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Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate 
venom proteins and peptides. Venomics has evolved considerably over the last 20 years. 
The first works on scorpion or spider venomics were published in the early 2000’s. Such 
studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. 
After the introduction of new mass spectrometers with higher resolution, sensitivity 
and mass accuracy, and the next-generation nucleotide sequencing, the complexity of 
data reported in research on scorpion and spider venomics increased exponentially, 
which allowed more comprehensive studies. In the present review article, we covered key 
publications on scorpion venomics and spider venomics, presenting historical grounds 
and implemented technologies over the last years. The literature presented in this review 
was selected after searching the PubMed database using the terms “(scorpion venom) 
AND (proteome)” for scorpion venomics, and “(spider venom) AND (proteome)” for 
publications on spider venomics. We presented the key aspects related to proteomics 
in the covered papers including, but not restricted to, the employed proteomic strategy 
(i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/
peptidome), and the type of mass spectrometer used. Some conclusions can be drawn 
from the present study. For example, the scorpion genus Tityus is the most studied 
concerning venomics, followed by Centruroides; whereas for spiders the studied genera 
were found more equally distributed. Another interesting conclusion is the lack of 
high throughput studies on post-translational modifications (PTMs) of scorpion and 
spider proteins. In our opinion, PTMs should be more studied as they can modulate 
the activity of scorpion and spider toxins. 
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Background
Venomous animals have one or more venom glands, and they 
usually have a specialized apparatus to inject the venom into 
their prey or use it for defense. There are examples of marine 
and terrestrial venomous animals, such as Physalia sp. (phylum 
Coelenterata) and Tityus sp. (phylum Arthropoda), respectively. 

Scorpions and spiders (phylum Arthropoda, subphylum 
Chelicerate, class Arachnida) have their bodies divided into 
cephalothorax and abdomen. Scorpions have their venom 
apparatus located at the last abdomen segment named telson. 
Scorpions’ diet is based on arthropods and small animals, such 
as gecko (phylum Chordata, class Reptilia). There are 2,200 
known scorpion species distributed over 19 families but the 
most studied one is the Buthidae (Koch, 1837), as it accounts 
for 95% of all reported scorpion accidents [1–4].

Buthidae scorpions are separated into two geographical 
groups. The Old-World scorpions are found mainly in Northern 
Africa, Southern Europe and the Middle East, while the New-
World scorpions are distributed in the Americas [5]. Regarding 
scorpions of medical importance, the Old-World genera 
are represented by Androctonus (Ehrenberg, 1828), Leiurus 
(Ehrenberg, 1828), and Buthus (Leach, 1815), among others. The 
New-World genera include mainly Centruroides (Marx, 1890) 
and Tityus (Koch, 1836). Specifically, Androctonus sp., Leiurus 
sp. and Buthus sp. are distributed in the Saharo-Sindian zone, a 
vast and arid region spanning from northwestern Africa to India; 
whereas Tityus sp. are mainly distributed in South America and 
Centruroides sp. are found in Central America and Mexico [3]. 

In general, scorpion venoms are composed of salts, small 
molecules, peptides and proteins [e.g., bradykinin-potentiating 
peptides (BPPs), Nav-neurotoxins (NaTxs), Kv-neurotoxins 
(KTxs), Cav-neurotoxins (CaTxs), among others] [4–7]. 
Envenomation by Androctonus sp. are painful and can lead 
to cardiovascular manifestation as cardiac arrhythmia and 
ultimately heart failure [4]. Leiurus sp. sting cause local pain, 
burn and swelling. Systemic manifestations may include 
cardiovascular impairment (e.g., tachycardia, hypertension or 
hypotension, etc.), priapism, and vomiting [4]. 

The Buthus genus was subjected to a major taxonomical 
update, which reclassified as new species animals that used to 
be known as B. occitamus. Most epidemiological reports have 
been based on B. occitamus cases in Morocco and based on the 
current taxonomical classification this species is not found in 
this country. Therefore, more epidemiological data are required 
to state the common medical manifestations of accidents with 
this genus [4,8]. 

Regarding New-World genera, most common clinical 
manifestations of Tityus sp. accidents include local pain 
and burning at sting site. Systemic symptoms may include 
headache, vomiting, sweating, dizziness, hypersalivation, 
circulatory failure, cardiac arrythmias and respiratory arrest 
[4]. Regarding Centruroides sp. stings, the most frequent clinical 
outcomes include pain, local edema and fever. It can also lead 
to cardiovascular and respiratory impairments [4]. 

According to the “World Spider Catalog” (https://wsc.nmbe.
ch/), there were 49,173 registered spider species by February 25th 
2021 distributed worldwide. Similar to scorpions, spiders use 
their venom for predation and defense. These arachnids have 
a pair of venom glands in each chelicera at the cephalothorax. 
Spiders’ diet is based on insects [9] but larger spiders, as Lasiodora 
sp. (Koch, 1850), can eat small vertebrates as well. 

