CASE REPORT

Treatment of hemodialysis access steal syndrome by distal revascularization arterial ligature: report of three cases

Tratamento da síndrome de roubo de fistula arteriovenosa pela técnica de revascularização distal e ligadura arterial: relato de três casos

Afonso César Polimanti, Sidnei José Galego, Rafael Vilhena de Carvalho Fürst, Gabriela da Silveira Moraes, Rafael Camacho da Silva Barbosa, Sónia Regina Silveira, Maria do Carmo Silva Neves Kawhage, João Antônio Correa

Abstract

Arteriovenous fistulas for hemodialysis may present long-term complications. Among the least frequent complications, there is the steal syndrome. The authors report the experience of three patients that presented with critical limb ischemia years after the access confection of brachiocephalic arteriovenous fistulas, with little response to clinical treatment. Distal revascularization interval ligation was performed in all cases, with good outcome. Due to small quantity of the cases, we decided to report the experience and review the literature on the subject.

Keywords: arteriovenous shunt; ischemia; hemodialysis; arteriovenous fistula; therapeutic.

Introduction

The prevalence of patients with chronic renal disease in need of dialysis is high. In Brazil, it is estimated that there are over 77,500 patients in dialysis. Hemodialysis is the best tolerated method of dialysis, but it requires a functional vascular access. Arteriovenous fistula (AVF) is the best vascular access for this purpose, for it results in fewer complications and allows long-term treatment, thus increasing patients’ survival rate.

The most common complications of AVF are: thrombosis, infection, pseudoaneurysm, and, less frequently, distal ischemia. The latter presents a typical clinical picture called steal syndrome, which may result in limb loss in severe cases.

The most common treatment is AVF ligation aiming at restoration of distal blood flow. This procedure makes the vascular access unviable, so the surgeon must search for another one, which may be difficult sometimes. An alternative, still little used in Brazil, is distal...
revascularization interval ligation (DRIL)6-8. This procedure is an alternative to simple ligation that, besides treating the ischemia, preserves the access and assures the continuation of dialysis5.

In this paper, we report three cases of critical limb ischemia due to steal syndrome, treated by DRIL, and review the literature on the subject.

Case Description

Case 1: the patient was a 67-year-old male presenting diabetes and chronic renal failure due to diabetic nephrosclerosis requiring dialysis. He had a left brachiocephalic fistula confection four years earlier and developed arm claudication in late postoperative period, thus requiring assistance to perform housekeeping tasks and presenting rest pain during dialysis. On physical examination: normal left axillary and brachial pulses; absence of distal pulses; bruits and thrill along the cephalic vein, from the antecubital crease to the deltopectoral groove, with a matured vein; alterations in hair growth and limb atrophy distal to the AVF associated with temperature gradient on the distal third of the hand and forearm. Doppler ultrasonography showed biphasic flow in the axillary-brachial artery with flow inversion distally to the arteriovenous anastomosis. Radial and ulnar arteries with low flow and monophasic pattern of low resistance, suggesting distal ischemia. Monophasic and low-resistance flow, and high flow on the arm cephalic vein not suggestive of stenosis.

Case 2: the patient was a 62-year-old male with diabetes, hypertension, and chronic renal failure due to nephrosclerosis requiring dialysis. He had a left bachioccephalic fistula performed eight years earlier and had developed rest pain in the forearm and hand during dialysis. Clinical and imaging findings were similar to those of case 1.

Case 3: patient was a 74-year-old male with hypertension and chronic renal failure due to hypertensive nephrosclerosis. Two years earlier he had a brachiocephalic fistula performed at the left upper extremity and had developed arm claudication and rest pain during dialysis sessions in the last three months.

In all cases, initial clinical treatment was exercises of the affected limb, antiplatelet agent and statin administration, showing no significant improvement.

Failure of medical treatment led to the decision of treating the patients with DRIL. In cases 1 and 2, the upper arm basilic vein was used as a graft between the brachial artery proximal to the AVF and the distal brachial artery at its bifurcation.

In case 3, the basilic vein was found to have signs of phlebitis and occlusion in its proximal portion at operation, which precluded its use as arterial graft. A segment of the greater saphenous vein of the right thigh was used as a graft. This patient had the arteriovenous anastomosis right at the brachial artery bifurcation, which led to change the surgical approach. The proximal anastomosis was performed at the brachial artery. The distal anastomosis was performed at the proximal radial artery, which was ligated between its origin, at the brachial artery bifurcation, and the distal anastomosis, as shown in Figure 1. The radial artery was chosen because of its superficial location and little repercussion of the ligation in hand perfusion as compared to the ulnar artery.

