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GMAW Welding Optimization Using 
Genetic Algorithms 
This article explores the possibility of using Genetic Algorithms (GAs) as a method to 
decide near-optimal settings of a GMAW welding process. The problem was to choose the 
near-best values of three control variables (welding voltage, wire feed rate and welding 
speed) based on four quality responses (deposition efficiency, bead width, depth of 
penetration and reinforcement), inside a previous delimited experimental region. The 
search for the near-optimal was carried out step by step, with the GA predicting the next 
experiment based on the previous, and without the knowledge of the modeling equations 
between the inputs and outputs of the GMAW process. The GAs were able to locate near-
optimum conditions, with a relatively small number of experiments. However, the 
optimization by GA technique requires a good setting of its own parameters, such as 
population size, number of generations, etc. Otherwise, there is a risk of an insufficient 
sweeping of the search space. 
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Introduction 

The GMAW welding process is easily found in any industry 
whose products requires metal joining in a large scale. It establishes 
an electric arc between a continuous filler metal electrode and the 
weld pool, with shielding from an externally supplied gas, which 
may be an inert gas, an active gas or a mixture. The heat of the arc 
melts the surface of the base metal and the end of the electrode. The 
electrode molten metal is transferred through the arc to the work 
where it becomes the deposited weld metal (weld bead). 

The quality of the welded material can be evaluated by many 
characteristics, such as bead geometric parameters (penetration, 
width and height) and deposition efficiency (ratio of weight of metal 
deposited to the weight of electrode consumed). These 
characteristics are controlled by a number of welding parameters, 
and, therefore, to attain good quality, is important to set up the 
proper welding process parameters. But the underlying mechanism 
connecting then (welding parameters and quality characteristics) is 
usually not known.1 

The experimental optimization of any welding process is often a 
very costly and time consuming task, due to many kinds of non-
linear events involved. One of the most widely used methods to 
solve this problem is the Response Surface Methodology (RSM), in 
which the experimenter tries to approximate the unknown 
mechanism with an appropriate empirical model, being the function 
that represents it called a response surface model. Identifying and 
fitting from experimental data a good response surface model 
requires some knowledge of statistical experimental design 
fundamentals, regression modeling techniques and elementary 
optimization methods (Myers and Montgomery, 1995). This and 
other techniques (such as Taguchi) provide good results over regular 
experimental regions, i.e., with no irregular points. However, it is 
often very difficult to establish an arc, and melt-through may occur 
under certain experimental points needed to satisfy the specific 
experimental design. The data obtained may be impossible to 
analyze or provide poor results, what often forces the experimenter 
to modify the design space (Kim and Rhee, 2001). 

Therefore, it is important to move the experimental region closer 
to the region of interest, which show relatively good weld quality. 
This process is particularly of interest when experimentation begins 
far from the region of optimal conditions. The full factorial design 
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can result in optimal settings of the welding process parameters 
without deriving a model for the welding process. But as the number 
of the input parameters increases, the number of experiments 
exponentially increases and the full factorial method for the problem 
becomes unrealistic (Kim and Rhee, 2001). 

Recently, some articles have tried to overcome these problems 
with a new approach for experimental optimization. They suggest 
using Genetic Algorithms (GAs) to sweep a region of interest and 
select the optimal (or near optimal) settings to a process. The GA is 
a global optimization algorithm, and the objective function does not 
need to be differentiable. This allows the algorithm to be used in 
solving difficult problems, such as multimodal, discontinuous or 
noisy systems. After the GAs have found a regular region, further 
experimental optimization can be performed with conventional 
techniques, such as response surface methodology. Some examples 
of this kind of work are Sette et al (1996), Busacca et al (2001) and 
Kim and Rhee (2001). 

The goal of this article is to explore the GAs technique in the 
determination of the near-optimal GMAW process parameters, 
welding voltage (T), wire feed speed (F) and welding speed (S). The 
search for the optimum was based on the minimization of an 
objective function, which takes into account the economic aspects 
(deposition efficiency, dexp) and the geometric characteristics 
(penetration, pexp, width, wexp, and reinforcement, rexp) of the bead. 