Spider venoms may contain ions; small molecules, such as 
nucleotides, amines, amino acids, and polyamines; proteins 
(e.g., phospholipases, metalloproteases); and peptides (e.g., 
neurotoxins and insecticidal peptides) [10,11]. Accidents with 
spiders are registered in many countries but, interestingly, 
only four genera account for most severe accidents; Atrax 
(Pickard-Cambridge, 1877), Loxosceles (Heineken & Lowe, 
1832), Latrodectus (Walckenaer, 1805), and Phoneutria (Perty, 
1833) [12,13]. Loxosceles sp. (family Sicariidae) and Latrodectus 
sp. (family Theridiidae) are distributed worldwide, whereas 
Phoneutria sp. (family Ctenidae) is mainly found in Central and 
South America, and Atrax sp. (family Atracidae) in Australia. 

Loxosceles sp. venom is mainly composed of phospholipases, 
metalloproteases, hyaluronidases, insecticidal peptides, among 
others [14]. Accidents can cause local necrosis and hemodynamic 
alterations, eventually leading to acute renal failure [15,16]. 
Latrodectus sp. venoms are composed of neurotoxic peptides for 
vertebrates (e.g., α-LTX), crustaceans (e.g., α-LCT) and insects 
(e.g., α-LIT) [17]. Widow spider (Latrodectus sp.) bites are painful 
and may lead to systemic manifestations, including nausea, 
headache, fatigue and ultimately injuries in the cardiac tissue 
[18]. Phoneutria has an aggressive behavior thus, accidents are 
not rare. A number of neurotoxins (~40 molecules as reported 
by [19]) from P. nigriventer venom has already been identified 
[19,20]. Phoneutria sp. envenomation causes local pain. It can 
also cause priapism and systemic envenomation, though it 
rarely leads to death [21,22]. Atrax robustus, the Sydney funnel-
web spider, is a notorious species from the Atrax genus as it is 
acknowledged as the deadliest spider worldwide [18], mainly 
due to its Nav neurotoxins named δ-hexatoxins (δ-HXTXs) 
[23]. Atrax envenomation is painful and may lead to severe 
systemic and life-threatening effects, related with autonomic 
and neuromuscular excitation [18].

Even though spiders and scorpions cause health problems, 
there is a brighter side associated with them as scientists learnt 
over time that venom peptides are also associated with beneficial 
outcomes. Examples are: the anti-hypertensive peptide family in 
Tityus sp. venoms, named hypotensins [24–26]; a cryptic peptide 
from the hypotensin I (Ts14) is a potential cardioprotective agent 
[27]; the PnTx2-6 toxin from Phoneutria nigriventer venom that 
causes priapism [28] was latter redesigned in laboratory as a non-
toxic peptide with potential application as an erectile dysfunction 
treatment [29]; anti-thrombotic and anti-inflammatory peptides 
[30,31], antimicrobial peptides [32,33], and bio-insecticides 
[34], etc.

The molecular diversity of scorpion and spider venoms are 
frequently acknowledged as “treasure chests” [35]. Several 

https://wsc.nmbe.ch/
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approaches are used to access the molecular diversity hidden 
inside venoms but the most popular one is probably the mass 
spectrometry-based proteomics. In this review we aimed at 
presenting key publications in venom proteomics, often referred 
to as venomics, in the context of scorpions and spiders, as well as 
recent advances in the field. We will also present recent advances 
in bioinformatics and proteomics that can assist in studying the 
proteome of scorpion and spider venoms. 

Proteomics and its use in toxinology
Venom composition of many arachnid species has remained 
undefined for a long time due to limitations of traditional 
biochemical approaches to analyze small amounts of venoms 
that are usually extracted from spiders and scorpions [36]. 
Early studies to characterize scorpion venom components 
consisted in extensive chromatographic steps to isolate them and 
subsequent evaluation of their biological activity and potential 
three-dimensional structures [37], in a “function-to-structure” 
approach. However, progress in the omics field (genomics, 
transcriptomics and proteomics) allowed high throughput 
characterization of venom composition, and discovery of new 
peptides and proteins [38], in a “structure-to-function” approach.

Venomics has emerged by the use of proteomics to study venom 
composition. It can also refer to a broader omics (proteome, 
genome, transcriptome, metabolome) venom characterization 
[39], but in this review we will focus on venom proteomics. 
Although one of the firsts high throughput studies of an arachnid 
venom proteome was reported in the early 2000’s [40], mass 
spectrometry (MS)-based analysis was first used in 1979 to 
characterize venom metabolites from the Sydney funnel-web 
spider Atrax robustus by gas chromatography–mass spectrometry 
(GCMS) [41]. However, it was more difficult to use MS to study 
peptides and proteins before the 1980’s due to the lack of soft 
ionization techniques [42]. This problem was solved when the 
electrospray ionization (ESI) was invented by John Bennett 
Fenn in 1984 [43] and the matrix-assisted laser desorption/
ionization (MALDI) was invented by Franz Hillenkamp and 
Michael Karas in 1985 [44]. 

