Occurrence of $\text{bla}_{\text{OXA-23}}$ gene in imipenem-susceptible
Acinetobacter baumannii

Karyne Rangel Carvalho¹/, Ana Paula D’Alincourt Carvalho-Assef², Lia Galvão dos Santos²,
Maria José Félix Pereira³, Marise Dutra Asensi¹

¹Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21040-360 Rio de Janeiro, RJ, Brasil
²Hospital Federal de Bonsucesso, Rio de Janeiro, RJ, Brasil ³Rede Labs D’Or, Rio de Janeiro, RJ, Brasil

The aim of the current study was to describe the occurrence of the $\text{bla}_{\text{OXA-23}}$ gene and the ISAb1 element in imipenem-susceptible Acinetobacter baumannii strains. By performing the polymerase chain reaction mapping using combinations of ISAb1 forward primers and the $\text{bla}_{\text{OXA-23}}$-specific reverse primers, we demonstrated that the ISAb1 element did not occur upstream of the $\text{bla}_{\text{OXA-23}}$ gene in five of 31 isolates, which explained the lack of resistance to imipenem despite the presence of the $\text{bla}_{\text{OXA-23}}$ gene. All of the $\text{bla}_{\text{OXA-23}}$-positive isolates were susceptible to imipenem and meropenem with minimal inhibitory concentration ≤ 4 μg/mL. Pulsed-field gel electrophoresis analysis revealed four genotypes among the five $\text{bla}_{\text{OXA-23}}$-positive isolates. The current report of the $\text{bla}_{\text{OXA-23}}$ gene in imipenem-susceptible isolates provided evidence that this gene may be silently spread in a hospital environment and highlighted the threat of undetected reservoirs of carbapenemase genes.

Key words: imipenem-susceptible - Acinetobacter baumannii - $\text{bla}_{\text{OXA-23}}$

Carbapenem resistance in Acinetobacter baumannii is predominantly caused by the carbapenem-hydrolysing class D β-lactamases (CHDLs). Sequence-based comparisons classify OXA-carbapenemases into eight subgroups as follows: four of the OXA-carbapenemases have been identified in A. baumannii, namely, OXA-23-like, OXA-24-like, OXA-51-like, OXA-58-like and OXA-143, which is a novel plasmid-mediated CHDL (Higgins et al. 2009). OXA-23 was identified as the first member of this enzyme group in 1985 in Scotland, which was before the wide availability of imipenem in clinical practice. Since 1985, a number of outbreaks of OXA-23-producing imipenem-resistant Acinetobacter spp have been reported worldwide (Mugnier et al. 2010). The OXA-23-encoding gene is mainly found on plasmids and has been associated with the ISAb1 or ISAb4 elements (Corvec et al. 2007). The ISAb1 or ISAb4 element that is upstream of $\text{bla}_{\text{OXA-23}}$ mobility and has two copies that surround the β-lactamase gene and form a composite transposon (defined as Tn2006) (Mugnier et al. 2010). ISAb4 belongs to the IS982 family, is 975 bp in length, possesses two 18-bp inverted repeats and encodes a 292-amino-acid putative transposase. These insertion elements may be involved in transposition processes at the origin of acquisition of the $\text{bla}_{\text{OXA-23}}$ gene (Corvec et al. 2007).

The current study described the silent carriage of the $\text{bla}_{\text{OXA-23}}$ gene in five imipenem-susceptible A. baumannii isolates.

From April 2005-September 2007, 31 clinical isolates of imipenem-susceptible A. baumannii were collected from non-related patients at five hospitals in Rio de Janeiro, Brazil. The isolates were identified using conventional techniques and confirmed using the amplified ribosomal DNA restriction analysis (Carvalho et al. 2009) and $\text{bla}_{\text{OXA-51}}$ polymerase chain reaction (PCR) (Turton et al. 2006b).

