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Abstract 

The diffraction of the waves from the two ends of floating breakwaters (FBWs) that have limited length, are 
practically a three-dimensional (3D). In order to perform a two-dimensional vertical (2DV) analysis to solve 
the wave diffraction problem, some “correcting factors” are required to modify the 2DV results and make 
them comparable and verifiable against 3D solutions. The main objective of the current study is to propose a 
method to obtain these correcting factors and demonstrate its usefulness through some example cases. An 
Artificial Neural Network (ANN) is trained by three main non-dimensional independent variables to predict 
the mentioned factors. In order to set up the ANN, a database including both 2DV and 3D results is required. 
The 2DV results are obtained by employing a semi-analytical method, namely the Scaled Boundary Finite 
Element Method (SBFEM). A basic change in the location of the scaling center is implemented. The 3D results 
are obtained via ANSYS AQWA software. Eighty-one cases are simulated on a floating object with rectangular 
cross-sections. The correlation factor 0.9607R   for a group of new samples shows that the predicted results 
are closely matched to the target values. The correcting factor applies the 3D effects of diffracted waves 
around the structures on 2DV results and produces a more accurate prediction. 
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1 INTRODUCTION 

The relationship between man-made structures and the ocean environment is an essential issue in Oceanic 
Engineering. Since all the structures in offshore and coastal areas - such as Floating Breakwaters (FBWs) - are exposed to 
water waves, it is necessary to analyze the effects of such structures on the surrounding wave domain (Abbasnia and 
Ghiasi (2014); Shahrabi and Bargi (2019)). By assuming linear waves and employing the superposition principle, in the 
investigation of wave-floating structures interaction, two distinct phenomena should be considered (Abul-Azm and 
Gesraha, 2000; Kao et al., 2015; Cho, 2016). The first phenomenon consists of a forced vibration assumption for structure 
and calculating radiated waves in non-disturbed fluid media. The second is to do with scattered waves by a stationary 
structure in a fluid domain exposed to incident waves. In the present work, the concentration is on wave scattering 
phenomenon. The configuration of the model and numerical procedures for calculating the scattered waves by FBWs 
and excitation wave forces would result in common challenges in the investigation processes. Numerous works have 
been devoted to the wave diffraction problem by FBWs. 

From the configuration point of view, the majority of floating breakwaters have a long length, which is the reason 
why the majority of the previous researches offered studies based on the two-dimensional vertical (2DV) analysis. For 
example, by considering three degrees of freedom for the motion of structure, Abul-Azm and Gesraha (2000) examined 
the wave-structure interaction problems and the factors affecting the pontoon performance. Zheng et al. (2004a, 2004b) 
studied the diffraction and radiation problems in an infinite and semi-infinite fluid domain with constant water depth, 
respectively. In these studies, the wave forces and hydrodynamic coefficients were reported. Focusing on the improved 
performance of FBWs, Cho (2016) examined the transmission coefficient changes in a long rectangular floating 
breakwater by adding porous side plates. To determine the effect of a stepped topography, Guo et al. (2016) investigated 
oblique wave scattering by a semi-infinite elastic plate. They extracted some parameters such as transmission and 
reflection coefficients, energy conservation, and moment for the plate, which are useful in engineering designs. However, 
in some cases, the length of these floating structures is limited. In these cases, radiation and diffraction problems should 
be considered and analyzed in a three-dimensional (3D) manner. Kao et al. (2015) developed a 3D model to investigate 
wave-floating structure interaction. The results indicated the model capability for the computation in an open sea. 