Venomics has evolved substantially over the last 20 years. It 
is frequently employed to study arachnid venoms these days 
as seen by the exponential increment of publications using 
venomics (Figure 1). However, there are limitations on its use 
to study arachnid venoms as, not rarely, the genome or venom 
gland transcriptome of a given specie has not been sequenced. A 
way to circumvent this problem is by sequencing de novo venom 
peptides, either by manual interpretation of MS/MS spectra 
or assisted by algorithms that allow high throughput de novo 
peptide sequencing [45]. On this regard, Gorshkov et al. [46] 
published an algorithm to assist peptide de novo sequencing. 

Different proteomic approaches allow characterizing venom 
compositions. There are many venomic workflows that can be 
employed but general workflows for top-down and shotgun/
bottom-up are presented in Figure 2. Since arachnid proteomes 

are also subjected to post-translational modifications (PTMs), 
we included PTMs enrichment steps in the provided workflow 
(Figure 2) as we believe PTMs should be studied more in 
arachnid venoms. Importantly, detail protocols to study PTMs 
in general have been published [47,48] and can be employed in 
the venomic context as well.

Bioinformatics in the context of arachnid 
venomic studies
UniProt, NCBI Genbank/GenPept, and the Protein Data Bank 
(PDB) provide large datasets, playing essential roles in providing 
access to information regarding protein sequences, three-
dimensional structures (if available) and biological activity. 

Throughout the years, attempts have been made to create new 
databases with more specific information on venom proteins 
and toxins. The International Venom and Toxin Database, the 
Tox-Prot program, the snake neurotoxin database, the scorpion 
toxin database, and the Animal Toxin Database (ATDB) were 
created to supply an early need to merge information about 
venom proteins [49]. However, most of them are based on 
unformatted text, restricted taxonomic groups, and lack of 
system effectiveness for data mining, resulting in discontinuing 
of the service or being incorporated by other databases [39,49]. 
On the other side, within UniProt, for example, the UniProtKB/
Swiss-Prot Tox-Prot program, based on the Tox-Prot program, 
can provide access to venom protein sequences and functions 
from several venomous species [50]. The animal toxin annotation 
project, using the Tox-Prot program, aims at systematically 
annotate proteins secreted in animal venom, including spiders 
and scorpions, among other species [50,51]. In this respect, the 
Swiss Institute of Bioinformatics (SIB) developed a free web-
resource regrouping information from the UniProtKB/Swiss-Prot 
database (manually annotated and reviewed) and UniProtKB/
Trembl (automatically annotated) on venom proteins, mostly 

Figure 1. Number of publications on scorpion venomics and spider 
venomics. Results were retrieved from PubMed (https://pubmed.ncbi.nlm.
nih.gov/) by March 2021 using the following search parameters: “(scorpion 
venom) AND (proteome)” for scorpion venomics or “(spider venom) AND 
(proteome)” for spider venomics.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 2. Venomic workflow. General workflows for top-down and bottom-up venomics are presented.

with toxic activity. Information access is divided into taxonomy, 
activity, venom protein families, and PTMs in venom proteins, 
having data about six taxa, including scorpions and spiders 
(https://venomzone.expasy.org/).

Although these databases are critical for comparison of 
toxins across different groups of venomous animals, there is 
no established standard for practical annotation of information 
about peptides and proteins from many venom species, especially 
the names of toxins, the description of the function, and the 
classification of toxins [51,52]. This lack of consistency leads to 
numerous duplications of entries and low efficiency for searches. 
This results in a barrier against data exchange and comparison, 
making data mining difficult and estimations imprecise. A 
few attempts on standardization protocols propose the use of 
machine learning-based classifiers. ToxClassifier is a machine 
learning web-based tool for the prediction of likely animal 
toxin sequences, allowing to distinguish toxins from non-toxin 
sequences. It also increases curation of existing databases by 
reporting the best-hit annotation and classifying a toxin into the 
most correct toxin protein family (http://bioserv7.bioinfo.pbf.hr/
ToxClassifier/index.jsp; [53]). In contrast, specialized databases 
from venomous animals are slowly emerging. These databases 
are usually a rich information pool of manually curated content 
that deal with specific subsets of animal toxins [52].

