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Abstract 
Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich 
in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, 
Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in 
venom through the proteolytic processing of metalloproteinases (SVMPs), which, in 
turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) 
molecule. Disintegrins have a recognition motif for integrins in their structure, allowing 
interaction with these transmembrane adhesion receptors and preventing their binding 
to proteins in the extracellular matrix and other cells. This interaction gives disintegrins 
their wide range of biological functions, including inhibition of platelet aggregation 
and antitumor activity. As a result, many studies have been conducted in an attempt 
to use these natural compounds as a basis for developing therapies for the treatment 
of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as 
antiplatelet compounds, and they are synthesized from the structure of echistatin and 
barbourin, respectively. In this review, we discuss some of the main functional and 
structural characteristics of this class of proteins and their potential for therapeutic use.
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Background 
Snake venom is a secretion produced in the glands located on 
both sides of the animal’s upper jaw. Its evolutionary function 
includes the defense and survival of the snake, as well as the 
immobilization and digestion of prey, aiding in its feeding. It is 
a complex cocktail, as its composition is formed by the mixture 
of various compounds, predominantly proteins, peptides, amino 
acids, nucleic acids, carbohydrates, lipids, and metals [1, 2]. After its 
production in pairs of homologous glands, venom is secreted into 
the base of the fangs, which can be located in the posterior region 
(opisthoglyphous) or anterior region of the animal’s mouth, with 
the latter case having either short and fixed fangs (proteroglyphous) 
or long and movable fangs (solenoglyphous) [2, 3].

Snakebite envenomation is considered a Neglected Tropical 
Disease with high incidence and severity, mainly affecting 
poverty regions [4]. It is estimated that around 5.4 million 
snakebites occur worldwide each year, resulting in 1.8 to 2.7 
million cases of envenomation and approximately 81,000 to 
138,000 deaths [5]. Snake venom exhibits a highly complex 
composition, and due to the diverse toxins with a wide range of 
biological functions, various clinical manifestations resulting 
from envenomation are observed, including local and systemic 
effects [6]. However, beyond its toxic action, snake venom is also 
recognized for its high therapeutic potential, as its composition 
contains approximately 100 to 500 pharmacologically active 
compounds capable of acting on different target sites. For this 
reason, many studies have been conducted in the search for 
alternative therapies for various diseases [7].

In this context, snake venomics has demonstrated great 
relevance for the more detailed analysis of venom components [8]. 
By using this strategy, which combines advances in proteomics 
and transcriptomics, it is possible to isolate venom compounds, 
estimate the content of toxins, as well as understand their 
biological and toxicological aspects [9]. Advances in these 
techniques have allowed the characterization of up to 20 families 
of proteins in the venom of a single snake, with some of these 
families containing up to 80 different toxins [10]. Despite the 
fascinating variability of compounds, most snake venoms are 
composed of four dominant protein families: phospholipase 
A2 (PLA2), three-finger toxins (3FTx), snake venom serine 
protease (SVSP), and snake venom metalloprotease (SVMP), 
along with secondary protein families, such as cysteine-rich 
secretory protein (CRISP), Kunitz peptides, L-amino acid 
oxidase (LAAO), natriuretic peptides, C-type lectins (CTL), 
disintegrins, among others [11].

In this review, we present the functional and structural 
aspects of disintegrins found in snake venom, as well as the 
evolutionary history of their emergence. We also discuss the 
potential applications of this class of peptides and the drugs 
already approved for therapeutic use.

What are snake venom disintegrins?
Snake venom disintegrins comprise a family of highly homologous, 
non-enzymatic polypeptides rich in cysteine (Cys). Their presence 

is described in the venom of snakes from the families Viperidae, 
Crotalidae, Atractaspididae, Elapidae, and Colubridae [12]. This 
family of small proteins interacts specifically with integrins, a 
group of cell adhesion receptors on the surface of certain cells, 
including platelets, vascular endothelial cells, and some tumor 
cells [13, 14]. This way, disintegrins, by preventing such binding, 
interfere in intercellular and cell-matrix interactions, as well as 
signal transduction [12, 14]. 

Integrins: a family of heterodimeric receptors
Integrins are transmembrane receptors that regulate or trigger 
different cellular processes upon binding to specific extracellular 
ligands [15]. They are heterodimeric proteins formed by the non-
covalent association of α and β chains. In vertebrates, at least 18 α 
subunits and 8 β subunits have been identified, which can form a 
total of 24 different heterodimers. The α and β subunits of integrins 
do not have detectable homology between them, but there are 
conserved regions among different α subunits (approximately 
30% identity) and among β subunits (around 45%) [16]. 

Integrins can recognize ligands from the extracellular matrix, 
cell surfaces, and other soluble ligands, with the αβ pairings of 
integrin subunits being determinants for binding specificity [16, 
17]. Structurally, each integrin subunit consists of an extended 
multidomain extracellular region (up to 1104 residues in the α 
subunit and 778 residues in the β subunit), a transmembrane 
helix, and a short cytoplasmic tail (with 20 to 70 amino acids). The 
N-terminal portions of each subunit, located in the extracellular 
region, combine to form a globular ligand-binding “head” 
(Figure 1) [18, 19].