Another classification is related to the selection of numerical methods. Taking the dynamic behavior of floating 
structures into account, some researchers implemented the finite element method (FEM) to simulate the wave-structure 
interaction problem (Turnbull et al., 2003; Sannasiraj et al., 2001; Taylor and Zietsman, 1981). These researches 
significantly emphasized on how to model the radiation boundary in an unbounded solution domain. Another series of 
research belongs to the boundary element method (BEM) (Chen and Mahrenholtz, 1992; Kao et al. 2015; Au and Brebbia, 
1983, Ryu et al., 2003, Kaligatla and Manam, 2014). The critical point to note in the BEM-based studies is to determine 
the fundamental solution and solve the singular points. Over the last two decades, combining the advantages of two 
above-mentioned numerical methods, a novel numerical method, namely the scaled boundary finite element method 
(SBFEM) has been employed to investigate various Engineering problems, including heat conduction problem (Bazyar 
and Talebi, 2015; Mohasseb et al., 2017), hydraulic fracture (Zhong et al., 2018), water wave-structure interaction 
(Li et al., 2013b). By considering various cross-sections for the bottom-mounted cylindrical structures, Tao et al. (2007), 
Tao et al. (2009), Song and Tao (2010), Li et al. (2013a), Meng and Zou (2012) and Liu and Lin (2013) conducted 
researches on the wave diffraction problem. In these investigations, the standard scaled boundary coordinate system 
applied for both bounded and unbounded sub-domains. In the standard coordinate system, a so-called scaling center 
should be considered. It was shown that the SBFEM is an efficient method even by a few numbers of elements. Li et al. 
(2005a, 2005b) developed the original SBFEM by creating a new local coordinate system for the media with parallel side-
faces. They employed the modified and standard SBFEM coordinate system to solve the wave radiation and diffraction 
problems in some two-dimensional cases. Song and Tao (2011) researched the issue of wave interaction with a horizontal 
elliptic cylinder according to the coordinate systems proposed by Li et al. (2005a, 2005b). They concluded that the SBFEM 
does not suffer from some serious drawbacks, such as difficulties caused by irregular frequencies and sharp corners. 
More recent studies (Meng and Zou, 2013) investigated the wave radiation and diffraction problems by a two-
dimensional floating structure close to a sidewall. In three previous reviewed studies, the scaling center selected on the 
body surface for bounded sub-domains. Although this selection leads to obtaining the analytical distribution of the 
velocity potential on the body boundaries, the governing equation becomes non-homogeneous. Therefore, a particular 
solution or other techniques should be employed. 

Although a large number of numerical models have been devoted to the 2DV analysis of wave diffraction problems, 
the effects of the “wave diffraction around the breakwater” have remained unexplored. These effects are caused by 
wave turning around the structure, toward the area that is more sheltered against the waves. In practice, this effect 
cannot be ignored- especially in cases where FBWs have a finite length. In such cases, 2DV modeling would not yield 
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accurate results. Because of the phase difference between transmitted waves beneath the structure and the diffracted 
waves around the breakwater, these waves can amplify or cancel each other in the shadow region. This complexity can 
only be explained and estimated by a full 3D model. However, the 3D analysis gives rise to computational costs. To avoid 
the 3D modeling, the main purpose of this paper is to develop an efficient 2DV model and a set of predictive correction 
factors to make the 2DV results comparable with 3D results and thus increase the accuracy of 2DV predictions. The 
predictive model is an Artificial Neural Network (ANN) in which trained via a database. This database contains both 2DV 
and 3D results for various cases obtained from the changes in the characteristics of model geometry and frequencies of 
incident waves. Figure 1 shows the procedure of applying this method in the current study. 

 

Figure 1 Procedure of applying proposed method 

First of all, in the 2DV model, unlike the studies of Li et al. (2005a), the scaling center of bounded sub-domains is 
located within the solution domain. This decision leads to employing numerical integration to calculate the hydrodynamic 
forces exerted on the structure. Also, in the cases where the normal velocity exists on any boundary of the sub-domains, 
the governing equation becomes homogeneous in the scaled boundary coordinate system. Thus, by eliminating the need 
for various particular solutions, various problems of wave-floating structure interaction can be solved in a unified 
manner. The code for generating 2DV results is developed by using the derived equations for the bounded sub-domains 
and the existing SBFEM equations for unbounded media. 
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Second, because of the similarity of governing equation to the 2DV model, the ANSYS AQWA software is used to 
provide the 3D results. For each sample case, the obtained 3D responses (transmitted coefficient, TC) are divided into 

the 2DV ones. The result of this division is called the ' 3

2

D

D

TC
ratio

TC
' in this study. 

Finally, by utilizing the generated database an Artificial Neural Network is designed. The duty of this predictor model 
is to anticipate mentioned ratio as a “corrector factor” for new cases. For a structure with arbitrary length, by applying 
anticipated factors, 2DV results convert to 3D results along the centerline perpendicular to FBWs. 

2 Two dimensional modeling 

2.1 Governing equations 

As demonstrated in Figure 2, the problem of linear wave scattering by a rectangular floating body is considered in 
the present study. The floating structure is assumed to be fixed in place. The width and draft of the structure are B and 
T , respectively, and the water depth is H . The o xyz Cartesian coordinate system is obtained to map o xy  plane 
on the undisturbed free surface, where axis is directed upward. 