SCORPION, launched in 2002, was a specialized database 
of scorpion toxins. Its main focus was to facilitate the design 
of experimental protocols [54]. The structure was designed 
to provide a basis for extending and clarifying the existing 
structural and functional classification of scorpion toxins data 
with easy integration of bioinformatics tools for additional 
analyses, like identification of sequence patterns associated with 
specific structural or functional properties of scorpion toxins 
[54]. An update, SCORPION2, with an increase in the records 
present in the database was launched a few years later. Combining 
search algorithms with prediction tools allowed users to extract 
and perform specific queries: text searches of scorpion toxin 
records, sequence similarity search, extraction of sequences, 
visualization of scorpion toxin structures, analysis of toxic 
activity, and functional annotation of previously uncharacterized 
scorpion toxins [55].

Another specialized database for scorpion toxins is the Kalium 
(http://kaliumdb.org/). This database is an open-access resource 
that collects manually curated data on potassium channel toxins 
(KTxs) purified from scorpion venom and provides an easy link 
to general databases such as UniProt, PDB, NCBI Taxonomy 
Browser, and PubMed.

On the other side, Arachnoserver (http://www.arachnoserver.
org/) provided information on venoms from spider species. 
This manually curated database was centered on mature active 

https://venomzone.expasy.org/
http://bioserv7.bioinfo.pbf.hr/ToxClassifier/index.jsp
http://bioserv7.bioinfo.pbf.hr/ToxClassifier/index.jsp
http://kaliumdb.org/
http://www.arachnoserver.org/
http://www.arachnoserver.org/
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peptides, containing 1,576 molecules as of October 2020, which 
were retrieved from UniProtKB. It contained information on the 
sequence, three-dimensional structure, and biological activity 
of protein toxins. All mature toxins in ArachnoServer were 
named according to the standard nomenclature for spider toxins 
proposed by King in 2008 [56], with the inclusion of alternative 
names found in the literature to facilitate researches. Its strategy 
focused on displaying one toxin sequence per entry on a page, 
providing cross-references to several databases, including the 
EMBL nucleotide data bank, which allows retrieval of the original 
nucleotide sequence submission.

In the next couple of sections, we will cite most publications 
on spider venomics and scorpion venomics. We will also provide 
a table with key information about the cited publications, as 
well as an interaction map that connects predefined “terms” 
(spider or scorpion, genera, use of transcriptomics, proteomic 
methods, MS platforms, and corresponding author) extracted 
from the publications (Figure 3).

Spider venomics
One of the first studies on spider venomics was published in 

2005. Machado et al. [57] used a range of proteomic techniques 
to access the venom proteome of the brown spiders (Loxosceles 
gaucho, L. intermedia and L. laeta; family Sicariidae), with 
particular interest in analyzing the dermonecrotic toxin 
loxnecrogin and its potential proteoforms. Two-dimensional 
gel electrophoresis (2-DE) showed that the potential loxnecrogin’ 
proteoforms spanned from pI ~ 4.4 to 7.3 and 30-35 kDa mass 
range. Gel bands corresponding with the potential loxnecrogin’ 
proteoforms were in-gel digested and subjected to peptide mass 
fingerprinting (PMF) by means of MALDI-TOF MS, and de novo 
sequenced by Edman degradation and MS/MS (ESI-Q-TOF MS). 
The authors hypothesized that toxins proteoforms (isoforms) 
might be related to evolutionary adaptation, maximizing both 
hunting and defense capabilities. Moreover, they emphasized 
how the purification and characterization of toxins in venom 
proteomes are fundamental to understand the physiopathology 
of envenomation.

Similarly, Richardson et al. [35] compared the partial proteome 
of spider venoms from the genus Phoneutria (Phoneutria 
nigriventer, P. reidyi and P. keyserlingi; family Ctenidae) in 
2006. Out of 400 protein and peptide species detected in this 
study, 100 complete or partial sequences were obtained by 
Edman degradation and MS/MS (ESI-Q-TOF MS). Two new 
families of small toxins, some larger protein components, and 
two serine proteinases from the P. nigriventer venom were 
described. The authors also compared the P. keyserlingi venom 
proteome from male and female specimens by 2-DE, reporting 
a sexual dimorphism. 

Yuan et al. [58] reported a venom proteomic and peptidomic 
study of the Chinese “bird spider” Ornithoctonus huwena 
(family Theraphosidae). The authors employed gel filtration 
chromatography to separate peptides (MW < 10 kDa) from 

proteins (MW > 10 kDa). Venom proteins were separated by 
1-DE and 2-DE. After in-gel digestion, proteolytic peptides 
were analyzed by ESI-Q-TOF MS/MS or MALDI-TOF-TOF 
MS. Protein identification was done by Mascot search engine. 
Separation of venom peptides (peptidome) was done by CIEX-
HPLC followed by RP-HPLC. Peptide sequencing was achieved 
by MALDI-TOF MS and Edman degradation. 90 proteins (MW > 
10kDa) were identified using the proteomic approach, including 
enzymes, binding proteins, and others. Using the peptidomic 
approach, the authors reported more than 100 components (MW 
< 10 kDa) in the O. huwena venom, including 47 sequenced 
peptides. Their findings showed pieces of evidence suggesting 
gene duplication, focal hypermutation and post-translational 
modifications (PTMs) in spider toxins as probable origin for 
the diversity of spider venom proteins and peptides.