Integrins are present on the surface of many cell types and 
enable cell-cell interactions and interactions between cells and 
extracellular matrix proteins, including fibronectin, collagen, 
and laminin-1 [20]. These interactions are related to a wide 
range of biological effects, so the role of integrins is associated 
with physiological events such as cell adhesion [21], wound 
healing [22], regulation of neuronal connectivity [23], and 
synapses [24], as well as pathological effects as inflammation 
[17], tissue fibrosis [25], atherosclerotic plaque development [26], 
They also interfere in various stages of cancer development and 
progression, including survival, proliferation, angiogenesis, 
migration, invasion, survival in circulation, extravasation, and 
metastatic growth [12, 15, 17, 27–31]. 

Snake venom disintegrins: evolution from 
metalloproteases
Snake venom disintegrins are peptides derived from the 
proteolytic processing of snake venom metalloproteinase (SVMP) 
precursors and carry in their structure the recognition motifs 
for integrins RGD, KGD, WGD, VGD, MGD, RTS, KTS [13, 32]. 
SVMPs are found in large quantities in snake venom and are 
the main components responsible for the hemorrhagic action 
after snakebite, interfering with the victim’s hemostatic system 
[33, 34]. They are divided into different subclasses based on size 
and domain structure. Class P-I SVMPs contain only the typical 
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metalloproteinase domain (M), composed of the pro-domain 
and proteolytic domain, and have a molecular mass of 20 to 
30 kDa. Class P-II SVMPs have a molecular mass of 30 to 60 
kDa and are structurally composed of pro-domain, proteolytic 
domain, and disintegrin-like domain (DI). Class P-III SVMPs 
(hemorrhagins) have a molecular mass between 60 to 100 kDa 
and are composed of a pro-domain, proteolytic domain, a 
disintegrin-like domain, and a cysteine-rich domain (C). In 
general, the hemorrhagic activity of these toxins depends on 
the M domain, but the DI and C domains are also important for 
their biological function. Thus, class P-III is recognized for its 
ability to induce higher and more diverse hemorrhagic activity 
when compared to class P-I and P-II SVMPs [33, 35, 36].

Evidence from molecular phylogenetics suggests that SVMPs 
evolved from a gene that encodes an A Disintegrin And 
Metalloprotease (ADAM) molecule, likely from an ancestral 
ADAM 7 or ADAM 28, belonging to the adamalysin family. 
Evolutionarily, SVMPs were recruited to the snake venom gland 
at the base of the advanced snake radiation, after the divergence 
of Pareatidae from the remaining Caenophidians, during the 
Paleogene period of the Cenozoic Era. The evolutionary history 
of SVMPs shows the loss of the cysteine-rich domain in class 
P-III, forming the SVMPs-PII, followed by the loss of the 
disintegrin-like domain and the formation of class P-I [35, 37]. 

Regarding domain organization and sequence, important 
similarities are observed between ADAMs and P-III SVMPs, 
including the presence of the pro-domain, proteolytic domain, 
disintegrin-like domain, and cysteine-rich domain. Regarding 

structural differences, ADAMs have an EGF domain, a 
transmembrane domain, and a cytoplasmic tail, which are not 
present in SVMPs [38]. 

The evolutionary history of disintegrins occurred through 
positive Darwinian selection, and their presence in snake 
venom results from the proteolytic processing of P-II 
metalloproteinases or translation of short messenger RNAs 
without the metalloproteinase coding region [39–42]. Thus, the 
presence of both free metalloproteinases and disintegrins can 
be observed in the venom [43].

Discovery and distribution of snake venom 
disintegrins
Snake venom disintegrins emerged in the scientific community 
in 1987, when Stefan Niewiarowski and Tur-Fu Huang isolated 
a low molecular weight non-enzymatic protein from the venom 
of Trimeresurus gramineus. The researchers observed that the 
protein, called trigramin, could block the binding of fibrinogen 
to stimulated GPIIb/IIIa receptors on platelets, thus inhibiting 
platelet aggregation. Although introduced in Toxinology in 
1987, the term “disintegrin” was first used in 1990 when it was 
described as a new class of peptides isolated from snake venom, 
rich in the amino acid cysteine and containing an RGD domain 
in their structure [44, 45]. Since then, numerous studies have 
been conducted searching for this class of compounds in snake 
venom (Table 1). Approximately ten years after its discovery, 
non-RGD disintegrins were identified, challenging the concept 
of the obligatory presence of the Arg-Gly-Asp amino acids, and 

Figure 1. Integrin structure. Conversion of integrin from its inactive low-affinity conformation to the active high-affinity conformation for the ligand through 
intra- or extracellular stimuli.
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paving the way for the future discovery of different integrin 
recognition motifs [46, 47].