 
Figure 2 Definition sketch of wave diffraction for a rectangular structure in infinite fluid domain 

By assuming an ideal fluid, the irrotational flow field can be described by velocity potential. By separating variables 
for periodic wave motion, the velocity potential is described as: 

(1) ( , , ) Real{ ( , ) }i tx z t x z e     

Where   is the wave angular frequency, which is related to the wavenumber k  by the dispersion relation 
2 . tanh( )gk kH   and g is the gravitational acceleration. For an irrotational flow,  satisfies the Laplace equation: 

(2) 2 0   

The boundary conditions can be expressed as follows: 

(3) 
2

z g
   


, on the water free surface ( 0z  ) 

(4) 0
z

 


, on the bottom ( z H  ) 

(5) 
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, on a solid surface 
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In this study, nv  is used to refer to the known normal velocity. On the infinite boundaries, Sommerfeld boundary 
condition is applied: 

(6)  : outgoing,finite value  on   

2.2 Scaled Boundary Finite Element Method 

2.2.1 Formulation for bounded medium 

The main characteristics of SBFEM used in the present paper are described in this section. The detailed 
implementation of SBFEM for hydrodynamic problems can be found in Li et al. (2005a). 

The original scaled boundary coordinate system is based on describing a domain by scaling its boundary (S ) 

relative to a scaling center 0 0( , )x y . The scaling center should be selected in the region where the whole boundary of 
the sub-domain can be directly visible. The solution domain should be divided into some smaller sub-domains to apply 
SBFEM to a region where such point does not exist. By this subdividing, the scaling center is retrieved for each solution 
domain. A scaled boundary coordinate system is described by two coordinates( , )s , as shown in Figure 3. The 

circumferential coordinate (s ), which measures the distance counterclockwise, is defined along the curveS . Moreover, 
the normalized radial coordinate   is one on the curve S and zero at the scaling center. Therefore, each   less than 

unity illustrates a version of the boundary. It should be noted that the side-faces ( 0s s , 1s s ) meet where the curve 

S is closed. Therefore, it can be concluded that the entire domain in this system is described by 0 1  , 0 1s s s  . 

 
Figure 3 Standard coordinate system for SBFEM 

As shown in Figure 2, the entire fluid domain is divided into N  sub-domains, shown by  ( 1,..., )n n N  . This 

division is led to the creation of j common interfaces, int,j ( 1,.., 1)j N  , between the sub-domains and i  other 

boundaries, ,bn i , in each sub-domains (Figure 4). The unbounded sub-domains are limited by int,1  or int, 1N  in 

one side and   on the other side. 

 
Figure 4 Discretization of domain boundaries for bounded sub-domains 
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The mapping in SBFEM is consistent with the isoperimetric element formulation in the classical FEM. Thus, by 
arranging nodal coordinates of an element in the form of two vectors { }x and{ }y , the coordinate of an arbitrary point 
on the element can be approximated through the nodal coordinates. Moreover, the coordinate of a point within the 
domain can be described based on scaling the boundary by normal coordinate. Hence, the Cartesian coordinate can be 
related to the scaled boundary coordinate system as follows: 

(7) 0ˆ [ ( )]{ }x x N s x   

(8) 0ˆ [ ( )]{ }y y N s y   

Where ˆ ˆ( , )x y and 0 0( , )x y  are the points within the domain and scaling center coordinate, respectively. For an element, 
the approximated value of potential in the circumferential direction can be written as: 

(9)  ( , ) ( ) ( )s N s a       

{ ( )}a  is defined as the potential function in radial direction passing through the scaling center and a node on the 
boundary, and [ ( )]N s  is the shape function. Unlike the studies of Li et al. (2005a) and Meng and Zou (2013), the scaling 
center is considered within the sub-domains in this study. This decision leads to the elimination of the effects of side-
faces. In other words, this will make the governing equation homogeneous even if there exist some velocity vectors 
normal to the body boundaries. Therefore, there is no need to consider a particular solution or other methods to solve 
the problem. So, the SBFE equations in terms of the potential function { ( )}a   and the nodal flow function{ ( )}q  on the 
domain boundary can be expressed as: 

(10) 2
0 , 0 1 1 , 2[ ] { ( )} ([ ] [ ] [ ]) { ( )} [ ]{ ( )} 0TE a E E E a E a           

(11) 0 , 1{ ( )} [ ] { ( )} [ ] { ( )}Tq E a E a      

Where 0 1 2[ ],[ ],[ ]E E E  and [ ]M are formed by assembling the element coefficient matrices. 

