Introduction

Cervicothoracic vascular trauma represents a challenge for surgeons, irrespective of the latest advances in diagnostic and surgical techniques. Lesions from penetrating or blunt vascular trauma have low prevalence, but morbidity and mortality rates remain high. Carotid artery rupture caused by blunt trauma accounts for 3 to 10% of all carotid lesions. The incidence of carotid artery lesions due to blunt trauma has been reported to vary from 0.08 to 0.33%, and up to half the patients do not present signs of cervical trauma or neurologic deficit. The known mechanism of lesions are: cervical hyperextension–rotation (most common); direct trauma to the neck; intraoral trauma and basilar skull fracture. Cervical trauma is the leading cause of carotid artery pseudoaneurysms (PA). The mechanism of injury is rupture of the arterial wall, leading to local hemorrhage that is contained by adjacent structures, forming a pulsatile hematoma, or pseudoaneurysmal sac. Clinically, they present as: a pulsatile mass on the neck, symptoms of compression of adjacent structures, bleeding or neurologic deficits.

Traditionally, the treatment of choice is open surgical repair. Nevertheless, endovascular techniques, such as stenting, endografting, and balloon angioplasty have been increasingly used to repair the carotid lesions, making it possible to treat those lesions with a lesser risk of complications.
Case report

A 44 year-old female patient, victim of motorcycle accident, was admitted with blunt craniocervical trauma, without loss of consciousness or neurologic deficit. Three weeks after conservative treatment for her cranioencephalic trauma, she was seen in the Outpatient Clinic. She was classified as 15 in the Glasgow scale, had no impairment of cranial nerves and complained of a painful tumor in the left lateral aspect of the neck, with hoarseness and dysphagia. Doppler ultrasonography showed a pseudoaneurysm with turbulent flow outside the left common carotid artery, medially and below the carotid bulb (Figure 1 to 2). Digital angiography was then performed to confirm the diagnosis, for surgical planning, and to exclude associated lesions. It confirmed a carotid pseudoaneurysm, with lateral displacement of the distal common carotid artery (Figure 3).

The decision was made to perform open repair of the pseudoaneurysm, under general anesthesia. An oblique 8-cm-long incision was made along the anterior border of the sternocleidomastoid muscle. The common carotid artery and its branches were dissected (Figure 4) and the patient was given systemic heparin (5,000 UI IV). The common, internal and external carotid arteries were clamped, the pseudoaneurysm opened and its contents evacuated. A small laceration of the arterial wall was found and sutured, and the arterial blood flow was reestablished.

Figure 1. Collection at the distal portion of the common carotid artery measuring 25 x 30 mm with flow, and artery lateralization.

Figure 2. Communication of the carotid flow with the aneurysmal sac.

Figure 3. Carotid pseudoaneurysm and arterial lateralization.

Figure 4. Intraoperative arterial control and identification of the aneurysmal sac.
The patient was discharged from hospital on the third postoperative day in good condition, with no neurologic deficits or signs of local bleeding. An antiplatelet agent was prescribed. The patient was seen at the outpatient clinics 15 days after the operation and presented no complications. At the follow-up visit seven months after the operation, Doppler ultrasonography was normal (Figures 5 to 6) and clinical examination did not show any sequelae.

Discussion

Patients with extracranial carotid pseudoaneurysms present variable clinical pictures: from a palpable and pulsatile cervical mass to strokes with definitive neurologic deficits. Ischemic symptoms are caused by impaired carotid artery flow or by distal embolism. Dysphagia and respiratory distress can also be observed, as in the case reported.

The diagnosis of carotid pseudoaneurysm is important because of the drastic consequences of its rupture or distal embolization. There is also the possibility of mistaking its clinical picture for a tonsillar abscess or arteriovenous fistula, whose managements are quite different. The differential diagnosis must include carotid body tumors, tortuosity and kinking of the subclavian and carotid arteries, lymphadenomelagaly or arterial tumors.