Initially, disintegrins were studied for their inhibition of 
platelet aggregation due to the ability to interact with the 
transmembrane GPIIb/IIIa receptors (or αIIbβ3 integrin) present 
on the surface of platelets [39, 48–50]. Fibrinogen is a bivalent 
molecule capable of simultaneously binding to the activated 
GPIIb/IIIa receptor on two different platelets, forming bridges 
between the activated platelets [51–54]. Thus, disintegrins inhibit 
platelet aggregation by preventing the interaction of the αIIbβ3 
integrin with fibrinogen.

Subsequently, in addition to their action on platelet receptors, 
many disintegrins have been isolated and characterized for their 
effects on other cells, demonstrating various biological functions, 
including interference with human neutrophil chemotaxis to sites 
of inflammation and tissue injury [55], antiparasitic activity [56], 
antiviral activity [57] and antitumor action through induction 
of apoptosis [50] and cytotoxicity [58], as well as inhibition of 
important steps in tumor development and progression, like 
adhesion [46, 59–63], angiogenesis [59, 64–67], migration [59, 
62, 63, 68, 69] and metastasis [69–72]. 

Structural characterization of snake venom 
disintegrins
Snake venom disintegrins can be structurally classified into two 
major groups: monomeric and dimeric (Figure 2). Monomeric 

disintegrins are composed of three classes [73]. The first class 
consists of short disintegrins with 41 to 51 amino acid residues 
and four disulfide bonds. The second class comprises medium 
disintegrins with approximately 70 amino acids and six disulfide 
bonds. The third class of monomeric disintegrins contains long 
disintegrins with about 84 residues and seven disulfide bridges 
[74]. The second group of disintegrins is the dimeric disintegrins, 
which are further classified as homo- or heterodimers when 
the subunits are identical or different, respectively [73]. The 
subunits of dimeric disintegrins are composed of around 67 
residues with ten cysteines, which are involved in forming four 
intrachain and two interchain disulfide bonds [74].

These proteins are highly homologous, and this structural 
similarity is primarily associated with the alignment of cysteine 
residues [75]. Figure 3 shows the analysis of multiple sequence 
alignments of disintegrin domains from five different structural 
classes, including Echistatin [76], Obtustatin [77], Barbourin [78], 
Tzabcanin [79], Cotiarin [80], Batroxostatin [81], Jarastatin [82, 
83], Jararacin [82–84], Bitistatin [85], Salmosin-3 [86], Schistatin 
[87], Contortrostatin [48], CC5 [88], CC8 [88], EC3 [46] and 
EMF10 [47], highlighting conserved cysteine residues (Figure 3).

Regarding binding specificity, the correct pairing of cysteine 
residues is essential for exposing the motif that mediates the 
interaction with integrins and determining their inhibition 
[74]. In this context, the family of snake venom disintegrins 
can be divided into seven groups, each with a specific pattern 

Table 1. Snake venom disintegrins isolation. 

Disintegrin Snake venom species Motif Publication data Ref.

Trigramin Trimeresurus gramineus RGD November-87 [44]

Echistatin Echis carinatus RGD December-88 [76]

Applaggin Agkistrodon piscivorus piscivorus RGD October-89 [110]

Albolabrin Trimeserusus albolabris RGD May-90 [111]

Elegantin Trimeserusus elegans RGD May-90 [111]

Flavoridin Trimeserusus flavoviridis RGD July-90 [112]

Batroxostatin Bothrops atrox RGD September-90 [81]

Eristostatin Eristicophis macmahoni RGD November-90 [45]

Rhodostomin Calloselasma rhodostoma RGD November-90 [45]

Triflavin Protobothrops flavoviridis RGD February-91 [113]

Barbourin Sistrurus miliarius barbouri KGD May-91 [78]

Basilicin Crotalus basilicus RGD January-93 [84]

Cerastin Cerastes cereastes RGD January-93 [84]

Cereberin Crotalus viridis cereberus RGD January-93 [84]

Crotatoxin Crotalus atrox RGD January-93 [84]

Cotiarin Bothrops cotiara RGD January-93 [84]

Durissin Crotalus durissus durissus RGD January-93 [84]

Jararacin Bothrops jararaca RGD January-93 [84]

Lachesin Lachesis mutus RGD January-93 [84]

Lutosin Crotalus viridis lutosus RGD January-93 [84]

Molossin Crotalus molossus molossus RGD January-93 [84]
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Disintegrin Snake venom species Motif Publication data Ref.