2.2.2 Applying scaled boundary finite element method to a semi-infinite medium 

It is necessary for the numerical modeling of wave-structure interaction to determine the effect of the far-field fluid 
boundary. The effect of the semi-infinite fluid domain can be efficiently calculated using the SBFEM. For this purpose, a 
single curve called the ‘defining curve’ should be discretized, as shown in Figure 5. By defining the radial coordinate in 
the horizontal direction, the unknown nodal potential function { ( )}a  is defined along the radiation direction. Therefore, 
the SBFE equation in terms of { ( )}a   and { ( )}q   can be written as: 

 
Figure 5 Applying SBFEM for semi-infinite sub-domains with parallel side-faces 
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(12) 2
0 , 1 1 , 0 2[ ]{ ( )} ([ ] [ ]){ ( )} ( [ ] [ ]){ ( )} 0TE a E E a k M E a         

(13) 0 , 1{ ( )} [ ]{ ( )} [ ] { ( )}Tq E a E a     

2.2.3 Solution process 

In this study, a code is developed to solve Equations (10) to (13). This program intends to evaluate the potential 
values in the fluid domain. The hydrodynamic pressure exerted on the structure, and the amplitude of the transmitted 
and reflected waves are calculated based on evaluated potentials values. The inputs of the program include the 
coordinates of the nodes in each sub-domain, characteristics of the incident wave, fluid properties, and the element type 
to discretize the solution domain. The procedure of the solution is presented in Figure 6. 

 
Figure 6 The procedure of SBFEM for 2DV analysis 
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By obtaining the coordinates of the nodes in each sub-domain, the coefficient matrices 
0 1 2[ ],[ ],[ ]E E E  are first 

calculated. By introducing a new variable
( )

{ ( )}
( )

a

q


 



        
, Equations (10) and (12) are transformed from second-order 

differential equations into the systems of ordinary first-order differential equation. The complete procedure of solving 
the Eigen-value problems for the bounded and unbounded sub-domains is given in Appendices A and B. By establishing 
the general solution in each sub-domain, the relationship between the nodal potential and the nodal flows, which is 
considered as the stiffness matrix, is extracted. Evaluating the nodal flow induced by the incident potential and 
considering the matching boundary conditions at the interface of adjacent sub-domains, the stiffness matrices are 
assembled. The assembled stiffness matrices create a system of equations where its solutions are the nodal potential 
values. By returning the nodal potential values to Equations (*) and (**) in Figure 6, the integral constants and potential 
functions are obtained in each sub-domain. Based on estimated potential, the values of pressure and amplitude of the 
transmitted and reflected waves can be calculated. 

2.2.4 Model validation 

In order to verify the current SBFEM-based model, a specific case in the numerical investigation of Zheng et al. 
(2004b) is addressed. In this section, the computational results of the vertical and horizontal excitation wave forces are 
compared with the reported results. The results of the wave diffraction problem by a rectangular breakwater in an 
infinite fluid domain with finite water depth are considered. The geometric parameters, in this case, are 1H

B
  and 

1
3

T
H

 . According to Li et al. (2005b), the accuracy of computational results is well consistent with few elements. 

Thus, as shown in Figure 2, two three-node quadratic elements are used to discretize each boundary. Therefore, 12 and 
2 elements are considered to discretize the bounded and unbounded sub-domains, respectively. The wave force in k  
direction can be expressed as: 

(14) 
0

( )wk I D k
s

F i n ds     

Where  is the water density, 0s is the wetted surface of body in xoz  plane and jn is the generalized normal unit 

vector with 1 zn n  and 2 xn n for the vertical and horizontal forces, respectively. For each bounded sub-domain, there 
are 5 nodes belong to two elements on the structure boundaries. The Newton-Cotes rule is employed to calculate these 
integrals. The dimensionless wave force is defined as: 

(15) / ( )          ; 1,2k wkF F gAB k   

Where A  is the amplitude of the incident wave. Figure 7 shows the dimensionless wave force in two directions versus
KT . 

 
Figure 7 Wave forces on rectangular structure in infinite fluid domain 
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The results presented in Figure 7 are indications of valid results of the SBFEM presented in this paper. 

3 Three-dimensional modeling by ANSYS AQWA 

ANSYS AQWA can be employed to examine the diffraction theory around three-dimensional floating rigid bodies. 
The static and dynamic analyses can be performed with it to calculate the pressure on the floating structures and their 
mutual responses. 

AQWA is based on the 3D panel method. Using the principal of Green’s integral theorem, the Laplace equation is 
transformed into a two-dimensional integral equation on the body surface. With regard to this transformation, the 
structure surface is meshed by a limited number of two-dimensional panels to solve the integral numerically. Moreover, 
the fluid free surface is modeled by two-dimensional grids. The integral obtained by Green’s theory represents several 
sources or sinks and dipoles on the surface (Journee, 2001). The Superposition of the flow elements yields the potential 
values at grid points. By interpolating between the grid points, the velocity potential of an arbitrary point on the free 
surface can be calculated. Nonlinear effects such as drift and second-order Stokes waves are disregarded in the present 
study. 