Nomenclature 

b = number of bits  
d = deposition efficiency, % 
f = fitness 
F = wire feed speed, m/min 
GA = genetic algorithms 
GMAW = gas metal arc welding 
i = relative to a specific run (or experiment) 
Of = objective function 
N = population size 
p =  depth of penetration, mm 
pr = probability 
r =  bead reinforcement, mm 
RSM = response surface methodology 
S = welding speed, cm/min 
T = welding voltage, V 
V = variable 
w = bead width, mm 
Superscripts 
max = relative to maximum values 
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min = relative to maximum values 
o = relative to initial population 
Subscripts 
exp = relative to experimental value 
t = relative to target 

Genetic Algorithms 

Genetic algorithms are a set of computer procedures of search 
and optimization based on the concept of the mechanics of natural 
selection and genetics. Holland (1975) made the first presentation of 
the GA techniques in the beginning of the 60’s and further 
development can be credited to Goldberg (1989). 

The GAs operate over a set of individuals, usually represented 
by a binary string comprised between 0 and 1. This binary 
codification is randomly generated over the search space, where 
each individual represents a possible problem solution. When 
determining the solution within the search range, the genetic 
algorithm simultaneously considers a set of possible solutions. This 
parallel processing of the algorithm may prevent the convergence of 
one particular local extreme point. Another characteristic of these 
algorithms is as the GAs only use the fitness value of each string; 
the fitness function does not need to be continuous or differentiable. 

The GMAW welding optimization procedure using genetic 
algorithm is shown in Figure 1. In this figure, initial population 
means the possible solutions of the optimization problem, and each 
possible solution is called an individual. In this work, a possible 
solution is formed by values of the welding voltage, To; the wire 
feed speed, Fo and the welding speed, So, which are shown as a 
binary string. However, they need to be changed into real numbers 
when being applied to the optimization problem, since the 
experimenter sets the welding equipment with real values, instead of 
binary codes. 

 
 

Initial population 
(To,Foand So) 

Decoding 

Fitness evaluation 

Welding Experiments 
( p exp , d exp ,w exp and r exp 

Selection 

Crossover 

Mutation 

New population 
T, F and S 

 
Figure 1. The GWAW welding optimization procedure using genetic 
algorithm. 

Decoding is the process of changing the input variables that are 
coded as a binary string into a real number. The binary codification 
is used to represent each variable Vi as a b-bit binary number, which 
approximates 2b discrete numbers in the range of the variables, 
according to: 
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where: min
iV and max

iV  are the lower and upper bounds of the i-th 
continuous variable and bin is an integer number between zero and 
2b-1. Each individual, represented by the binary string, is 
transformed into a real number by Equation (1) and applied to the 
optimization problem. 

After decoding, the values of each individual obtained (T, F and 
S), are used to set up the welding experiment. While the 
experiment is being conducted, the algorithm stands by until the 
weld bead is completed and the desired responses (pexp, dexp, wexp 
and rexp) are measured. According to the results of the welding 
experiments, the fitness value of the previous welding condition is 
calculated. 

The fitness evaluation is a necessary procedure to decide the 
survival of each individual. Individuals with large fitness values are 
what the user wants to maximize. Considering the minimization of 
an objective function, during the evaluation operation, a proper 
fitness index is assigned to each candidate set in such a way that the 
lower the value of the objective function associated to an individual 
candidate, the higher the fitness index given to it. The responses 
used in this study were used to make the fitness function, Equation 
(2), as shown below: 
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where:  
Of(i) - Value of the objective function at the “i” experiment; 
pt - Target (desirable) value for the depth of penetration; 
pexp(i) - Experimental value for the depth of penetration at the “i” 

experiment; 
dt - Target value for the deposition efficiency; 
dexp(i) - Experimental value for the deposition efficiency at the 

“i” experiment; 
wt - Target value for the bead width; 
wexp(i) - Experimental value for the bead width at the “i” 

experiment; 
rt - Target value for the bead reinforcement; 
rexp(i) - Experimental value for the bead reinforcement at the “i” 

experiment; 
cp,cd,cw and cr -Weights that give different status (importance) 

to each response. 
 