Viridin Crotalus viridis viridis RGD January-93 [84]

Contortrostatin Agkistrodon contortrix contortrix RGD January-94 [114]

Multisquamatin Echis multisquamatus RGD January-94 [114]

Flavostatin Trimeserusus flavoviridis RGD May-96 [49]

Bitistatin Bitis arietans RGD October-97 [115]

Salmosin Agkistrodon Halys Brevicaudus RGD July-98 [116]

Accutin Agkistrodon acutus RGD November-98 [64]

EC3 Echis carinatus VGD/MLD April-99 [46]

Rhodocetin Calloselasma rhodostoma ? May-99 [117]

Jarastatin Bothrops jararaca RGD September-99 [82]

EMF-10 Eristicophis macmahoni RGD/MGD September-99 [47]

EC6 Echis carinatus MLD/RGD October-00 [118]

Alternagin-C Bothrops alternatus ECD December-00 [119]

Lebein Macrovipera lebetina RGD May-01 [120]

Trimestatin Trimeresurus flavoviridis RGD September-01 [121]

Piscivostatin Agkistrodon piscivorus piscivorus RGD/KGD September-01 [121]

Saxatillin Gloydius saxatilis RGD January-02 [66]

CC5 Cerastes cereastes RGD January-02 [88]

CC8 Cerastes cereastes RGD/WRG January-02 [88]

Ocellatusin Echis ocellatus RGD February-02 [122]

Bothrasperin Bothrops asper RGD March-03 [123]

Obtustatin Macrovipera lebetina KTS May-03 [77]

EO4 Echis ocellatus June-03 [124]

EO5 Echis ocellatus MLD/VGD June-03 [124]

VA6 Vipera ammodytes RGD June-03 [124]

VB7 Vipera berus RGD/KGD June-03 [124]

VLO4 Vipera lebetina obtusa June-03 [124]

VLO5 Vipera lebetina obtusa VGD/MLD June-03 [124]

Adinbitor Agkistrodon halys brevicaudus stejneger RGD June-04 [125]

Viperistatin Vipera palestinae KTS November-04 [126]

Bothrostatin Bothrops jararaca RGD April-05 [127]

Jerdostatin Trimeresurus jerdonii RTS December-05 [128]

Lebestatin Macrovipera lebetina KTS December-05 [59]

Mojastin-1 and -2 Crotalus scutulatus scutulatus RGD April-06 [129]

DisBa-01 Bothrops alternatus RGD October-07 [128]

Viplebedin-2 Vipera lebetina VGD/MLD July-09 [113]

Disintegrin protein Naja naja ? August-12 [130]

Disintegrin Atropoides mexicanus RGD December-14 [61]

Sasaimin Cerrophidion sasai RGD December-14 [61]

Simusmin Crotalus simus RGD December-14 [61]

Tzabcanin Crotalus simus tzabcan RGD September-15 [79]

Disintegrin_CC Cerastes cereastes RGD December-17 [131]

Disintegrin Crotalus durissus collilineatus Non-RGD October-18 [132]

Cerastategrin Cerastes cereastes RGD September-20 [133]

Table 1. Cont.
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of sequence and disulfide bond formation between cysteine 
residues (Figure 4). Group 1 includes the disintegrin-like domain 
of proteins from the ADAM/SVMP subfamily. Its disulfide 
pattern is defined as Cys1-Cys5, Cys2-Cys3, Cys4-Cys10, 
Cys7-Cys9, Cys8-Cys13, Cys11-Cys14, while Cys6 and Cys12 
form connections with other domains of the protein. Group 2 
consists of disintegrins similar to Bitistatin A, and Cys1-Cys4, 
Cys2-Cys7, Cys3-Cys6, Cys5-Cys11, Cys8-Cys10, Cys9-Cys13, 
Cys12-Cys14 characterize their disulfide pattern. Group 3 is 
formed by disintegrins similar to Bitistatin B, and their disulfide 
bond pattern consists of Cys1-Cys7, Cys2-Cys6, Cys3-Cys4, 
Cys5-Cys11, Cys8-Cys10, Cys9-Cys13, Cys12-Cys14. Group 4 

consists of monomeric disintegrins similar to Kistrin, and the 
disulfide pattern of these molecules is Cys1-Cys5, Cys2-Cys4, 
Cys3-Cys9, Cys6-Cys8, Cys7-Cys11, Cys10-Cys12. Group 5 is 
the Salmosin group, also composed of monomeric disintegrins, 
and their disulfide pattern is Cys1-Cys3, Cys2-Cys4, Cys5-Cys8, 
Cys7-Cys9, Cys6-Cys11, Cys10-Cys12. Group 6 includes dimeric 
disintegrins, with an intrachain disulfide pattern characterized 
by Cys1-Cys7, Cys4-Cys6, Cys5-Cys9, Cys8-Cys10, while Cys2 
and Cys3 form a disulfide bridge with the other subunit of the 
dimer. Lastly, group 7 comprises short disintegrins, and the 
disulfide pattern of these molecules can be described as Cys1-
Cys4, Cys2-Cys7, Cys3-Cys6, and Cys5-Cys8 [89].

Figure 2. Structural classification of disintegrins.

Figure 3. Multiple alignments among selected disintegrins from different structural classes. Cysteine residues are highlighted in gray. The integrin-binding RGD 
motif is represented in red, and non-RGD motifs are in blue.
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Function and potential applications of snake venom 
disintegrins
Snake venom disintegrins can selectively bind to integrins, which 
are strongly tied to the specific motifs found in their structure 
[90] (Figure 5). This way, during envenomation, they exhibit a 
wide array of functions, serving various crucial roles, like binds 
to platelet receptors, impeding their aggregation, and resulting in 
the onset of bleeding disorders [91]. Consequently, disintegrins 
contribute to disrupting hemostatic processes (Table 2).