Along the centerline perpendicular to object, by increasing the length of structures, the effects of diffracted waves 
around the FBWs on transmitted waves beneath the body will be decreased. According to Holthuijsen (2010), for the 
bottom-mounted breakwaters with the length more than ten times the incident wavelength, the effect of this 
phenomenon will be minimized in the centerline. This finding is used to verify the extracted results by AQWA. So, a 
breakwater with a width and draft of 12m  and 2m , respectively, in water with the depth of 6m  is considered against a 
linear wave with the period of 4s . The calculated transmitted and reflected wave amplitudes by AQWA is compared 
with 2DV modeling results. In the 3D models, the lengths of the simulated structures are assumed to be 40 , 100  and 
300m . According to software requirements, the maximum element size is determined by the maximum wave frequency 
and is chosen to be 0.75m . By inspection, it is concluded that as long as this requirement is fulfilled, the accuracy of 
transmitted and reflected coefficient results does not change for element sizes smaller than the mentioned maximum 
value. The results of these 3D models are compared with 2DV ones in Figure 8. 

 
Figure 8 Comparison of 2DV modeling results with 3D ones for different length of structures 

The horizontal axis of this chart demonstrates the distance of the different points from the structure, and the vertical 
axis is the amplitude of the transmitted and reflected waves over the incident wave amplitude. As illustrated in Figure 8, 
since the incident wavelength is 21.13m , as expected, the 3D diffraction effects for the structure with the length of 
300m  is minimized. This finding can also demonstrate the AQWA modeling validation. It is also observed that by 
decreasing the structure length, the difference between the 2DV modeling and 3D modeling results is increased. In the 
next step, by using the validated 2DV and 3D models, a database is created for the design of the ANN model. 

4 Ratio of two-dimensional to three-dimensional response 

To create a dataset for the ANN analysis, the breakwater length, X , the body width, B , the draft of structure,T , 
and the incident wavelength, L , are used as input variables to generate various sample cases. Four input parameters 
with three different values create 43 combinations in the 3D analysis. Similarly, 27 cases in the 2DV model are simulated. 
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The different values of the mentioned parameters are shown in Figure 9. The ANN toolbox in MATLAB is employed to 
carry out the calculations. 74 out of 81 three-dimensional cases are derived randomly to train this model. After the 
training, the developed network validation is checked through 7 remaining cases. 

 
Figure 9: Parameters of 3D created models 

To calculate the transmission coefficient, similar to Koutandos et al. (2005), the transmitted wave amplitude is 
measured at the point in the center line perpendicular to the breakwater at half of the incident wavelength from the 
structure. 

4.1 Artificial neural network (ANN) 

ANN method based on backpropagation learning algorithm has been employed in the present study. By adjusting 
various internal weights and biases during the network training, it is expected from the designed network to meet its 
target by minimizing the mean square error between the actual and the predicted vectors. This minimization is done by 
the gradient search technique. An appropriately trained neural network can accurately predict the outputs even for the 
inputs not used in the network training (Dhara et al., 2008). 

In this study, the input vectors of ANN include the dimensionless parameters X
L

, B
H

 andT
H

 which are used 

in the normalized form. The network target is ‘ 3

2

D

D

ratio
TC

TC
’. Among all the training algorithms, the Levenberg–Marquardt 

(LM) is considered, which is one of the fastest and most efficient algorithms. The number of neurons in the input and 
output layer is set to 3 and 1, respectively. Determining the number of hidden layers and neurons in each hidden layer is 
an important criterion for the design of the neural network structure(Seibi and Al-Alawi, 1997). According to Fausett 
(1994), the back-propagation architecture is sufficient with one hidden layer for most applications; therefore, only one 
hidden layer is considered. Seibi and Al-Alawi (1997) suggested the following formula to calculate the number of neurons 
for a single hidden layer if the number of training pairs is known: 

(16) ( ( 1) ( 1))h hn N m p N        

Wheren is the number of possible training pairs,   is a constant coefficient greater than one, hN is the number of neurons 
in hidden layer which are used in the network with a hidden layer, and m and p express the number of input and output 

nodes, respectively. Using the above formula hN will be 7.97, and hence, 8 neurons are considered. The architecture of 
the neural network is introduced in Figure 10. 
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.  
Figure 10 Architecture of designed neural network 

4.2 Evaluation of developed model 

In the previous section, the architecture of the considered neural network model is described. Anticipating the ratio 

of 3D to the 2DV responses for the transmission coefficient - 3

2

D

D

ratio
TC

TC
- is the main duty of the designed ANN model. 