The responses evaluated in this work do not have equal 

importance. The most important response is the depth of 
penetration, followed by the deposition efficiency, bead width and 
reinforcement. In order to transpose these statuses to the objective 
function, weights were included. These weights are the values put in 
front of each response term (0.5, 0.3, 0.1 and 0.1) respectively. 

The next step is to use each individual fitness and the genetic 
operator (reproduction, crossover and mutation) to produce the next 
generation of the new population (T, F and S). The individual 
evolution (that is, the problem solution) is done by three operators 
(Goldberg,1989): 
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Selection – this process is responsible for the choice of which 
individual, and how many copies of it, will be passed to the next 
generations. An individual is selected if it has a high fitness value, 
and the choice is biased towards the fittest members. This study 
used the biased roulette wheel selection to imitate Darwin’s survival 
of the fittest theory (Goldberg, 1989). This selection approach is 
based on the concept of selection probability for each individual 
proportional to the fitness value. For individual k with fitness fk, its 
selection probability, pk, is calculated as follows: 
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n
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where n is population size.  Then a biased roulette wheel is made 
according to these probabilities. The selection process is based on 
spinning the roulette wheel n times. The individuals selected from 
the selecting process are then stored in a mating pool. 

Crossover - this step takes two strings (parents) from the mating 
pool and performs a randomly exchange in some portions between 
them to form a new string (children). After selection, crossover 
proceeds in three steps. First, two strings (referred to as parents) are 
selected randomly from the mating pool. Second, an arbitrary 
location (called the crossover site) in both strings is selected 
randomly. Third, the portions of the strings following the crossover 
site are exchanged between two parent strings to form two offspring 
strings. This crossover does not occur with all strings, but is limited 
by the crossover rate. 

Mutation - in a binary coding scheme, it involves switching 
individual bits along the string, changing a zero to one or vice-versa. 
This operator keeps the diversity of the population and reduces the 
possibility that the GAs find a local minimum or maximum instead 
of the global optimal solution, although this is not ever guaranteed. 
The mutation rate is usually set at a low value to avoid losing good 
strings. It also provides information that did not exist in the initial 
stage. 

The main characteristic of the GAs is that they operate 
simultaneously with a huge set of search space points, instead of a 
single point (as the conventional optimization techniques). Besides, 
the applicability of the GAs is not limited by the need of computing 
gradients and by the existence of discontinuities in the objective 
function (performance indexes). This is so because the GAs work 
only with function values, evaluated for each population individual. 
The major drawback in the GAs is the large use of computational 
effort when compared with the traditional optimization methods. 

Experimental Procedure 

The aim of this article is to find the optimum adjusts for the 
welding voltage, wire feed speed and welding speed in a GMA 
welding process. The optimum adjusts are the ones that deliver the 
pre-selected values of four responses: deposition efficiency (100%), 
bead width (8.5 mm), depth of penetration (5.3 mm) and 
reinforcement (1.5 mm). These values were developed in Correia & 
Ferraresi (2001). In other words, the optimum parameters are those 
who deliver responses the closest possible of the cited values. And it 
is assumed that the near optimum point is within the following 
experimental region, defined by the GA search ranges for T, V and 
S (see in the Table 1). 

 
 
 
 
 
 
 

Table 1. GA search ranges. 

Parameters Range 
Welding voltage (T), V 29.0 - 34.2 

Wire feed speed (F), m/min 3.9 - 9.7 
Welding speed (S), cm/min 50 - 70 

 
The application involved in this work is the welding of 9.5 mm 

thick mild steel with a square-groove butt joint (1.2 mm root 
opening). A single pass welding process was used. The filler metal 
was an AWS classification ER 70S-6 with a 1.2 mm diameter 
electrode. The shielding gas used was 100% CO2 with a 13 l/min 
flow rate.  