Some snake venom disintegrins can inhibit bone resorption in 
vitro [92] and can also be used as a diagnostic tool. An example, 
we cite bitistatin, which can potentially be used in molecular 
imaging of thromboembolic diseases [93].

It has also been demonstrated that disintegrins can interfere 
with the chemotaxis of human neutrophils to sites of inflammation 
and tissue injury [55] and exhibit antiparasitic activity against 
Leishmania infantum promastigotes [56].

Intriguingly, certain disintegrins have demonstrated notable 
anti-tumor and anti-angiogenic properties (Table 3). This 
remarkable feature opens up new possibilities for their utilization 
as potential therapeutic agents in cancer treatment, and by 
targeting tumor growth and impeding blood vessel formation, 
these disintegrins exhibit promising potential in medical research 
and innovation.

Snake venom disintegrins: from lab bench to market
Animal venoms are rich mixtures of components that may have 
important pharmacological actions. Many of these components 
have already been extensively studied to become drugs, and after 
approval by the Food and Drug Administration (FDA), turned 
into widely used molecules [94].

A very important example of a drug derived from animal 
toxins is captopril (Capoten®, Bristol-Myers Squibb, New York, 
NY, EUA), which is widely used against hypertension [95]. 
This was the first animal-derived drug approved by the FDA 
in 1981, which mechanism is responsible for inhibiting the 
angiotensin-converting enzyme (ACE). Thus, the production 
of angiotensin II is also inhibited, reducing hypertension 
effects, and increasing the hypotensive action of bradykinin, 
known as a bradykinin potentiating factor (BPF) [96–99]. 
Although it is a very effective natural molecule, the captopril 
used in medicaments is a synthetic molecule based on the 
miniaturization of the original molecule and chemically 
modified to be administered orally [94, 100]. In sequence, in 
1985, the FDA approved Enalapril (Vasotec®, Merck, Darmstadt, 
Germany), which was also used to treat hypertension and 
congestive heart failure [94, 101].

Some disintegrins have been extensively studied and are 
nowadays FDA-approved drugs as well. Tirofiban (Aggrastat®, 

Figure 4. Disulfide bonding pattern for each group within the disintegrin family. (Group 1:) DAM/SVMP subfamily-like disintegrin domain proteins; (Group 2:) 
Bitistatin A-like disintegrins; (Group 3:) Bitistatin B-like disintegrins; (Group 4:) Kistrin-like disintegrins; (Group 5:) Salmosin-like disintegrins; (Group 6:) 
Dimeric disintegrins; (Group 7:) Short disintegrins. Purple squares indicate cysteine residues, while pink circle indicates the integrin-binding motif.
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Table 2. Snake venom disintegrins that can act on the hemostatic system.

Disintegrin (snake venom) Motif Integrins Action Ref.

Accutin (Agkistrodon acutus) RGD αIIbβ3
Inhibit human platelet aggregation induced by ADP, collagen, 
fibrinogen, thrombin and the thromboxane analogue U46619
Inhibit platelet aggregation of platelet-rich plasma

[134]

Albolabrin (Trimeserusus albolabris) RGD αIIbβ3 Block platelet-fibrinogen interaction
Inhibit ADP-induced platelet aggregation of platelet-rich plasma [111,135]

Applagin (Agkistrodon piscivorus 
piscivorus) RGD αIIbβ3 Block platelet aggregation induced by ADP, collagen, thrombin, and 

arachidonic acid [110]

Barbourin (Sistrurus miliarius barbouri) KGD αIIbβ3 Inhibit fibrinogen to bind αIIbβ3 integrin [78]

Basilicin (Crotalus basilicus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Bitistatin (Bitis arietans) RGD αIIbβ3 Block platelet-fibrinogen interaction
Inhibit ADP-induced platelet aggregation of platelet-rich plasma [135]

CC5 (Cerastes cereastes) RGD αIIbβ3 Inhibit ADP-induced platelet aggregation of platelet-rich plasma [88]

CC8 (Cerastes cereastes) RGD/
WRG αIIbβ3 Inhibit ADP-induced platelet aggregation of platelet-rich plasma [88]

Cerastin (Cerastes cereastes) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Cereberin (Crotalus viridis cereberus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Contortrostatin (Agkistrodon 
contortrix contortrix) RGD αIIbβ3 Inhibit ADP-induced platelet aggregation of platelet-rich plasma 

from humans, dogs and rabbits [114]

Crotatoxin (Crotalus atrox) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Cotiarin (Bothrops cotiara) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Durissin (Crotalus durissus durissus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

EC3 (Echis carinatus) VGD/
MLD αIIbβ3 Inhibit fibrinogen to bind αIIbβ3 integrin [137]