In other words, by evaluating the 2DV results via the SBFEM method and utilizing the mentioned ratios, predicted by the 
trained ANN model, the 3D responses can be approximated. After regulating the network framework, in this section, the 
target and predicted values are compared to estimate the accuracy of the trained model. Eventually, to evaluate the 
performance of the trained model against the new cases, the predicted results are compared with the targets for the 7 
cases, which are not be used for the training process. 

The Correlation Factor (R ) and the Mean Squared Error ( MSE ) of the target and predicted values for the data used 
in the “training” of the ANN model are 0.93  and 0.079 , respectively. Figure 11 compares these two series of data. In 
order to calculate the data dispersion rate, the Coefficient of Variations ( .CV ) for the mentioned ratio, between the 
target and the predicted values, is 0.194 . These criteria indicate the accurate results of the designed neural network 
model and the marginal and controlled dispersion of the predicted values relative to the expected values. 

 
Figure 11 Dispersion of target and predicted values for datasets used in training process 

Moreover, to determine the model's performance, the effects of principal parameters variation on the target and 

predicted values are investigated. Initially, the effects of changes in T
H

 on ' 3

2

D

D

ratio
TC

TC
' for both the target and the 

predicted values are studied. In this comparison, some datasets with constant values of 0.5B
H

  and 12.93X
L

 , 

and the variable values of T
H

 are derived. As shown in Figure 12, with the increase in the draft of structure, T/H, the 

difference between the 3D and 2DV responses grows as well. This observation can be interpreted as by increasing the 
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structure draft; fewer waves can pass beneath the structure. Therefore, in the 2DV model, most of the wave energy is 
reflected. However, in the 3D model, the waves can turn around the object toward the shadow region; thus the 2DV and 
3D responses diverge from each other. It is observed that the ANN model has correctly predicted this phenomenon. The 
very slight differences between the predicted and the target values are related to the approximated inherence of artificial 
intelligence methods in Engineering. It should be noted that for this part of the studied data, .CV is 0.034 , which 
indicates the accuracy of the trained model to anticipate target values. 

 

Figure 12 Effect of T
H

 variations on target and predicted values 

Also, in another effort, as shown in Figure 13, the effect of the X
L

 variations on the 3

2

D

D

ratios
TC

TC
 - for both 

expected and predicted values - is investigated. This comparison is made for the cases with the constant values of 
0.5B

H
 and 0.084T

H
 . 

 

Figure 13 Effect of X
L

 variations on target and predicted values 

For this comparison, the small values of B
H

and T
H

are selected. These selections allow most of the wave energy 

to pass beneath the structure. Therefore, it is expected that the waves in the shadow region be mainly due to the passing 

waves. This reason explains why the coefficient ' 3

2

D

D

ratio
TC

TC
' is about unity. It can be seen that the network correctly 

predicted this phenomenon. Besides, it is seen that the network has higher prediction accuracy in computational cases with
0.0 5.0X

L
  . Because of a higher number of cases with X

L
 in this range (according to Figure 9, 54 out of 81 datasets), 

this higher accuracy can be justified. Moreover, it is observed that the neural network underestimates the targets for 
5.0X

L
  (in fact, the higher number of the data for 5.0X

L
  affects the prediction accuracy for 5.0X

L
 ). In this 

comparison, the Coefficient of Variations is 0.092 , which still indicates the high accuracy of the predicted values. 
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Finally, the effect of the B
H

 variations on the ' 3

2

D

D

ratio
TC

TC
' for target and predicted values is investigated. The 

values of this ratio for 0.0834T
H

  and 2.45X
L

 , per various B
H

, are shown in Figure 14. Considering the small 

structure draft value ( 0.0834T
H

 ) facilitates the possibility of the wave passing beneath the structure - rather than 

being diffracted around the structure -. Thus, the results of the 2DV and 3D model converge, and their responses ratio is 
about unity. By increasing the width of the structure, the possibility of the waves passing beneath the structure will 
reduce. Therefore, the effect of the waves diffracted around the structure is more noticeable in the shadow region, and 
the 3D results diverge from the 2DV ones. In this case, . 0.034CV  . 