Analytical methods evoked in a rapid pace over the last 20 
years, including the introduction of the orbitrap mass analyzer 
[59] and next-generation mRNA and DNA sequencing. Venomics 
surfed on this innovative wave, boosting the complexity and 
depth of venom profiling, as seen by more recent publications 
on spider venomics [58–73], some of which shall be described 
in next paragraphs.

The study of Oldrati et al. [60] illustrates a rapid and efficient 
method for the analysis of venom composition based on venom 
glands mRNA sequencing and venom proteome profiling. Their 
focus was the analysis of cysteine rich peptide toxins from 
four different spider species: Heteropoda davidbowie (family 
Sparassidae), Poecilotheria formosa (family Theraphosidae), 
Viridasius fasciatus (family Viridasiidae) and Latrodectus 
mactans (family Theridiidae). This approach led to the profiling 
of 284 characterized cysteine rich peptides with high resolution, 
111 of which were part of the Inhibitor Cysteine Knot (ICK) 
structural motif. The H. davidbowie venom revealed high 
diversity in venom composition, 32 peptides (of 95 identified 
peptide) were classified in 6 distinct families containing the 
ICK structural motif. The P. formosa venom accounted for 126 
peptide sequences, with 52 ICK toxins being part of 3 distinct 
families. V. fasciatus venom contained 49 peptide sequences, 
with 22 ICK structural motif peptides from 5 families. The 
venom of L. mactans had 14 cysteine rich peptides, with 5 ICK 
toxins from 1 family (CSTX superfamily).

The work of Kuhn-Nentwig et al. [61] is quite interesting. 
Aiming to add new insights into the structure and function of 
spider venom toxins and their influence on the homeostasis of 
prey and/or aggressors, a comprehensive analysis of the venom 
gland transcriptome and proteome from Cupiennius salei (family 
Trechaleidae) was employed. The venom proteome of C. salei 
was studied combining bottom-up and top-down proteomics 
using LC-ESI-Orbitrap MS. Protein and peptide identification 
was performed using the UniprotKB database supplemented 
with sequences translated from the venom gland transcriptome. 
The authors detected 81 transcripts of neurotoxins from 13 
peptide families, including 54 putative (based on transcriptome) 
neurotoxins. Their proteome approach allowed to validate the 
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Figure 3. Summary of publications on venomics. Interaction map reporting the main terms (arachnid genera, venomic method, mass spectrometry platform, and 
corresponding author) found in the publications represented in this review. Node size is associated with the frequency that each term appeared in all publications.

presence of 49 proteins out these putative 54 neurotoxins. Finally, 
the authors proposed a venom dual-mode of action, in which 
neurotoxins disable the prey or aggressor while metabolites 
impair animals’ homeostasis.

Diniz et al. [62] were interested in providing a broad screening of 
the venom proteins produced in the Phoneutria nigriventer venom 
glands. To accomplish this goal, they combined conventional 
and next-generation cDNA sequencing with Multidimensional 
Protein Identification Technology (MudPIT). Transcriptomic 
and proteomic data showed that cysteine-rich peptide toxins 
were the most abundant component in the venom. They also 
reported several potential variants or proteoforms of already 
described cysteine-rich peptide toxins, and novel ones with 
unknown function were identified too. The authors concluded 
that the observed relative abundance of insecticide toxins may 
have an important role in the envenomation of natural prey. 

Santana et al. [63] performed proteomics characterization 
of ontogenetic variation within a population of Phlogius 
crassipes (Australian tarantula) to investigate how spider venom 
composition may be influenced by different predatory niche 
factors such as sex, diet, habitat, and climate. This study revealed 
that P. crassipes venom changes continuously according to spider 
size, which could be due to a change in the preys that the spiders 

encounter at different life stages, mainly due to mating searches, 
as adult male specimens may incorporate toxins at this life stage 
that enable them to defend themselves from predators.

Sanggaard et al. [65] used comparative genomics as well 
as venomics to study the venom and silk proteomes from the 
African social velvet spider, Stegodyphus mimosarum, and the 
Brazilian white-knee tarantula, Acanthoscurria geniculata. 
The analysis of spider venom showed that both spider species 
contained a large repertoire of cysteine-rich peptides, which 
most likely mediate the toxic effects of the venom, possibly by 
processing and activating protoxins. They also found that the 
dragline silk of the velvet spider is composed by at least two types 
of spidroins (spider silk proteins). Four novel spidroin-related 
sequences were identified.