Inside the experimental space, the GAs chose, randomly, the 
initial welding setup, i.e., the parameters values of the first 
experiment. After it (the first exp.) was done, its response 
characteristics were measured and fed into the GAs. Then, based in 
the previous information, the algorithm chose another setup, which 
was done and its data again fed into the algorithm. The process 
continued until the optimum was found, i.e., until the objective 
function (Eq. 2) reached its minimum. The parameters of GA 
computations are shown on Table 2. 

 

Table 2.  Parameters of GA computations.  

Accuracy (number of bits) 30 
Population size 7 
Number of generation allowed 4 
Mutation rate 1 % 
Crossover rate 90 % 
Type of crossover Single 

 
In the GA, the population size, crossover rate and mutation rate 

are important factors in the performance of the algorithm. A large 
population size or a higher crossover rate allows exploration of the 
solution space and reduces the chances of settling for poor solution. 
However, if they are too large or high, it results in wasted 
computation time exploring unpromising regions of the solution 
space. In this work, the population size and number of generation 
are small in order to maintain the total number of experiments in an 
acceptable level. 

About the mutation rate, if it is too low, many binary bits that 
may be useful are never tried. However, if it’s too high, there will be 
much random perturbation, and the offspring will loose the good 
information of the parents. The 1% value is within the typical range 
for the mutation rate. The crossover rate is 90 %, i.e., 90% of the 
pairs are crossed, whereas the remaining 10% are added to the next 
generation without crossover. The chosen type of crossover was 
single, which means that a new individual is formed when the parent 
genes are swapped over at some random single point along their 
chromosome. Accuracy is the bit quantity for each variable. 

Results and Discussion 

Table 3 presents the settings and the resultant values of the 
evaluated responses for all the experiments performed, as well as the 
values of the correspondent objective function. 
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Table 3. Results of all generations. 

Run T    
(V) 

F 
(m/min) 

S 
(cm/min)

pexp 
(mm)

dexp   
(%) 

wexp 
(mm)

rexp 
(mm)

Objective 
Function 

1 30.3 6.9 54.5 5.0 55.6 6.5 0.7 4.749 
2 28.1 8.3 54.0 5.5 87.7 8.5 1.7 0.169 
3 28.0 9.0 57.5 6.5 89.5 7.7 2.0 0.229 
4 31.5 6.9 60.0 4.5 57.2 6.2 1.0 4.404 
5 27.9 9.7 56.5 6.0 91.4 7.2 2.5 0.164 
6 28.5 9.7 70.0 6.0 91.6 6.5 2.0 0.138 
7 31.4 6.9 52.5 4.5 60.0 7.2 1.5 3.748 
8 28.5 9.7 70.0 6.0 91.6 6.5 2.0 0.138 
9 28.5 8.3 59.0 5.5 88.2 8.0 1.7 0.147 

10 28.7 9.7 64.5 5.5 92.2 6.5 2.2 0.112 
11 28.5 9.7 70.0 6.0 91.5 6.5 2.0 0.138 
12 27.7 9.7 69.5 6.0 93.0 6.5 2.5 0.163 
13 31.3 5.4 51.5 3.5 79.3 6.0 1.5 1.074 
14 28.5 9.7 70.0 6.0 91.8 6.5 2.0 0.138 
15 27.7 9.7 69.5 6.0 93.3 6.5 2.5 0.163 
16 28.7 9.7 69.5 6.0 92.0 6.5 2.0 0.138 
17 28.7 9.7 64.5 5.5 92.0 6.5 2.2 0.112 
18 28.7 9.7 64.5 5.5 92.2 6.5 2.2 0.112 
19 27.7 9.7 69.5 6.0 93.4 6.5 2.5 0.163 
20 28.5 9.7 69.5 6.0 91.7 6.5 2.0 0.138 
21 28.6 9.7 64.5 5.5 92.3 6.5 2.2 0.112 
22 28.4 9.7 70.0 6.0 91.6 6.5 2.0 0.138 
23 28.7 9.7 64.5 5.5 91.9 6.5 2.2 0.112 
24 28.8 9.7 69.5 6.0 91.7 6.5 2.0 0.138 
25 28.7 9.7 64.5 5.5 92.3 6.5 2.2 0.112 
26 28.7 9.7 64.5 5.5 92.1 6.5 2.2 0.112 
27 28.9 9.7 64.5 5.5 92.2 6.5 2.2 0.112 
28 28.8 9.7 64.5 5.5 92.2 6.5 2.2 0.112 