 
Figure 14 Effect of B

H
 variations on target and predicted values 

As another evaluation method, the performance of the trained ANN model against new cases is examined for 
around 10% of the datasets (7 series of datasets), which are not be used in the network training process. The 
characteristics of the datasets and the values of the target and predicted ratios are shown in Table 1. The second, third, 
and fourth columns of this table represent the “normalized” form of B

H
,T

H
and X

L
, respectively. The values of the 

target ratio are also shown in the fifth column. The sixth column shows the ratio values predicted by the ANN model. 
With this regard, the minimum and maximum differences between target and predicted values are about 2% and 12%, 
respectively. 

Table 1 Comparison of target and predicted values for 3

2

D

D

TC

TC
 ratio (the values of the variables are normalized) 

Test No B
H

 T
H

 X
L

 TARGET Values Predicted Values (ANN) 

1 0.25 0.1 0.333333333 1.0555 0.9665 

2 0.5 0.1 0.718484145 0.9766 0.9543 

3 1 0.1 0.56767208 0.9463 0.8628 

4 0.25 0.4 0.239752514 0.9696 1.0397 

5 0.5 0.4 0.56767208 0.9502 1.0474 

6 0.25 1 0.239752514 1.9190 2.1884 

7 1 1 0.718484145 1.5879 1.4524 

As can be seen in the selected cases, except for cases 6 and 7, the obtained 2DV and 3D response values are very 

close and the ' 3

2

D

D

ratio
TC

TC
' is about unity. However, the difference between the 2DV and 3D responses are significant 

for cases 6 and 7. As mentioned previously, the reason for this difference is due to the high draft of the structure. In 
case 7, the 3D results are more than 50% higher than the 2DV ones. Also, the difference between the responses in case 
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6 is about 100% . It's seen, the trained ANN model well predicted these differences. Moreover, for a constant value of 
0.1T

H
  in the first three cases, - regardless of the changes in X

L
- it is evident that the 2DV results slowly diverge 

from the 3D responses by increasing the B
H

, which the ANN model correctly estimated the downward trend. In 

contrast, although the target and predicted values in cases 4 and 5 are close together, the neural network anticipated 
the mentioned ratios slightly lower than the target values. To better illustrate the relationship between the target and 
the predicted values, the data presented in Table 1 are shown in Figure 15. It is observed that the designed neural 
networks can predict the results for new datasets with good accuracy. The Coefficient of Variations between the target 
and the predicted values is 0.099 . 

 
Figure 15 Dispersion of target and predicted values for new datasets 

5 Illustrative examples 

The results of the model, which are shown in Figure 8 are considered again to clarify the performance of the 
correction factor in converting the 2DV results into the 3D responses. By applying the predicted factor of trained ANN to 
the 2DV results, the 3D responses are predicted for the structures with 40 , 100  and 300m  length. The results are 
shown in Figure 16. It is observed that by applying the mentioned factor, the 2DV modified results are very close to the 
3D modeling results. 

 
Figure 16 Comparison of 2DV modeling results with 3D ones for different length of structures 
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The results of this study indicate that the proposed method brings notable benefits for predicting the 3D response 
of the FBW with an arbitrary length. Due to applying a 2DV model in the case of 3D phenomena, the computational effort 
becomes cost-effective. In order to show the efficiency, 10 of the sample cases are solved by both the 2DV-ANN 
combination model and AQWA model. About 500%  of time saving are obtained by employing the combined model. 

6 CONCLUSION 

SBFEM method is used as a powerful semi-analytical method to solve the diffraction problem in the case of the fixed 
objects in the infinite fluid domain. Detection of a correction factor to extend the result of 3D solutions from the 2D 
analysis has been the main purpose of the current study. A database of 81 different cases in geometry and wave 
frequency is established, and ANN is designed to give the correction factor. The code is written to solve 2D cases using 
SBFEM. The ANSYS AQWA numerical software is used for 3D solutions. The following development and results are 
notable: 

1. The center of SBFEM is moved from the corner of the floating object to the middle of the bounded sub-domains. 
This change will allow the user to use an arbitrary mesh on the structure boundaries. 

2. Comparing the results of the present 2DV code with other numerical and analytical studies shows an excellent 
agreement to verify the code. 

3. It is shown that the semi-analytical solution (SBFEM) is exact in the radial direction and can evaluate the potential 
at any given point independent of the numerical mesh. 

It is shown that the designed artificial neural network is able to estimate the result of 3D cases - along the centerline 
perpendicular to the structure - by the 2DV model. The correlation factor 0.9607R   for a group of new samples 
shows the predicted results are closely matched to the target values. 