Tang et al. [67] used high throughput peptide identification 
techniques on the venom of the tarantula Haplopelma hainanum 
(Ornithoctonus hainana; family Theraphosidae), a highly 
venomous spider found in southern region of China. The 
authors employed three different approaches: i) transcriptomics, 
ii) peptidomics, and iii) genomics. Around 420 peptide toxins 
were detected by MS, and 272 peptide precursors were deduced 
from cDNA and genomic DNA sequences. After data processing, 
192 mature sequences were identified by combining the three 
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omics approaches. Peptide toxins could be classified into 11 
superfamilies based on sequence similarity. Additionally, 
the results suggested a possibly gene duplication and focal 
hypermutation that could be responsible for the huge molecular 
diversity observed in spider peptide toxins.

One of the latest reports on spider venomics was published last 
year in PNAS. The authors employed several omics approaches to 
study what they called the “structural venomics” of the Australian 
funnel-web spider Hadronyche infensa (family Atracidae). For 
venom profile, they used a combination of LC-MS platforms to 
analyze intact peptides (peptidome) and tryptic digested peptides 
using the lab-made H. infensa venom gland transcriptome for 
database search (bottom-up proteome approach). Structural 
determination was done using NMR after expression of identified 
proteins. The authors detected 3,051 unique peptides in the 
venom of H. infensa. Based on this impressive identification 
number, they concluded that the H. infensa venom peptidome is 
one of the most complex in terrestrial venomous animals. Their 
proteome approach allowed the identification of 1,108 venom 
proteins out of the 1,224 predicted ones by the transcriptome 
approach. Finally, this work unveiled that the inhibitor cystine 
knot (ICK) toxins are highly dominant protein structures in the 
H. infensa venom [68].

Scorpion venomics
One of the first scorpion venom proteome studies was 

performed in 2001. Pimenta et al. [40] performed a PMF of 
the Tityus serrulatus (family Buthidae) venom. The authors 
employed two MS platforms (online LC-ESI-QQQ MS and 
offline LC-MALDI-TOF MS) to analyze the toxic fractions of 
T. serrulatus venom, obtained by Sephadex G50 size exclusion 
chromatography, reporting over 300 ion species as potential 
venom toxins.

In 2004, Batista et al. [74] reported that proline-rich peptides 
from the Tityus cambridgei venom were prone to in-source 
fragmentation in ESI. The authors also characterized a new Nav 
toxin by Edman degradation and MS. In the following years, 
the New-World scorpions were subject to various venomic 
studies, including an interesting report of individual variability 
in T. serrulatus venom. Pimenta et al. [75] reported intra-
specimen variation in the composition of T. serrulatus venom 
depending on starvation duration. Of course, inter-specimens’ 
variability was also observed [75]. Due to the importance of 
molecular phenotypes to the understanding of phylogenetic 
and ecological relations, many other proteomic studies analyzed 
intraspecific variations in scorpion venom proteins and peptides 
[76], including sexual dimorphism [77].

In 2006, Nascimento et al. [78] explored more the potential 
correlation of venom composition and interspecific variations. 
The authors evaluated whether venomics could be used to assist 
scorpions’ taxonomical classification in Buthidae family. Three 
species from the New-World (Tityus stigmurus, T. serrulatus, 
T. bahiensis) and two subspecies from the Old-World (Leiurus 
quinquestriatus quinquestriatus and L. quinquestriatus hebraeus) 

were used in this study. The authors used 2D-LC (CIEX and 
RP) and ESI-Q-TOF MS analyses to profile scorpions’ PMF. A 
phenetic correlation tree was provided based on venom PMF 
from each specie. Correlation was in agreement with the classical 
classification, showing that indeed venomic-based approaches 
may be used for taxonomical classifications.

Among the Buthidae scorpions, the genus Tityus is frequently 
studied by means of venomics [7,46,79–86]. Recently, a venomic 
study of Rhopalurus agamemnon New-World scorpion was 
reported [87]. R. agamemnon is a large scorpion (~11 cm) found in 
the Brazilian savanna, known as “Cerrado”. The authors performed 
a comprehensive characterization of R. agamemnon venom 
by bottom-up proteomics and enzymatic activity assays. The 
Centruroides is another New-World genus frequently subjected 
to venomic studies [88–93]. As observed in T. serrulatus venom 
by Pimenta et al. [75], it was reported individual variability in 
the Mexican scorpion Centruroides limpidus venom. Comparing 
the venom from male and female by PMF, and 2-DE followed by 
in-gel digestion and LC-ESI-Orbitrap MS analysis, the authors 
reported sexual dimorphism in C. limpidus venom [92]. Sexual 
dimorphism was also observed in C. hentzi venom [91]. 

