Endovascular treatment of iatrogenic penetrating trauma of the carotid artery: case report

Tratamento endovascular de trauma penetrante iatrogênico de artéria carótida: relato de caso

Eduardo Lichtenfels¹,², Marco Aurelio Cardozo², Nilon Erling Jr.¹,², Newton Roesch Aerts¹,²

Abstract
Carotid trauma demands early diagnosis and treatment. Open repair may be technically challenging if the trauma is at the base of the neck. We present a case of iatrogenic penetrating carotid trauma caused by insertion of a hemodialysis catheter. Treatment was accomplished by placement of a covered stent-graft in the common carotid artery, covering the puncture site. This case suggests that placement of a covered stent-graft is a good option for treatment of iatrogenic injury to the carotid artery.

Keywords: carotid artery; covered stent graft; carotid perforation; carotid blowout.

Resumo
O trauma da carótida exige diagnóstico e tratamento precoces. O tratamento convencional pode ser tecnicamente desafiador se o trauma penetrante for na base do pescoço. Apresentamos um caso de trauma penetrante da carótida associado ao implante iatrogênico de um cateter para hemodiálise. O tratamento foi realizado através da colocação de uma endoprótese na artéria carótida comum, cobrindo o local da punção. Este caso sugere que a colocação de uma endoprótese é uma boa opção para o tratamento de lesão iatrogênica da artéria carótida.

Palavras-chave: artéria carótida; endoprótese; perfuração carotídea; ruptura carotídea.
INTRODUCTION
Arterial traumatisms involving the cervical region have a low incidence, but elevated morbidity and mortality. Despite advances in diagnostic and surgical techniques, carotid injuries at the base of the neck are still challenging for vascular and trauma surgeons. Iatrogenic penetrating traumas of the carotid artery are very rare, but have been described in the literature. The conventional approach to treating these cases is with open surgery. However, as endovascular techniques have evolved, percutaneous treatment is becoming a lower morbidity and mortality option for treatment of this type of complication.

CASE DESCRIPTION
The patient was a 75-year-old female with chronic renal failure who was on hemodialysis but with difficult vascular access. On the day she was admitted, a catheter for hemodialysis was placed in the femoral vein, without intercurrent conditions. On the day after admission, the Nephrology team attempted to place a catheter in the left jugular vein for hemodialysis, which was inadvertently placed into the left common carotid artery. The catheter was left in the carotid, the patient was heparinized and the Vascular and Endovascular Surgery Team was called. A cervical angiotomography showed the catheter placed in the common carotid artery at the junction between its proximal and mid thirds and with the tip in the ascending aorta (Figure 1).

The decision was taken to attempt endovascular correction of the carotid trauma and to remove the hemodialysis catheter manually. The right common femoral artery was dissected and a 9 French wired introducer sheath was advanced up to the thoracic aorta. A 0.035” × 450 cm jagwire guide-wire (Boston, Natick, MA, USA) was inserted via the hemodialysis catheter, the guide-wire was captured using a GooseNeck snare (EV3, Plymouth, MN, USA) and removed via the common femoral (Figure 2). The 9F introducer sheath was repositioned in the left common carotid artery. Angiography was used to identify the perforation site and the carotid bifurcation. A Viabahn 8 mm × 5 cm endoprosthesis (Gore, Flagstaff, AZ, USA) was positioned at the site of the orifice, the hemodialysis catheter was removed manually and the endoprosthesis released and then post-dilatation was performed using a 7 × 40 mm balloon catheter. Control angiography demonstrated patency of the treated segment with no leakage (Figure 3).

DISCUSSION
The standard treatment for a perforating trauma of an artery is ligature with permanent occlusion of the artery. This technique is traditionally employed in cases of carotid rupture, particularly in cases in which there is insufficient time to evaluate collateral cerebral circulation, and endovascular or surgical treatment.
occlusion of both carotid and the rupture site are performed.4,6 Vascular ligature or occlusion involves a very high risk of ischemic cerebral events.3,4,6,7 Surgical management should therefore prefer reconstructive techniques or those that preserve cerebral flow, whenever the patient’s condition allows.5 In our case, the patient had suffered a perforating carotid trauma that was sealed by the hemodialysis catheter itself, which had not been removed from the placement site (Figure 1). This meant that it was possible to conduct preoperative imaging examss and plan the most appropriate and safest technique for correction of the perforation. In order to avoid embolic complications caused by the large-caliber intra-arterial catheter, the patient was kept on heparin until the catheter had been removed and the endovascular repair accomplished.

Endovascular repair of the perforating carotid trauma was the option chosen in the case described here because of the age of the patient, 75 years, the presence of multiple comorbidities and the elevated surgical risk, and also because of the perforation site, which was located at the base of the neck and involved the proximal segment of the common carotid. It is known that carotid injuries involving the base of the neck are a challenge for surgeons.1,2 The endovascular technique is a less invasive option, offering lower morbidity and mortality for treatment of carotid traumas and allowing preservation of the common carotid artery and cerebral flow, with the added advantage that it demands less time in surgery than conventional procedures.7,10

In the literature we found reports of carotid traumas treated with a wide variety of endoprostheses, both self-expanding and balloon-expanded.6,9,11,12 In the case described here, a self-expanding Viabahn endoprosthesis was used because of its flexibility, since the patient had a tortuous carotid, and because of the simple and rapid release mechanism, which was important because of the need to release it at the same moment that the catheter was removed manually. An 8 × 50 mm endoprosthesis was used in a 7 mm target artery, making correct placement possible and preventing leakage or migration. The long introducer sheath was used to protect the material as it was advanced to the placement site and to provide angiographic control. The hemodialysis catheter (intra-arterial) itself was used to advance the guide-wire and perform the through-and-through technique, for passage and positioning of the sheath in the proximal common carotid. A carotid filter was not used because of incompatibility between the filter guide-wire (0.014") and the wire needed to place the endoprosthesis (0.035") The nature of the injury, which was traumatic and not atherothrombotic, meant that a filter was not absolutely necessary.

The case described here suggests that use of the endovascular technique, with endoprosthesis placement, is a good option for treatment of cases of iatrogenic perforating carotid trauma.

\textbf{REFERENCES}

7. Lesley WS, Chaloupka JC, Weigle JB, Mangla S, Dogar MA. Preliminary experience with endovascular reconstruction

* All authors have read and approved of the final version of the article submitted to J Vasc Bras.