The patients had an uneventful recovery. Follow-up lasted six months, and the grafts and hemodialysis accesses were all patent.

Discussion

Physiological flow reversal after performing an AVF is common9. Symptoms of ischemia are rare and usually relieved by physiologic distal vasodilation10. The ischemic symptoms may be caused by the severity of atherosclerotic disease distal to the arteriovenous anastomosis9.

![Figure 1. Surgical procedure in patient 1 showing brachiocephalic graft from the greater saphenous vein, and ligation of the brachial artery distally to the arteriovenous anastomosis.](image-url)
The diagnosis is based on the clinical presentation: a pale and cold extremity, with weak pulses distal to the access, limb claudication, possibly paresthesia and trophic lesions\(^1\). A drop in wrist-brachial index (WBI) may be detected at Doppler ultrasonography. A WBI under 0.57 is related to symptomatic ischemia of the upper limb\(^9,12\).

There are also reports of steal syndrome in lower limbs AV fistulas in the literature. Malgor et al. reported this event in the early postoperative period of a straight and synthetic AVF on the right lower limb, with clinical signs such as coldness, recently onset of claudication and significant drop in the ankle-brachial index (ABI), similar to those reported in cases of the upper limbs. The patient was submitted to DRIL, the symptoms disappeared and the access was maintained\(^13\).

The patient may occasionally present paresthesia distal to the anastomosis due to flow decrease of the *vasa nervorum*, a symptom that tends to be limited\(^4\). Electrophysiological studies allowed differential diagnosis with similar diseases such as the carpal tunnel syndrome\(^14,15\).

Doppler ultrasonography is able to identify the cause of ischemia by showing flow inversion in the brachial artery distal to the anastomosis, and reduced flow in the distal arteries of the forearm. It is important for surgical planning to show the distal arterial outflow and the assessment of palmar arch patency\(^16-18\).

Many techniques for the treatment of ischemic syndrome in patients with upper fistulas have been described, and they aim to decrease the AVF flow, thus improving distal ischemia and decreasing flow inversion in the distal artery\(^8,19-21\).

One approach is to perform plicature by a longitudinal suture of the venous segment right after the arteriovenous anastomosis, reducing its diameter and, therefore its flow, as shown in Figure 2A. This technique usually causes a significant hemodynamic stenosis and the rate of AVF thrombosis at follow-up is high\(^19\).

DRIL consists of a bypass from the brachial artery to an artery distal to the AV anastomosis, followed by ligation of the artery between the AV fistula and the distal anastomosis, as shown in Figure 2B. This technique results in a high rate of clinical improvement, but the handicap of distal limb perfusion depending exclusively on the bypass graft's patency, for the native artery is ligated during the procedure\(^6\).

Another technique described in the literature is treating the steal syndrome by directing flow to the distal arteries. A bypass is performed from the arterialized vein proximal to the anastomosis, to the radial artery on the proximal third of the forearm, and then the ligation of the arterialized vein close to the anastomosis is performed, as shown in Figure 2C. This technique allows limb revascularization with no need for ligation of the native artery. It tends to reduce the fistula flow, but long-term follow-up has not been reported yet\(^20\).

When all technical options have been exhausted or limb revascularization is impeded due to extensive calcification, fistula ligation may resolve the ischemic symptoms and a new vascular access may be required\(^21\).

Conclusion

Symptomatic AV fistula-related steal syndrome is a rare entity that can be treated with the preservation of hemodialysis accesses.

References

Correspondence
Afonso César Polimanti
Rua Itapeva, 518 – cj. 509/510 – Bela Vista
CEP 01332-000 – São Paulo (SP), Brazil
E-mail: afonso_sp@yahoo.com.br

Authors' contributions
Conception and design: ACP, RVCF, GSM, RCSB
Analysis and interpretation: ACP, SJG, RVCF, GSM, RCSB, SRS, MSCSNK
Data collection: ACP, RVCF, GSM, RCSB
Writing the article: ACP, SJG, RVCF, GSM, RCSB, SRS, MSCSNK, JAC
Critical revision of the article: ACP, SJG, RVCF, GSM, RCSB, SRS, MSCSNK, JAC
Final approval of the article*: ACP, SJG, RVCF, GSM, RCSB, SRS, MSCSNK, JAC
Statistical analysis: ACP, RVCF
Overall responsibility: ACP, SJG, RVCF, SRS, MSCSNK, JAC

*All authors have read and approved the final version submitted to J Vasc Bras.