Diaz et al. [89] studied the venom of Centruroides edwardsii by 
transcriptomics, proteomics, and bioassays. Venom proteomic 
analysis indicated the presence of a hyaluronidase, several 
cysteine-rich secretory proteins, metalloproteinases, and a 
peptidyl glycine α-hydroxylating monooxygenase like-enzyme. 
They also identified peptides similar to the Kv neurotoxin 
margatoxin, a dominant toxin in the venom of its related 
scorpion C. margaritatus. They also identified Nav-modulating 
peptides similar to other scorpion species from Centruroides 
and Tityus genera. 

Romero-Gutiérrez et al. [94] used transcriptomic and proteomic 
analyses to identify the components from the Serradigitus gertschi 
venom. They reported 119 annotated transcripts. The proteomic 
analysis revealed that 24 of the encoded peptides were indeed 
found in the venom. The study also revealed several unannotated 
transcript-derived peptides, demonstrating that there is still a 
number of scorpion venom components of unknown activity, 
reinforcing the idea that the functional characterization of the 
scorpion venoms is far from exhausted.

Although we focused on studies describing the New-World 
venomics, it is important to highlight that a number of venomic 
studies from Old-World scorpions have also been published 
[91,95–101]. 

For example, Xu et al. [100] used a proteomic strategy that 
combined multidimensional protein separation techniques 
(2-DE, SDS-PAGE, and RP-HPLC) with MS (ESI-Q-TOF MS 
and MALDI-TOF MS) to analyze the venom proteome of 
Mesobuthus martensii. The authors reported 227 peptides or 
proteins unambiguously identified, 115 of which were confirmed 
at the protein level from the crude venom, including 24 typical 
toxins, 7 atypical toxins, 12 venom enzymes, and 72 cell-
associated proteins. Noteworthy, seven novel toxins belonging 
to typical toxins were also found in the M. martensii venom.
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Ma et al. [101] used a combination of expressed sequence tag 
(EST)-sequencing data from transcriptome analysis and MS-
based proteomic methods on Heterometrus petersii venom. In 
total, 10 known and 12 unknown atypical toxin types, and 184 
non-redundant venom toxins were identified. The diversity of 
the venome was demonstrated by the presence of at least 22 
venom peptide families. Concurrently, numerous venom peptide 
families showed high homology with toxins from other animal 
species, indicating compositional convergence. 

PTMs significantly change the physicochemical properties 
(e.g., structure, affinity, stability, interaction, etc.) of proteins, 
and so to animal protein toxins too. PTMs are frequently 
studied in cone snails’, wasps’ and snakes’ venoms but somehow 
are overlooked in scorpions’ and spiders’ venomic papers. To 
the best of our knowledge, there is only one proteomic paper 
reporting that Tityus serrulatus venom proteins and peptides are 
subjected to PTMs (i.e., phosphorylation, N-linked glycosylation, 
and proteolysis) [82]. Despite the lack of such studies, PTMs 

do play an important role in the activity of arachnid venom 
proteins, as shown by Veiga et al. [102]. The enzymatic removal 
of potential N-glycosylated proteins in the venom of Loxosceles 
intermedia reduced the dermonecrotic and gelatinolytic activities 
of the crude venom. Thus, we urge our scientific community 
to pursue such task, employing enrichment steps for PTMs 
(phosphorylation, glycosylation, acetylation, etc.) on proteomic 
workflows, as illustrated in Figure 2, to shed more lights on the 
molecular complexity of scorpions’ and spiders’ venoms.

Finally, Table 1 summarizes key information related to the 
venomic studies cited in this review, including animal (spider or 
scorpion) genera, proteomic method and MS platform employed. 
Figure 3 represents such information as an interaction map. 
The nodes represent the terms reported in the table (arachnid 
genera, MS platform and proteomic strategy, also including the 
papers’ corresponding authors). Node size represents the number 
of publications in which each term appeared. It is possible to 
observe in the Figure 3 that PTMs are indeed overlooked in 
venom proteome studies of scorpions and spiders.

Table 1. List of publications on spider and scorpion venomics cited in this review.