Echistatin (Echis carinatus) RGD αIIbβ3 Block platelet-fibrinogen interaction
Inhibit ADP-induced platelet aggregation of platelet-rich plasma [135]

Elegantin (Trimeserusus elegans) RGD αIIbβ3 Inhibit ADP-induced platelet aggregation of platelet-rich plasma [111]

EMF-10 (Eristicophis macmahoni) RGD/
MGD αIIbβ3 Inhibit ADP-induced platelet aggregation [47]

Eristostatin (Eristicophis macmahoni) RGD αIIbβ3 Able to bind in ADP-, thrombin-induced, and resting platelet [138]

Flavoridin (Trimeserusus flavoviridis) RGD αIIbβ3 Block platelet-fibrinogen interaction
Inhibit ADP-induced platelet aggregation of platelet-rich plasma [135]

Jararacin (Bothrops jararaca) RGD
αvβ3
α5β1
αIIbβ3

Inhibit ADP- and thrombin-induced platelet aggregation
Inhibit adhesion to vitronectin, and fibrinogen to binding integrins [136,139]

Jarastatin (Bothrops jararaca) RGD αIIbβ3 Inhibit ADP- and thrombin-induced platelet aggregation [139]

Jerdostatin (Trimeresurus jerdonii) RTS αIIbβ3 Inhibit fibrinogen to bind αIIbβ3 integrin [140]

Lachesin (Lachesis mutus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]
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Disintegrin (snake venom) Motif Integrins Action Ref.

Lebein (Macrovipera lebetina) RGD ? Inhibit ADP-induced platelet aggregation of platelet-rich plasma [120]

Lutosin (Crotalus viridis lutosus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Mojastin-1 and -2 (Crotalus scutulatus 
scutulatus) RGD α5β1 Inhibit ADP-induced platelet aggregation of whole blood [129]

Molossin (Crotalus molossus molossus) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Multisquamatin (Echis 
multisquamatus) RGD αIIbβ3 Inhibit ADP-induced platelet aggregation of platelet-rich plasma 

from humans, dogs and rabbits [114]

Rhodocetin (Calloselasma 
rhodostoma) ? ? Inhibit collagen-induced platelet aggregation [117]

Saxatillin (Gloydius saxatilis) RGD αIIbβ3 Inhibit the interaction of integrins and fibrinogen
Inhibit ADP-induced platelet aggregation [66]

Triflavin (Protobothrops flavoviridis) RGD αIIbβ3 Inhibit ADP-induced and resting platelet [113]

Trigramin (Trimeresurus gramineus) RGD αIIbβ3
Inhibit the interaction of ADP-induced platelet and fibrinogen
Inhibit chymotrypsin-treated platelet aggregation
Bind to resting platelet

[44]

Viplebedin-2 (Vipera lebetina) VGD/
MLD ? Inhibit ADP- and collagen-induced platelet aggregation

Inhibit platelet adhesion [137]

Viridin (Crotalus viridis viridis) RGD
αvβ3
α5β1
αIIbβ3

Inhibit platelet aggregation, adhesion to vitronectin, and fibrinogen 
to binding integrins [136]

Table 2. Cont.

Figure 5. Interaction of snake venom disintegrins motifs with different integrins.

Medicure International, Inc., Winnipeg, Manitoba, Canada) is 
also a synthetic drug based on the RGD domain of echistatin from 
Echis carinatus [102]. Furthermore, it has a chemical modification 
that increases its interaction with platelet glycoproteins, 
specifically with their GPIIb/IIIa receptors [76]. Thus, this 

drug can inhibit platelet aggregation and other thrombotic 
actions due to its competition with fibrinogen for the recognition 
site of the RGD domain in the GPIIb/IIIa receptor [102, 103]. 
Tirofiban was approved by the FDA in 1998 as a treatment for 
acute coronary syndrome [104].
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Table 3. Discovery of snake venom disintegrins that can act as anticancer agents.

Disintegrin 
(snake venom) Motif Cell line (cancer type) Integrins Action Ref.

Accutin (Agkistrodon 
acutus) RGD HUVEC (human non-cancer cell) αvβ3 Induce apoptosis

Inhibit angiogenesis in vitro and in vivo
[141]

Albolabrin 
(Trimeserusus 
albolabris)

RGD B16-F10 (murine melanoma)
α5β1
αvβ3
α6β1

Inhibit cell-matrix attachment in vitro
Inhibit metastasis of tumor cells [142]

Alternagin-C 
(Bothrops alternatus) ECD

HUVEC (human non-cancer cell)
MDA-MB-231 (human breast cancer)
HMEC-1 (human cells from tumor 
microenvironment)
Human fibroblasts

α2β1

Modulates cell adhesion, migration 
and proliferation
Inhibit adhesion, viability and 
migration of VEGF-induced cell
Inhibit angiogenesis in vitro
Infer in tumor progression

[143–145]

Barbourin (Sistrurus 
miliarius barbouri) KGD B16-F10 (murine melanoma) αvβ3 

αvβ1 Inhibit cell adhesion [146]