The proposed combined model is shown to be accurate, rapid, and efficient. For 10 of the sample cases, by comparing 
the needed time of solving, it is obtained that the 2DV-ANN combined model is around 500%  faster than ANSYS 
AQWA’s run-time. 
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Appendix A: 

For the sake of completeness, the solution process of SBFE equations is given in the following. By introducing new 
variable { ( )}χ ξ  and substituting this variable and equation (11) into equation (10) yields: 

(A.1) ,{ ( )} [ ]{ ( )}Z      

Where 

(A.2) 
1 1

0 1 0
1 1

2 1 0 1 1 0

[ ] [ ] [ ]
[ ]

[ ] [ ][ ] [ ] [ ][ ]

T

T

E E E
Z

E E E E E E

 

 

      
 

Doubling the number of unknowns is occurred in this transformation. Postulating the solution in the form of 

ˆ{ ( )} { }     and putting this equation into equation (A.1) results in an Eigen-value problem as: 

(A.3) ˆ ˆ[ ]{ } { }Z      

Where ˆ{ }χ includes nodal potential nodal flow amplitude as bellow: 

(A.4) 
ˆ

ˆ{ ( )}
ˆ

a

q
 

        
 

and 0 1ˆ ˆ ˆ{ } ( )[ ]{ } [ ] { }Tq E a E a   . is modal scaling coefficient in radial direction. The equation (A.3) is 
represented in the following matrix form: 

(A.5) ˆ ˆ[ ][ ] [ ][ ]Z      

where eigenvectors and eigenvalues are formed columns of ˆ[ ]  and diagonal entries of [ ] , respectively. Sorting in 

descending order, two groups of eigenvalues with opposite sign, extracted from the Eigen-problem, are shown with [ ]i  

and [ ]i , while Re( ) 0i  . There is one zero eigenvalue in each two groups. Constant potential that is appeared in 
zero eigenvalue, means there is no flow in fluid domain. Therefore, eigenvectors corresponding to zero eigenvalues are 
linear dependent. Therefore, to the solution of equation (A.1), Jordan decomposition is employed as: 

(A.6) 

0

0

[ ]

0 1
[ ]

0 0

[ ]

  
            
  

 

0[ ] is a diagonal matrix similar to [ ]i  which zero eigenvalue is removed. Considering transform matrix as[ ]T , the 
Eigen-problem is expressed as: 

(A.7) [ ][ ] [ ][ ]Z T T    

So the general form of solution can be written as: 

(A.8) [ ]{ ( )} [ ] { }T c     
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where the constant vector{ }c constitute the each mode contribution in the solution. To put it another way, the 
resulting solution is the superposition of all potential modes. Subdividing eigenvector and diagonal exponential 
eigenvalue matrixes ton n  blocks as follow, the nodal potential and flow can be determined: 

(A.9) 
[ ]

11 12 1
[ ]

21 22 2

[ ] [ ]
{ ( )}

[ ] [ ]

pos

neg

T T c

T T c






 



                       
 

2 0c  is intended to provide a finite value at the scaling center, thus the solution take the form: 

(A.10) [ ]
11 1{ ( )} [ ] { }a T c    

(A.11) [ ]
21 1{ ( )} [ ] { }q T c    

Combining two last equations the result is written as: 

(A.12) { ( )} [ ]{ ( )}bq H a   

Where 1
21 11[ ] [ ][ ]bH T T  . 

Appendix B 

For the unbounded sub-domains, similar to the previous section, using the variable { ( )}   and equation (13), the 
equation (12) is transformed as: 

(B.1) ,{ ( )} [ ]{ ( )}X Z X   

Where [ ]Z  is defined as: 

(B.2) 
1 1

0 1 0
1 2 1

2 1 0 1 0] 1 0

[ ] [ ] [ ]
[ ]

[ ] [ ][ ] [ ] [ [ ][ ]

T

T

E E E
Z

E E E E k M E E

 

 

       
 

Assuming the solution general form of equation (B.1) based on Li et al (2005a), as: 

(B.3) [ ]{ ( )} [ ] { }X e c     

By removing evanescent modes at far field boundary condition, the analytical solution of nodal potential and nodal 
flow in radial direction is obtained as: 

(B.4) [ ]
12 2{ ( )} [ ] { }ja e c 

  
 

(B.5) [ ]
22 2{ ( )} [ ] { }jq e c 

  
 

Eliminating constant vector 2{ }c from equations (B.4) and (B.5) leads to: 

(B.6) [ ]{ ( )} { ( )}H a q    

where [ ] [ ]1
12 22[ ] ([ ] ) ([ ] )j jH e e        . 
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