Ref. Arachnid Genera Transcriptome Proteomic method MS platform

[7] Scorpion Tityus Yes Shotgun/Bottom-up ESI-Orbitrap

[35] Spider Phoneutria No 2-DE ESI-Q-TOF MALDI-TOF

[40] Scorpion Tityus No PMF MALDI-TOF 
ESI-QQQ

[46] Scorpion Tityus No Shotgun/Bottom-up ESI-Orbitrap

[57] Spider Loxosceles No 2-DE ESI-Q-TOF MALDI-TOF ESI-QQQ

[58] Spider Ornithoctonus No 2-DE ESI-Q-TOF MALDI-TOF

[60] Spider
Heteropoda 

Poecilotheria Viridasius
Latrodectus

Yes Top-down/Peptidome ESI-Orbitrap

[61] Spider Cupiennius Yes Shotgun/Bottom-up
Top-down/Peptidome ESI-Orbitrap

[62] Spider Phoneutria Yes Shotgun/Bottom-up ESI-Orbitrap

[63] Spider Phlogius No Shotgun/Bottom-up
Top-down/Peptidome ESI-Q-TOF

[64] Spider Acanthoscurria Yes Shotgun/Bottom-up
Top-down/Peptidome

ESI-Q-TOF
ESI-Orbitrap

[65] Spider Stegodyphus
Acanthoscurria

Yes Shotgun/Bottom-up ESI-Q-TOF

[66] Spider Physocyclus Yes Shotgun/Bottom-up ESI-Orbitrap

[67] Spider Ornithoctonus Yes Top-down/Peptidome 
Shotgun/Bottom-up MALDI-TOF

[68] Spider Hadronyche Yes PMF
Shotgun/Bottom-up

MALDI-TOF
ESI-Q-TOF

ESI-Orbitrap

[69] Spider Tetragnatha Yes Shotgun/Bottom-up ESI-Orbitrap

[70] Spider Loxosceles No Shotgun/Bottom-up
Top-down/Peptidome ESI-Orbitrap

[71] Spider Grammostola No Shotgun/Bottom-up ESI-Orbitrap
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Ref. Arachnid Genera Transcriptome Proteomic method MS platform

[72] Spider Phoneutria No Shotgun/Bottom-up ESI-Orbitrap
ESI-Q-TOF

[73] Spider Scytodes Yes Shotgun/Bottom-up ESI-Orbitrap

[74] Scorpion Tityus No PMF MALDI-TOF 
ESI-IT

[75] Scorpion Tityus No PMF MALDI-TOF

[76] Scorpion Rhopalurus No PMF ESI-IT

[77] Scorpion Rhopalurus No PMF ESI-Orbitrap

[78] Scorpion Tityus 
Leiurus

No PMF ESI-Q-TOF

[79] Scorpion Tityus No PMF ESI-IT 
MALDI-TOF

[80] Scorpion Tityus No PMF
Shotgun/Bottom-up ESI-IT

[81] Scorpion Tityus No Shotgun/Bottom-up ESI-Orbitrap

[82] Scorpion Tityus No
Shotgun/Bottom-up

Top-down/Peptidome
PTMs

ESI-Orbitrap

[83] Scorpion Tityus Yes Shotgun/Bottom-up ESI-Orbitrap

[84] Scorpion Tityus No PMF/Shotgun/Bottom-up ESI-IT 
ESI-Orbitrap

[85] Scorpion Tityus No Top-down/Peptidome ESI-IT-TOF

[86] Scorpion Tityus No PMF ESI-IT

[87] Scorpion Rhopalurus No Shotgun/Bottom-up ESI-Orbitrap

[88] Scorpion Centruroides Yes Shotgun/Bottom-up ESI-Orbitrap

[89] Scorpion Centruroides Yes Shotgun/Bottom-up MALDI-TOF

[90] Scorpion Centruroides Yes PMF
Shotgun/Bottom-up ESI-Orbitrap

[91] Scorpion Centruroides Yes Shotgun/Bottom-up ESI-Orbitrap

[92] Scorpion Centruroides No 2-DE ESI-Orbitrap

[93] Scorpion Centruroides Yes PMF ESI-IT 
ESI-Orbitrap

[95] Scorpion Buthus No Shotgun/Bottom-up
Top-down/Peptidome ESI-Orbitrap

[96] Scorpion Heterometrus No Shotgun/Bottom-up MALDI-TOF

[97] Scorpion Androctonus No PMF MALDI-TOF

[98] Scorpion Heterometrus Yes 2-DE ESI-Q-TOF MALDI-TOF

[99] Scorpion Mesobuthus Yes Shotgun/Bottom-up ESI-Q-TOF

[100] Scorpion Mesobuthus No PMF
2-DE

MALDI-TOF
ESI-Q-TOF

[101] Scorpion Heterometrus Yes Shotgun/Bottom-up ESI-Q-TOF

Table 1. Cont.
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Conclusion
We presented in this review historical landmarks of venomic 
studies on scorpion and spider venoms. It is fascinating to observe 
how venomics has evolved as MS instrumentation and proteomic 
methods have improved. From descriptive papers relying on 
PMF, we now find comprehensive venom characterization by 
means of omics methods. We prepared a table presenting the 
most important information from studies on venomics covered 
in this review article, including instrumentation and methods 
employed. 
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