Bitistatin (Bitis 
arietans) RGD HUVEC (human non-cancer cell) αvβ3 Inhibit cell adhesion [147]

CC5 (Cerastes 
cereastes) RGD

A5 (murine non-cancer cell)
JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
CHO K1 (murine non-cancer cell)

α5β1
αvβ3 Inhibit cell adhesion [88]

CC8 (Cerastes 
cereastes)

RGD/
WRG

A5 (murine non-cancer cell)
JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
CHO K1 (murine non-cancer cell)

α5β1
αvβ3 Inhibit cell adhesion [88]

Contortrostatin 
(Agkistrodon 
contortrix contortrix)

RGD M24 met (human metastatic melanoma) α5β1
αvβ1

Inhibit cell adhesion in vitro
Inhibit lung colonization in vivo

[148]

DisBa-01 (Bothrops 
alternatus) RGD

HMEC-1 (human non-cancer cell)
MDA-MB-231 (human breast cancer)
B16-F10 (murine melanoma)

αvβ3 Inhibit angiogenesis
Inhibit cell adhesion and proliferation [149]

Disintegrin (Crotalus 
durissus collilineatus)

Non-
RGD MDA-MB-231 (human breast cancer) ? Inhibit cell migration [132]

EC3 (Echis 
carinatus)

VGD/
MLD

A5 (murine non-cancer cell)
VNRC3 (murine non-cancer cell)
CHO (murine non-cancer cell)
JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)
CHO K1 (murine non-cancer cell)
RPMI886 (human chronic myelogenous 
leukaemia)

αIIbβ3
α5β1
αvβ3
α4β1
α4β7

Inhibit cell adhesion [46]

EC6 (Echis 
carinatus)

MLD/
RGD

A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α5β1
α4β1 Inhibit cell adhesion [118]

Echistatin (Echis 
carinatus) RGD

A5 (murine non-cancer cell)
JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
SW480 (human colon adenocarcinoma)
Jurkat (human acute T cell leukemia)

α5β1
αvβ3

Inhibit cell adhesion
Inhibit angiogenesis [150]

EMF-10 (Eristicophis 
macmahoni)

RGD/
MGD Κ562 (human myelogenous leukemia) α5β1 Inhibit cell adhesion [47]
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Disintegrin 
(snake venom) Motif Cell line (cancer type) Integrins Action Ref.

EO5 (Echis 
ocellatus)

MLD/
VGD

A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α4β1 Blocked cell adhesion [124]

Eristostatin 
(Eristicophis 
macmahoni)

RGD A375 (human malignant melanoma)
HT1080 (human fibrosarcoma)

αIIbβ3
α5β1
αvβ3

Inhibit cell adhesion [151]

Jerdostatin 
(Trimeresurus 
jerdonii)

RTS

JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
SW480 (human colon adenocarcinoma)
Jurkat (human acute T cell leukemia)

αIIbβ3
α5β1
α1β1
α2β1
α6β1
αvβ3
α4β1
α9β1

Inhibit cell adhesion [140]

Lebein (Macrovipera 
lebetina) RGD

LS174, HCT116, and HT29 (human colon 
adenocarcinoma)
SK-MEL-28 and LU-1205 (human melanoma)

α5β1
αvβ3

Induce apoptosis
Inhibit cell migration and adhesion
Inhibit angiogenesis by down-
regulating VEGF and NRP1 
Expression

[152,153]

Lebestatin 
(Macrovipera 
lebetina)

KTS

CHO (murine non-cancer cell)
HT29-D4 (human colonic adenocarcinoma)
HT1080 (human fibrosarcoma)
Κ562 (human myelogenous leukemia)
IGROV1 (human ovarian adenocarcinoma)
HMEC-1 (human non-cancer cell)
PC12 (rat pheochromocytoma)

α1β1 Inhibit cell migration and adhesion
Inhibit angiogenesis [59]

Mojastin-1 and -2 
(Crotalus scutulatus 
scutulatus)

RGD BXPC-3 (human pancreatic adenocarcinoma) α3β1
Inhibit cell proliferation, migration 
and adhesion
Induce apoptosis

[154]

Obtustatin 
(Macrovipera 
lebetina)

KTS
A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α1β1 Inhibit angiogenesis in vivo [77,150]

Purpureomaculin 
(Trimeresurus 
purpureomaculatus)

RGD MCF-7 (human breast adenocarcinoma) αvβ5 Inhibit cell growth [155]

Rhodocetin 
(Calloselasma 
rhodostoma)

? HT1080 (human fibrosarcoma) α2β1 Inhibit cell adhesion and migration [156]

Rhodostomin 
(Calloselasma 
rhodostoma)

RGD B16-F10 (murine melanoma)
HUVEC (human non-cancer cell) αvβ3

Inhibit angiogenesis 
Suppress tumor growth in vivo
Inhibit cell proliferation

[157]

Saxatillin (Gloydius 
saxatilis) RGD HUVEC and SMC (human non-cancer cells)

