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BACKGROUND Mycobacterium leprae, the causative agent of Hansen’s disease, causes neural damage through the specific 
interaction between the external phenolic glycolipid-1 (PGL-1) and laminin subunit alpha-2 (LAMA2) from Schwann cells.

OBJECTIVE To design a LAMA2-based peptide that targets PGL-1 from M. leprae.

METHODS We retrieved the protein sequence of human LAMA2 and designed a specific peptide using the Antimicrobial Peptide 
Database and physicochemical parameters for antimycobacterial peptide-lipid interactions. We used the AlphaFold2 server to predict 
its three-dimensional structure, AUTODOCK-VINA for docking, and GROMACS programs for molecular dynamics simulations.

FINDINGS We analysed 52 candidate peptides from LAMA2, and subsequent screening resulted in a single 60-mer peptide. The 
mapped peptide comprises four β-sheets and a random coiled region. This peptide exhibits a 45% hydrophobic ratio, in which 
one-third covers the same surface. Molecular dynamics simulations show that our predicted peptide is stable in aqueous solution 
and remains stable upon interaction with PGL-1 binding. In addition, we found that PGL-1 has a preference for one of the two 
faces of the predicted peptide, which could act as the preferential binding site of PGL-1.

MAIN CONCLUSIONS Our LAMA2-based peptide targeting PGL-1 might have the potential to specifically block this key 
molecule, suggesting that the preferential region of the peptide is involved in the initial contact during the attachment of leprosy 
bacilli to Schwann cells.
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Hansen’s disease (leprosy) is an ancient infection that 
remains a significant health impairment in susceptible 
populations and is still endemic in several countries, such 
as Brazil, India, and Colombia.(1) The long-term vision 
of the World Health Organization is to eradicate leprosy 
by 2030. The strategy of controlling leprosy still must 
be reinforced with new diagnostic tools in combination 
with improved therapeutic regimens.(2) Moreover, the risk 
of drug resistance remains a latent threat; thus, cautious 
surveillance is necessary for preventing the spread of 
drug-resistant strains.(3) Innovative therapies have been 
proposed as strategies to combat infection and antibiotic 
resistance by targeting pivotal bacterial processes, such 
as adhesion, cell wall permeability, quorum sensing, vir-
ulence regulons, and toxin production.(4) In mycobacteria, 
this approach has been explored only in Mycobacterium 
tuberculosis and Mycobacterium marinum, and the ap-
proach targeted the PhoPR regulon, SapM, and ESX-1 se-
cretion system.(4,5,6) Some promising candidates are in the 
preclinical stages and are being tested in animal models.
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Hansen’s disease is characterised by loss of sensitiv-
ity at the peripheral nerve level due to irreversible tis-
sue damage and subsequent weakening by the infection 
chronicity.(7) This process begins with the invasion of the 
causative agent, Mycobacterium leprae, through a spe-
cific interaction of phenolic glycolipid-1 (PGL-1) with 
human laminin subunit alpha-2 (LAMA2) to promote 
the attachment of mycobacterial to the basal lamina of 
Schwann cells and pathogen internalisation.(8)

The PGL-1 molecule is surface exposed in the my-
cobacterial cell wall and capsule, and its structure is 
composed of trisaccharide units, which are defined as 
methyl-rhamnose derivatives bound to a phenyl group, 
a mycocerosic acid, and a phthiocerol region.(9) Since 
PGL-1 is a well-known diagnostic marker for Hansen’s 
disease, this molecule has been useful for the specific 
differentiation of M. leprae from other mycobacteria or 
even for the quantification of bacterial loads to monitor 
the treatment outcome during multibacillary infection.
(10) Furthermore, the PGL-1 molecule has been reported 
to induce a proinflammatory response and nerve dam-
age in patients by inducing the activation of nitric oxide 
synthase in infected macrophages.(11)

PGL-1 binds specifically to the laminin multiprotein 
complex of the axon and is among the first steps during 
the Schwann cell interaction.(12) LAMA2 is involved in 
Schwann cell differentiation and is a key component that 
mediates cell-surface interaction, migration, and assem-
bly into tissues through the promotion of laminin con-
nections with other extracellular matrix components.(13) 
We hypothesised that dissecting the LAMA2 subunits 
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into peptides could target the specific region that binds 
PGL-1 and provide a further application for therapeutic 
or diagnostic purposes. In this study, we addressed this 
strategy to design in silico a LAMA2-specific peptide 
that targets the PGL-1 molecule from M. leprae.

