aligns with the 
mandible and maxilla. 

Discussion 

The main findings of the present study were 
as follows: the likelihood of a PZ was highest 
in the nasal bridge and paranasal regions; there 
was a significant pressure increase at the point 
of contact between the mask membrane and 
the nose; and the variation in soft tissue depth 
had a direct impact on the amount of pressure 
applied. Our findings are in accordance with 
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Figure 3 - Graphical images of pressure zones (A), in which blue, green, yellow, and red, respectively, 
indicate ascending values for pressure and contact pressure; pressure zones (B) of an oronasal interface and 
a corresponding skin lesion (C) induced by one of the high-pressure zones (B1, point of contact between 
the mask membrane and the nose) of the same interface; in some areas of the mask cushion (D), the contact 
pressure was absent/low (D2/D3), whereas it was high in other areas (D4), specifically the nasal bridge, 
paranasal, and mandibular regions. Stages of the simulation, according to the approach and contact with 
the mask, are shown in D5.
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the FEM to calculate the pressure between a jet 
pilot oxygen mask (MBU-20/P) and the human 
face was Bitterman.(15) According to Yang et 
al.,(16) the maximum respirator pressure is 3,344 
cmH2O, higher than that found in our study. 
Piccione & Moyer(17) developed a mask “fit and 
discomfort model” to evaluate fit, protection, 
and discomfort according to contact location, 
pressure, shear, and friction. Cohen(18) described an 
experimental method for evaluating mask seals by 
measuring seal pressure distributions. We believe 
that this 3D computational simulation method 
could predict the PZs between the human face 
and an OI designed for NIV. Further studies are 
certainly needed in order to validate and expand 
this methodology, which shows real promise for 
applications in mask design and testing.

The present study has a number of limitations. 
The model of the face was not perfectly analogous 
to the human anatomy, in which the soft tissue is 
composed of skin, subcutaneous fat, and muscle 
tissue. In addition, the pressure was applied over a 
single point, rather than being distributed across 
the mask, as it would be in a real-life setting, 
and we did not adjust the model to account for 
the effects of strap tension. Furthermore, we did 
not take the time factor into account. Moreover, 
the OI employed (a simplified model) has only 
one internal membrane. Theoretically, the mask 
membrane can change the pressure values and 
the distribution of that pressure over the face. 
Therefore, our findings cannot be extrapolated 
to the commercialized version of the mask.

These preliminary results support the idea 
that the probability of skin breakdown is highest 
in the nasal bridge and paranasal regions in 
patients on NIV with an OI. This methodology 
could introduce the biomechanical study of 
NIV interfaces as a strategy to minimize lesion. 
There is a need for quantitative validation of 
this model, including the internal membrane of 
nasal pillow masks.
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surface; B: pressure variation according to soft tissue 
depth.
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