MDAH2774 (human ovarian cancer cells) αvβ3

Inhibit cell proliferation, migration 
and adhesion
Inhibit angiogenesis
Inhibit tumor metastasis

[66,158,159]

Triflavin 
(Protobothrops 
flavoviridis)

RGD B16-F10 (murine melanoma) αIIbβ3 Inhibit cell adhesion [160]

Tzabcanin (Crotalus 
simus tzabcan) RGD

A-357 (human malignant melanoma)
Colo-205 (human colorectal 
adenocarcinoma)
MCF-7 (human breast adenocarcinoma)
A-549 (human lung adenocarcinoma)

αvβ3 Inhibit cell migration and adhesion [79,161]

Table 3. Cont.
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Another antiplatelet compound, Eptifibatide (Integrilin®, 
Millennium Pharmaceuticals, Inc.), was also approved by the 
FDA in 1998, and licensed in 2005, to Schering-Plough [94]. Its 
development coincided with the research for the synthetic peptide 
analogs of barbourin, a disintegrin from Sistrurus miliarius 
barbouri [78]. The conservative substitution of arginine (R) 
amino acids with lysine (K) in barbourin enhances its specificity 
towards the platelet glycoprotein complex GPIIb/IIIa compared 
to other disintegrins containing the RGD motif [78]. However, 
this specificity may also be influenced by the size of the peptide 
ring formed by disulfide bridges and the amino acids near the 
KGD domain. As a result, new peptides have been synthesized 
for potential clinical use, such as Eptifibatide, a synthetic 
heptapeptide that is more resistant to proteolysis [105–107].

Since the approval of the first venom-derived drug and the 
beginning of disintegrins’ saga in Toxinology [44], it took 
over 10 years of research and effort for the first medication 
derived from snake venom disintegrins also to be approved 

(Figure 6). However, it was already known that venoms and 
their components could cause modifications in the human 
body, and their applicability in clinical settings had been 
recognized.

Currently, a product based on snake venom toxins has been 
attracting attention: Heterologous Fibrin Sealant. This sealant 
is composed of a thrombin-like enzyme from Crotalus durissus 
terrificus venom and fibrinogen-rich cryoprecipitate extracted 
from the blood of Bubalus bubalis buffaloes. It can be used for 
the treatment of chronic venous ulcers, as demonstrated in phase 
I/II clinical trials, highlighting its effectiveness and safety [108]. 
While there are currently no clinical studies using snake venom 
disintegrins, human disintegrins, especially ADAMs, have been 
targeted for the therapy of other pathological conditions in clinical 
trials, such as cirrhosis and portal hypertension (NCT04267406), 
epithelial dysfunction (NCT00898859), idiopathic pulmonary 
arterial hypertension and chronic thromboembolic pulmonary 
hypertension (NCT05478226), among others [109].

Table 3. Cont.

Disintegrin 
(snake venom) Motif Cell line (cancer type) Integrins Action Ref.

VA6 (Vipera 
ammodytes) RGD

A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α5β1 Inhibit cell adhesion [124]

VB7 (Vipera berus) RGD/
KGD

A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α5β1 Inhibit cell adhesion [124]

Viperistatin (Vipera 
palestinae) KTS

A5 (murine non-cancer cell)
JY (human lymphoblastoid cell)
Κ562 (human myelogenous leukemia)
SW480 (human colon adenocarcinoma)

α1β1 Inhibit cell adhesion [126]

VLO5 (Vipera 
lebetina obtusa)

VGD/
MLD

A5 (murine non-cancer cell)
Κ562 (human myelogenous leukemia)
Jurkat (human acute T cell leukemia)

α4β1 Block cell adhesion [124]

Figure 6. Timeline of snake venom disintegrins, from the beginning of disintegrins’ saga in Toxinology until their FDA approval.
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Conclusion
Snake venom disintegrins’ saga was started in 1987 and classified 
these molecules as small peptides that can inhibit the function 
of integrins, which are cell surface receptors involved in various 
cellular processes like cell adhesion, migration, and signaling. 
Integrins are important for cell adhesion to extracellular matrix 
proteins, mediating cell-cell interactions, and interfering in 
integrin-mediated processes, as snake venom disintegrins can 
have various effects on cells and tissues.

Among their unique properties, snake venom disintegrins can 
inhibit platelet aggregation, i.e., bind to integrins on platelets, 
preventing their aggregation and potentially disrupting the 
clotting process. Consequently, two important antiplatelet drugs 
were based on disintegrins from snake venoms, and they are 
on the market nowadays.

Moreover, snake venom disintegrins have shown anti-cancer 
properties by targeting integrins that are overexpressed in 
specific cancer cells and blocking integrin-mediated signaling 
pathways. These disintegrins can also inhibit tumor growth 
and metastasis. Notably, although snake venom disintegrins 
possess therapeutic potential, they exhibit high potency and 
can manifest toxicity. Thus, rigorous investigation is required 
before contemplating snake venom disintegrin use in medical 
applications.
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