Authors’ reply

We want to thank Dr. Silva Segundo for his interest in our recent paper and for the pertinent review on the utility of atopy patch tests (APT) for the diagnosis of IgE-mediated food allergies. Indeed, there is evidence that APT can be helpful in predicting outcomes of double-blind placebo-controlled food challenges. However, most of such studies have been carried out in children with atopic dermatitis or allergic gastroenteropathies such as food-sensitive eosinophilic esophagitis. The majority of patients seen by pediatric gastroenterologists have food-sensitive enteropathies that are not associated with atopic dermatitis or eosinophilic enteropathies.

Moreover, several limitations exist with APT, even in carefully selected patients, as reviewed recently by the European Academy of Allergy and Clinical Immunology. First and foremost are the limited and highly variable sensitivity and specificity of the APT. In the diagnosis of cow’s milk allergy, the mean sensitivity (0.51) and specificity (0.86) of the APT are similar to those of skin prick tests. However, the sensitivity of the APT has been reported to vary enormously, from 0.18 to 0.89.

Numerous factors may explain these limited results with APT. These include the potential lack of standardization of the test conditions: allergen source and concentration, vehicle employed, control material, duration of and material used for occlusion, and size of the chamber. Finally, even though the results of APT may correlate with the outcome of properly conducted food challenges, studies still need be carried out to show that the test results predict the outcome of food elimination diet on gastrointestinal symptoms.

References

doi:10.2223/JPED.1682

Cristina Targa Ferreira
thors could have elaborated on this in their discussion. Would the authors care to comment on the degree of discrepancy between their reported salivary cortisol levels and those previously reported and summarized in Table 1?

References

The quantitation of salivary cortisol requires adrenal assessment, which can be performed in a practical and un-stressful way, thus being suitable for use in pediatric patients.

Salivary cortisol levels can be determined by various highly sensitive and specific methods. In our study, we used the radioimmunoassay (RIA) method without extraction.\(^1\) In this method, after the centrifugation of the saliva samples, the rabbit antibody to cortisol-3-oxime conjugated with bovine albumin produced by Prof. Dr. José Gilberto Vieira (Fleury laboratory) was used, having yielded a sensitivity of up to 5 ng/dL\(^2\). The analysis was run in duplicate and the efficacy of this method was based on a coefficient of variation below 12 to 15%.\(^2\)

Age plays an important role in the determination of salivary cortisol levels, and several studies have shown discrepant results in this respect.\(^3,4\)

The commitment of authors towards establishing reference values for salivary cortisol levels in healthy children aged less than 3 years arose from the necessity to fill the gap for studies with an adequate number of samples performed on a restricted age range and that require careful sampling.

In this regard, we read with interest the letter from Dr. Ann M. Maguire and Prof. Christopher T. Cowell from The Children’s Hospital at Westmead, Sydney and the University of Sydney, Australia, in which they address some aspects related to our paper entitled "Salivary cortisol to assess the hypothalamic-pituitary-adrenal axis in healthy children under 3 years old." Their comments give us the opportunity to broaden the discussion and also clarify some issues that could lead to misinterpretations.

Among the studies mentioned in Table 1 in the letter written by Dr. Maguire and by Prof. Cowell, we turn our attention to the study by Gröschl et al.\(^5\) in which 252 healthy and well-nourished children were assessed. By analyzing the sample size related to each of the age ranges (< 1 month, \(n = 13\); 1 to 12 months, \(n = 17\); 1 to 2 years, \(n = 10\); 2 to 15 years, \(n = 212\)), we obtained a less-than-80% power among infants, with an alpha error greater than 0.05. In another study, by Kiess et al.\(^3\) of 138 patients, 10 were aged between 0 and 1 year and 17 were aged between 1 and 4 years.

In our study, for a variance of 95% and error of 1%, the sample size was calculated to be 71, which is a smaller number than that which was used (\(n = 91\)).

With regard to the list of studies on salivary cortisol mentioned by Dr. Maguire and by Prof. Cowell, we would like to add studies that used a similar method to ours, such as Fogaça et al.\(^6\) who assessed 11 children aged 4 to 6 months, and Few et al.\(^7\) In the latter study, the authors assessed 106 children aged 1 to 12 months, with cortisol measurements at the following times of the day: morning = 9:30 to 12 hrs and afternoon = 14 to 16 hrs. These intervals are so close that they certainly hamper the analysis of the circadian rhythm. Another important aspect regarding the time of measurement refers to possible differences in morning and afternoon salivary cortisol levels between infants aged less than 1 year and children aged over 1 year.\(^3,5\) Thus, the study by Törnhage,\(^8\) which only took into consideration the morning cortisol measurement, does not allow assessing any differences across age ranges.

The discrepancy between the values obtained in our study and those mentioned by Dr. Maguire and Prof. Cowell was revised. The results were issued by Fleury Laboratory in ng/dL, and the conversion to nmol/L was based on the value recommended by the Reference Manual for Exams of the Radioimmunoassay Center of São Paulo.\(^9\) We requested that the laboratory provide an explanation, and they informed us that the conversion value stipulated in the manual is incorrect.\(^10\) The measurements were recalculated, and the mean values (+standard error) expected for the morning levels were 5.32±0.36 nmol/L, with a range of 0.73 to 15.46 nmol/L (2.5th to 97.5th percentiles), and 3.30±0.22 nmol/L, with a range of 0.47 to 11.16 nmol/L (2.5th to 97.5th percentiles) for the afternoon levels.