Among the 31 imipenem-susceptible isolates, five were positive for $\text{bla}_{\text{OXA-23}}$ by PCR and DNA sequencing using the following primers: OXA-23 F (5’-ACTTGCG-TATGTGGTTGCCTTTC-3’) and OXA-23-R (5’-TGT-CAAGCTCTTAAATAATTCAGC-3’), which annealed at the region between 987 and 1,778-bp positions in GenBank isolate AJ132105 (Higgins et al. 2009). In addition, these isolates were positive for ISAb1 (ISAb1 F: 5’-CAGGTCCTTAAATAATTTACGAC-3’ and ISAb1 R: 5’-CGACGAAATCTATGACAC-3’) (Turton et al. 2006a) but negative for ISAb4 (ISAb4 F 5’-ATTGTGACCCATCTTTATTGGC-3’ and ISAb4 R 5’-ACTCTCATTTTCTTGTG-3’) (Corvec et al. 2007). The nucleotide sequences of $\text{bla}_{\text{OXA-23}}$ and ISAb1 have already been deposited in the GenBank under the accessions JF421124 and JF340121, respectively.

PCR mapping using the combination of the ISAb1 forward primer and the $\text{bla}_{\text{OXA-23}}$-specific reverse primer were negative. In five carbapenem-resistant control isolates, the ISAb1 element was detected upstream of the $\text{bla}_{\text{OXA-23}}$ gene (Carvalho et al. 2009). According to antimicrobial susceptibility tests, such as the E-test (AB Biodisk, Solna, Sweden) and the agar dilution method, all $\text{bla}_{\text{OXA-23}}$-positive isolates were susceptible to imipenem and meropenem [minimal inhibitory concentration (MIC) ≤ 4 μg/
mL]. These results may be explained by the absence of the IS4/al element upstream of the bla_{OXA-23}-like gene.

All 31 isolates were susceptible to polymyxin B (MIC ≤ 1 µg/mL). Using the disk diffusion method, four isolates were non-susceptible (i.e., intermediate or resistant) to aztreonam, ceftazidime, cefepime and ciprofloxacin, whereas three isolates were susceptible to ampicillin-sulbactam and amikacin. These findings suggest the presence of another resistance mechanism that has not been previously investigated, such as extended spectrum beta lactamases, the modification of penicillin-binding proteins and porins or the upregulation of the efflux system (Zarrilli et al. 2009).

Macrorestriction with Apal-digestion following pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness of the bla_{OXA-23}-positive isolates. The bla_{OXA-23}-Positive isolates were clustered into four different genotypes (B, C, G and I). The criteria for the classification of DNA band patterns included the following: undistinguishable (clonally related isolates), closely related (clonal variants, ≤ 3 different bands), possibly related (4-6 different bands) and unrelated (≥ 6 different bands) (Tenover et al. 1995). Two isolates proved to be genetically related (genotype C). Except for genotype I, all of the genotypes were detected among bla_{OXA-23}-negative isolates. Genotypes B and C were detected among imipenem-resistant A. baumannii isolates as described previously (Carvalho et al. 2009). Chromosomally encoded bla_{OXA-23}-like genes have been described in carbapenem-susceptible Acinetobacter radioresistens isolates, suggesting that this species is a source of these genes (Poirel et al. 2008, Boo & Crowley 2009, Mendes et al. 2009). Poirel et al. (2008) has identified a similar plasmid backbone in several bla_{OXA-23}-Positive A. baumannii and A. radioresistens isolates. These results suggest that a plasmid-mediated IS4/al element originating from A. baumannii may have entered A. radioresistens to be transposed and targeted to the regions that are upstream and downstream of the chromosomal bla_{OXA-23}-like genes. A transposon-like structure is then formed, which enhances the expression of the bla_{OXA-23}-like genes. This structure may transpose and target a plasmid inside the A. radioresistens genome and, finally, this plasmid conjugates into A. baumannii to spread the resistance determinant in the latter species (Poirel et al. 2008).

The current report of bla_{OXA-23} in imipenem-susceptible A. baumannii isolates provided evidence that the bla_{OXA-23} gene may be silently spread in a hospital environment and highlighted the threat of undetected reservoirs of carbapenemase genes. The undetected carbapenemase genes are challenging, because the laboratory detection of such genes and the subsequent measures for infection control in hospital settings generally target only phenotypically multidrug-resistant organisms. The future control of multidrug resistance may require the identification of multidrug-resistant isolates and their reservoirs using molecular-based techniques.

ACKNOWLEDGEMENTS

To all hospital participants who collected isolates for the study, and to PDTIS-IoC platform, for DNA sequencing.

REFERENCES