The imaging exam of choice for diagnosis of carotid pseudoaneurysm is digital arteriography, that is recommended when the clinical presentation or Doppler ultrasonography suggest this entity. CT angiography has been described as a good choice for the diagnosis of pseudoaneurysm, with sensitivity of 100% and specificity of 90%. It is a fast, non-invasive, and low-cost method that has high-spatial-resolution and is not operator-dependent. It can be performed in critically ill patients, such as those with multiple trauma with vascular involvement.

Conventional angiography is the classic method for diagnosis of pseudoaneurysms. However, some authors question this statement, and state that conventional angiography may fail and is not indispensable, for it is invasive and has the limitation of not evaluating bones and adjacent tissues.

Historically, the treatment of pseudoaneurysm has been quite discussed. Some studies have described open repair as the treatment of choice for traumatic carotid pseudoaneurysms, especially extracranial ones, because they present low rates of spontaneous resolution, when treated medically. Extracranial pseudoaneurysms, when small, inaccessible or located distally to the origins of brain vessels, may be treated with anticoagulation and medical follow-up. Surgical procedures recommended for arterial pseudoaneurysms include arterial wall repair using venous patch in most cases, and also end-to-side anastomosis, tangential repair, endovascular stenting and extra-anatomic bypass.

Less invasive endovascular procedures, such as balloon occlusion and placement of covered stents, are believed to be the therapeutic methods of the future. Such techniques have been used to treat traumatic pseudoaneurysms and allowing preservation of the common carotid artery, with the advantage of a shorter operative...
time, compared to conventional open repair. Stenting excludes the pseudoaneurysm permanently from the circulation. However, this technique is not free of complications: it may cause thrombosis and low local blood flow which favors platelet aggregation and microembolic events, stenosis and some other problems, such as the need for anticoagulation for life, stent deformsities and kinking, and neointimal hyperplasia.

The conventional surgical treatment of penetrating arterial lesions at the base of the skull remains the standard approach. This technique, however, is extremely challenging. Sencer et al. reported cases of patients with internal carotid pseudoaneurysm, associated with carotid-cavernous fistula, who presented with massive epistaxis and ophthalmic signs and symptoms. Endovascular embolization was successful. Transarterial embolization with detachable balloons has been accepted as treatment of choice for carotid-cavernous fistula. This technique, however, results in a pseudoaneurysm formation rate of 30 to 40%. New generations of stents could make endovascular therapy the treatment of choice for such difficult lesions in the long-term.

Injury or compression of adjacent structures, as seen in the present case, plus the location near the carotid bifurcation, led us to choose open surgical repair. Placement of a stent at the orifice of the pseudoaneurysm, which was close to origin of the internal carotid artery, could have caused impairment of cerebral blood flow. Preservation of carotid perfusion was the desirable goal in this case.

Conclusion

Trauma to the neck may result in blood vessel injury and rarely, to arterial pseudoaneurysm formation. However, this event must be promptly diagnosed and treated due to its high risk of morbidity and mortality.

The dearth of clinical studies in the literature comparing conventional and endovascular treatment of pseudoaneurysms make it difficult to compare those two methods.

In the case reported, the choice of conventional open repair was based on the pseudoaneurysm features, and a good immediate result was achieved, as normal flow in the vessel was shown at Doppler ultrasonography. As the patient presented no neurologic deficits, the choice of treatment was considered adequate.

References


Correspondence
Edson Pedroza dos Santos Junior
Rua Alfredo Nascer, 828, Centro
CEP 77600-000 – Paraíso do Tocantins (TO), Brasil

Author’s contribution
Conception and design: MBO
Analysis and interpretation: EPSJ, RRAMB, MBO, RFA
Data collection: EPSJ, RRAMB
Writing the article: EPSJ, RRAMB
Critical revision of the article: MBO, RFA, RRB
Final approval of the article*: EPSJ, RRAMB, MBO, RFA, RRB
Statistical analysis: EPSJ, RRAMB, MBO
Overall responsibility: MBO, RFA, RRB

*All authors have read and approved of the final version of the article submitted to J Vasc Bras.