 
 
All the experiments performed according to the genetic 

algorithm had a relatively good quality (in the sense of lack of bead 
defects) with no problems of melt-through, porosity or cracks. 
Considering quality as closeness to defined targets, the genetic 
algorithm did not manage to achieve all the established targets. The 
final value of the objective function was 0.11, which is a relatively 
low value (compared to its initial value) and can be considered 
satisfactory weld quality, according to Kim and Rhee (2001). And 
this final value for the objective function repeats itself in the last 
four experiments of the Table 3 with the same settings, suggesting 
that this is not some random error (this stabilization can be better 
seen in the Figure 2). But Table 4 shows that the discrepancy 
between targets and obtained values was quite big for some 
responses, mainly the bead width and the bead reinforcement. 
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Figure 2. Convergence of the genetic algorithm. 
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Table 4. Comparison between target and obtained values. 

 Target 
Values 

Final 
Values 

Difference 
(%) 

Depth of penetration (mm) 5.3 5.5 3.8 

Deposition efficiency (%) 100.0 92.2 7.8 

Bead width (mm) 8.5 6.5 23.5 

Bead reinforcement (mm) 1.5 2.2 46.7 

 
The discrepancy between target and final values can not be 

credited to insufficient generations, since the Figure 2 shows a good 
pattern of stabilization for the objective function. In addition, 
Figures 3, 4 and 5 show that the stabilization also exists when 
considering the individual values of the setting parameters. The 
welding voltage had a minor variation in its last values, but nothing 
significant in terms of practical purposes. The wire feed speed and 
the welding speed presented good stabilization in their final values. 
It should be said that maybe a higher population size would allow a 
better sweeping of the search space. An evaluation on the influence 
of new values for the GA parameters (other than presented in Table 
2) should be considered in future works. 
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Figure 3. Convergence of the welding voltage. 
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Figure 4. Convergence of the wire feed speed. 
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Figure 5. Convergence of the welding speed. 

 
The explanation for the GA inability in accomplishing all targets 

can be credited to the weights used in the objective function 
(Equation 2). As seen, the most important responses are the depth of 
penetration (0.5 weight) and the deposition efficiency (0.3 weight) 
and the minimization process was led by these ones. But a look in 
Table 3 reveals that there are other compromises available, such as 
experiment 2, where lower deposition efficiency gives room to 
better adjusted bead width and bead reinforcement.  

A final note on the GA optimization is about its inner 
mechanism of random search. Figure 6 shows the experimental 
region that should be investigated and the points suggested by the 
GA. These points are not equally distributed in the search space, as 
in a conventional statistical project would be. And many of the 
points are coincident, which reduces even more the swept region. 
So, there is a chance of existing non-tested points with even a better 
compromise between the responses. 

 

 
Figure 6. Search space and the points analyzed by the GA. 

Conclusion 

The possibility of a GMAW welding optimization procedure 
using genetic algorithm is investigated in this work; more 
specifically, the determination of the near-optimal GMAW process 
parameters, welding voltage (T), wire feed speed (F) and welding 
speed (S). The search for the optimum was based on the 
minimization of an objective function, which takes into account the 
economic aspects (deposition efficiency) and the geometric 
characteristics (penetration, width and reinforcement) of the bead. 

It was found that the GA can be a powerful tool in experimental 
welding optimization, even when the experimenter does not have a 
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model for the process. The most important response (depth of 
penetration) had a difference from its target lower than 4%. 

However, the optimization by GA technique requires a good 
setting of its own parameters, such as population size, number of 
generations, etc. Otherwise, there is a risk of an insufficient 
sweeping of the search space. In addition, it is suggested the use of 
conventional statistical projects to investigate the space around the 
conditions found by the GA, in order to obtain models and/or 
perform a fine-tuning of the optimal parameters. 
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