

Integrating measurements of pulmonary gas exchange to answer clinically relevant questions

José Alberto Neder¹, Danilo Cortozi Berton², Denis E O'Donnell¹

BACKGROUND

The human body is primarily concerned with the stability of pH. The lungs are the organs responsible for maintaining an adequate PaCO, for the level of CO, production (VCO₂) while avoiding critical decrements in PaO2. Most of the pulmonary function tests, however, explore potential abnormalities in a step that precedes alveolar gas exchange, i.e., ventilation (VE). Of note, arterial blood gases are influenced not only by the integrity of the alveolar-capillary membrane but also by hemodynamic factors (e.g., poor peripheral tissue perfusion leading to low mixed venous O₂ pressure) and changes in ventilatory drive (e.g., hypoventilation leading to hypercaphia and hypoxemia) among others.⁽¹⁾ Due to the ominous systemic consequences of impaired pulmonary

gas exchange, tests addressing its multifaceted features are germane to the practice of Pulmonology.

OVERVIEW

A 71-year-old current smoker woman was referred to the pulmonology clinic due to progressing exertional dyspnea (modified Medical Research Council score = 3/4) despite normal spirometry, lung volumes, and contrast-enhanced chest CT results. Her dyspnea has been ascribed to sedentary lifestyle and severe anemia in the context of multiple myeloma. A six-minute walk test confirmed poor exercise tolerance with high dyspnea burden and exertional hypoxemia. Tests assessing gas exchange showed: a) low hemoglobin-corrected DL_{co}

Figure 1. A simplified framework for an integrative analysis of pulmonary gas exchange based on routine pulmonary function tests. See text for further elaboration. Modified, with permission from the publisher.⁽³⁾ V_A : alveolar ventilation; K_{co} : carbon monoxide diffusion (transfer) coefficient; P(A-a)O₂: alveolar-arterial gradient pressure of O₂; V_{D} : dead space ventilation; V_{T} : tidal volume; P(a-ET)CO₂: arterial to end-tidal carbon dioxide gradient; VE:ventilation; and VCO_2 : carbon dioxide production. *A normal V_A may coexist with airflow obstruction in a subject with mild airflow limitation in whom the distributive abnormalities are not severe enough to decrease V_A. [†]V_A may still lie in the normal range despite a low V_A/TLC in a severely hyperinflated patient (high TLC).

^{1.} Pulmonary Function Laboratory and Respiratory Investigation Unit, Division of Respirology and Sleep Medicine, Kingston Health Science Center & Queen's University, Kingston (ON) Canada

^{2.} Unidade de Fisiologia Pulmonar, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS) Brasil.

and carbon monoxide transfer coefficient (K_{co}) with normal alveolar ventilation (V_{A}) and V_{A}/TLC ratio; b) mildly reduced PaO₂ and eucapnia; and c) high alveolar-arterial gradient pressure of O_2 [P($_a$ -a)O₂], shunt fraction (on 100% O₂), physiological dead space, arterial to end-tidal carbon dioxide gradient $[P(a-_{FT})]$ CO_{2} , and resting o VE/VCO₂ ratio. The pattern of impaired pulmonary gas exchange (Figure 1, in red), shunt and preserved VE distribution in the absence of emphysema or pulmonary arterial-venous fistulas raised concerns of poor pulmonary perfusion secondary to an extrapulmonary shunt. In fact, a transesophageal echocardiogram with microbubbles showed a small patent foramen ovale whose dimension markedly increased even with mild exertion. Absence of pulmonary hypertension at rest did not preclude right-to-left shunt (putative mechanisms in the study by Vitarelli).⁽²⁾

The rate of alveolar gas exchange can be substantially impaired despite preserved lung parenchyma. If hypoxemia cannot be explained by hypoventilation—high PaCO₂ and alveolar partial pressure of CO₂ (P_ACO_2), leading to low alveolar partial pressure of O₂ (P_AO_2)—or low inspired O₂ pressure (e.g., high altitude), impaired pulmonary perfusion should be considered as the most likely explanation. In the present case, right-to-left shunt diminished pulmonary perfusion thereby decreasing the functional surface for alveolar-capillary gas transfer (\downarrow DL_{CO}).⁽³⁾ As VE was relatively well distributed (normal V_A/TLC ratio),⁽⁴⁾ K_{CO} decreased. High VE/perfusion ratio increased P_AO₂—and P(_A-a)O₂ as PaO₂ was low—and the fraction of tidal volume "wasted" in the dead space.⁽⁵⁾ Thus, end-tidal CO₂ tension (P_{ET}CO₂) was substantially lower than P_ACO₂ (estimated by PaCO₂), because it was diluted by the PCO₂ from alveoli which were not properly exposed to CO₂-rich venous blood [^P(a-_{ET}) CO₂].⁽⁶⁾ Higher VE was then needed to keep alveolar ventilation (^VE/VCO₂ ratio; Figure 1, in blue).

CLINICAL MESSAGE

An integrated analysis of arterial blood gases (with indirect measurements of VE distribution and VE-perfusion matching) and lung transfer capacity—in the light of clinical data—is invariably useful to untangle the mechanisms and consequences of impaired pulmonary gas exchange.

REFERENCES

- Neder J, Nery L. Clinical Exercise Physiology: Theory and Practice [in Portuguese]. São Paulo: Artes Médicas; 2002. 404 p.
- Vitarelli A. Patent Foramen Ovale: Pivotal Role of Transesophageal Echocardiography in the Indications for Closure, Assessment of Varying Anatomies and Post-procedure Follow-up. Ultrasound Med Biol. 2019;45(8):1882–1895. https://doi.org/10.1016/j. ultrasmedbio.2019.04.015
- Neder JA, Berton DC, Muller PT, O'Donnell DE. Incorporating Lung Diffusing Capacity for Carbon Monoxide in Clinical Decision Making in Chest Medicine. Clin Chest Med. 2019;40(2):285–305. https://doi. org/10.1016/j.ccm.2019.02.005
- 4. Neder JA, O'Donnell CD, Cory J, Langer D, Ciavaglia CE, Ling Y, et al.

Ventilation Distribution Heterogeneity at Rest as a Marker of Exercise Impairment in Mild-to-Advanced COPD. COPD. 2015;12(3):249–256. https://doi.org/10.3109/15412555.2014.948997

- Neder JA, Arbex FF, Alencar MC, O'Donnell CD, Cory J, Webb KA, et al. Exercise ventilatory inefficiency in mild to endstage COPD. Eur Respir J. 2015;45(2):377–387. https://doi. org/10.1183/09031936.00135514
- Neder JA, Ramos RP, Ota-Arakaki JS, Hirai DM, D'Arsigny CL, O'Donnell D. Exercise intolerance in pulmonary arterial hypertension. The role of cardiopulmonary exercise testing. Ann Am Thorac Soc. 2015;12(4):604–612. https://doi.org/10.1513/AnnalsATS.201412-558CC