The corrected table and Figures 1 and 2, including the percentile values, appear below.
References

doi:10.2223/JPED.1684

Figure 1 - Morning and afternoon salivary cortisol levels according to age (n = 91) in quartiles

Figure 2 - Percentage variation and tendency in the range between morning and afternoon salivary cortisol levels according to age (n = 91)

Table 1 - Percentile distribution of morning and afternoon salivary cortisol levels in children aged up to 36 months (n = 91)*

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Morning salivary cortisol nmol/L</th>
<th>Afternoon salivary cortisol nmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0.73</td>
<td>0.47</td>
</tr>
<tr>
<td>5</td>
<td>1.44</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>1.95</td>
<td>1.13</td>
</tr>
<tr>
<td>15</td>
<td>2.16</td>
<td>1.37</td>
</tr>
<tr>
<td>20</td>
<td>2.43</td>
<td>1.67</td>
</tr>
<tr>
<td>25</td>
<td>2.75</td>
<td>1.91</td>
</tr>
<tr>
<td>30</td>
<td>2.96</td>
<td>2.03</td>
</tr>
<tr>
<td>35</td>
<td>3.19</td>
<td>2.39</td>
</tr>
<tr>
<td>40</td>
<td>3.80</td>
<td>2.56</td>
</tr>
<tr>
<td>45</td>
<td>3.93</td>
<td>2.63</td>
</tr>
<tr>
<td>50</td>
<td>4.41</td>
<td>2.79</td>
</tr>
<tr>
<td>55</td>
<td>4.95</td>
<td>3.08</td>
</tr>
<tr>
<td>60</td>
<td>5.24</td>
<td>3.32</td>
</tr>
<tr>
<td>65</td>
<td>5.93</td>
<td>3.56</td>
</tr>
<tr>
<td>70</td>
<td>6.40</td>
<td>4.07</td>
</tr>
<tr>
<td>75</td>
<td>7.94</td>
<td>4.41</td>
</tr>
<tr>
<td>80</td>
<td>9.02</td>
<td>4.82</td>
</tr>
<tr>
<td>85</td>
<td>9.96</td>
<td>5.43</td>
</tr>
<tr>
<td>90</td>
<td>10.83</td>
<td>6.62</td>
</tr>
<tr>
<td>95</td>
<td>12.68</td>
<td>8.59</td>
</tr>
<tr>
<td>97.5</td>
<td>15.46</td>
<td>11.16</td>
</tr>
</tbody>
</table>

Mean (± standard error): morning cortisol level: 5.32±0.36 nmol/L; afternoon cortisol level: 3.30±0.22 nmol/L. * Method used: competitive radioimmunoassay using antibodies to cortisol-3-oxime conjugated with bovine albumin.
Gamma-hydroxybutyrate for sedation in children

Dear Editor,

We read with interest the article by Mencia et al. on analgesia and sedation in children. In addition to the plethora of drugs discussed by the authors, we would like to add our experience on the use of gamma-hydroxybutyrate (GHB) for sedation in children. GHB was first introduced into clinical anesthesia in 1960. Although it reliably induces sedation without significantly depressing respiratory or cardiocirculatory parameters, it has been unpopular because of its prolonged duration of action. Recent clinical studies suggest a revaluation of its use in critical care medicine and general anesthesia. Clinical trials with GHB-induced sedation in children have shown good results, but so far only limited data are available.

In our prospective randomized trial, we showed that GHB induces deep sedation (Ramsay score 5) in children undergoing MRI studies. GHB was associated with vomiting despite the prior administration of an antiemetic. This may in part be attributable to the fact that GHB sedation was used in pediatric cancer patients, making them more prone to this side effect because of concurrent chemo- and radiotherapy. Although none of our GHB-sedated patients aspirated during the study, the physician should be aware of this possibility. Moreover, none of our patients required administration of physostigmine, a short-acting anticholinesterase agent, to treat prolonged sedation.

We conclude that GHB sedation is a reasonable alternative for children undergoing noninvasive diagnostic procedures. Pediatricians that are not familiar with potent short-acting sedative drugs (propofol, remifentanil, etc.) may consider it for deep sedation in pediatric patients.

References
doi:10.2223/JPED.1685

Authors’ reply

We read with interest the comments made by Dr. S. Meyer et al. about the use of gamma-hydroxybutyrate (GHB) for sedation in children. We have not had any experience with this sedative drug in children. In the medical literature, there are few references other than these authors to the use of GHB in children. The use of GHB is not included in sedation guidelines for children. It has been unpopular because it induces deep sedation, has prolonged duration of action and is associated with vomiting.

Pediatric sedation practice involves a large number of pediatric subspecialists using a variety of sedation strategies and tools. Most employed drugs are still propofol, midazolam and ketamine, although there are new strategies coming up. The effectiveness and safety of this practice needs careful scrutiny. Recent studies concerning depth of sedation have suggested reconsidering systems that employ moderate sedation for painful procedures in children.

Dexmedetomidine sedation delivered by pediatricians is rapidly increasing and has provided adequate sedation in most children. Dexmedetomidine could be an alternative reliable sedative drug in selected patients because it causes fewer cardiorespiratory effects. Similarly, nitrous oxide for pediatric sedation, while promising, will require careful study.