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BACKGROUND

The human body is primarily concerned with the 
stability of pH. The lungs are the organs responsible 
for maintaining an adequate PaCO2 for the level of CO2 
production (VCO2) while avoiding critical decrements in 
PaO2. Most of the pulmonary function tests, however, 
explore potential abnormalities in a step that precedes 
alveolar gas exchange, i.e., ventilation (VE). Of note, 
arterial blood gases are influenced not only by the 
integrity of the alveolar-capillary membrane but also 
by hemodynamic factors (e.g., poor peripheral tissue 
perfusion leading to low mixed venous O2 pressure) and 
changes in ventilatory drive (e.g., hypoventilation leading 
to hypercapnia and hypoxemia) among others.(1) Due to 
the ominous systemic consequences of impaired pulmonary 

gas exchange, tests addressing its multifaceted features 
are germane to the practice of Pulmonology.

OVERVIEW

A 71-year-old current smoker woman was referred 
to the pulmonology clinic due to progressing exertional 
dyspnea (modified Medical Research Council score = 
3/4) despite normal spirometry, lung volumes, and 
contrast-enhanced chest CT results. Her dyspnea has 
been ascribed to sedentary lifestyle and severe anemia 
in the context of multiple myeloma. A six-minute walk 
test confirmed poor exercise tolerance with high dyspnea 
burden and exertional hypoxemia. Tests assessing gas 
exchange showed: a) low hemoglobin-corrected DLCO 

Figure 1. A simplified framework for an integrative analysis of pulmonary gas exchange based on routine pulmonary 
function tests. See text for further elaboration. Modified, with permission from the publisher.(3) VA: alveolar ventilation; 
KCO: carbon monoxide diffusion (transfer) coefficient; P(A-a)O2: alveolar-arterial gradient pressure of O2; VD: dead space 
ventilation; VT: tidal volume; P(a-ET)CO2: arterial to end-tidal carbon dioxide gradient; VE:ventilation; and VCO2: carbon 
dioxide production. *A normal VA may coexist with airflow obstruction in a subject with mild airflow limitation in whom the 
distributive abnormalities are not severe enough to decrease VA. 

†VA may still lie in the normal range despite a low VA/TLC in 
a severely hyperinflated patient (high TLC).
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and carbon monoxide transfer coefficient (KCO) with 
normal alveolar ventilation (VA) and VA/TLC ratio; 
b) mildly reduced PaO2 and eucapnia; and c) high 
alveolar-arterial gradient pressure of O2 [P(A-a)O2], 
shunt fraction (on 100% O2), physiological dead space, 
arterial to end-tidal carbon dioxide gradient [P(a-ET)
CO2], and resting o VE/VCO2ratio. The pattern of 
impaired pulmonary gas exchange (Figure 1, in red), 
shunt and preserved VE distribution in the absence of 
emphysema or pulmonary arterial-venous fistulas raised 
concerns of poor pulmonary perfusion secondary to 
an extrapulmonary shunt. In fact, a transesophageal 
echocardiogram with microbubbles showed a small 
patent foramen ovale whose dimension markedly 
increased even with mild exertion. Absence of pulmonary 
hypertension at rest did not preclude right-to-left shunt 
(putative mechanisms in the study by Vitarelli).(2)

The rate of alveolar gas exchange can be substantially 
impaired despite preserved lung parenchyma. If 
hypoxemia cannot be explained by hypoventilation—high 
PaCO2 and alveolar partial pressure of CO2 (PACO2), 
leading to low alveolar partial pressure of O2 (PAO2)—or 
low inspired O2 pressure (e.g., high altitude), impaired 

pulmonary perfusion should be considered as the most 
likely explanation. In the present case, right-to-left shunt 
diminished pulmonary perfusion thereby decreasing 
the functional surface for alveolar-capillary gas transfer 
(↓ DLCO).

(3) As VE was relatively well distributed (normal 
VA/TLC ratio),(4) KCO decreased. High VE/perfusion ratio 
increased PAO2—and P(A-a)O2 as PaO2 was low—and the 
fraction of tidal volume “wasted” in the dead space.(5) 
Thus, end-tidal CO2 tension (PETCO2) was substantially 
lower than PACO2 (estimated by PaCO2), because it 
was diluted by the PCO2 from alveoli which were not 
properly exposed to CO2-rich venous blood [↑P(a-ET)
CO2].

(6) Higher VE was then needed to keep alveolar 
ventilation (↑VE/VCO2 ratio; Figure 1, in blue).

CLINICAL MESSAGE

An integrated analysis of arterial blood gases 
(with indirect measurements of VE distribution and  
VE-perfusion matching) and lung transfer capacity—in 
the light of clinical data—is invariably useful to untangle 
the mechanisms and consequences of impaired 
pulmonary gas exchange.
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