MATERIALS AND METHODS

Peptide design and parameters - We retrieved the 
LAMA2 sequence from the UniProt database (acces-
sion code P24043) and evaluated peptide properties by 
using the antimicrobial peptide calculator implemented 
in the Antimicrobial Peptide Database (APD, https://
aps.unmc.edu/home).(14)

We defined screening parameters based on peptides 
that were 60 residues long and included properties that 
were expected to support lipid binding, such as the fol-
lowing: hydrophobic ratio percentage, total net charge, 
GRAVY (grand average hydropathy value of the pep-
tide), Wimley-White whole-residue hydrophobicity of 
the peptide, protein-binding potential (Boman index) 
and the total hydrophobic residues on the same sur-
face. The 60-residue peptide was designed to preserve 
the functional regions of LAMA2, ensuring full PGL-1 
coating within an exposed protein area; preferentially, 
the peptide was without disulfide bonds or any post-
translational modification and had a long peptide size to 
reduce the occurrence of alternative biological activity 
due to its length. We preferred to avoid bulky carbohy-
drate modifications since they might hinder contact with 
extracellular ligand molecules from the cell surface.

Since the expected PGL-1 molecule displayed a low 
solubility in aqueous solutions, we selected the peptide 
based on the best hydrophobic scores, and the key criteria 
was that peptides with positive values, compared to those 
with negative values, are more hydrophobic and thereby 
less soluble.(15) Another parameter was the Wimley-White 
whole residue hydrophobicity; more negative values for 
peptides indicate a higher hydrophobicity.(16) Other prop-
erties, such as the highest hydrophobic ratio percentage 
and the maximum number of hydrophobic residues on the 
same surface, were considered key for peptide selection.

LAMA2 was scanned for domain and functional mo-
tifs in SMART and visualised in the DOG program.(17,18) 
The DISULFIND server (http://disulfind.disi.unitn.it/) 
was used to predict the disulfide bridges between cys-
teines and their connectivity pattern.(19) A prediction for 
N-glycosylation was performed in NetNGlyc 1.0 (https://
services.healthtech.dtu.dk/service.php?NetNGlyc-1.0) 
based on the consensus sequence Asn-Xaa-Ser/Thr.(20)

Prediction of possible biological properties - The 
peptide with the best score was checked for allergenicity 
using AlgPred 2.0 (https://webs.iiitd.edu.in/raghava/alg-
pred2/index.html),(21) toxicity in ToxinPred (https://webs.
iiitd.edu.in/raghava/toxinpred/algo.php),(22) and hemolytic 
activity by HemoPred (http://codes.bio/hemopred/).(23)

Three-dimensional structure of the peptide - The 
peptide was mapped in the LAMA2 protein and mod-
eled by using I-TASSER(24) and AlphaFold2 (https://
colab.research.google.com/github/sokrypton/Colab-
Fold/blob/main/AlphaFold2.ipynb).(25) The AlphaFold2 

method as implemented in Google ColabFold was used 
as suggested by Mirdita et al.,(26) which differs from the 
original implementation from Deepmind(27) by replacing 
the homology detection of AlphaFold2 with MMseqs2 
(many-against-many sequence searching).(28) This 3D 
model was subjected to a minimisation stage using the 
GROMACS package(29) for 50000 steps using a steep 
descent algorithm, with a maximal force tolerance of 
1000 kJ mol-1 nm-1. The peptide was optimised using the 
amber99sb-ildn force field(30) and solvated in a dodeca-
hedron box using the TIP3P water model.(31) Na+ and Cl- 
ions were added to neutralise the system’s charges and 
to reach a NaCl physiological concentration of 0.15 The 
stereochemical quality of the model before and after the 
minimisation stage was inspected using the Ramachan-
dran plot, which was obtained using the Molprobity web 
tool (http://molprobity.biochem.duke.edu/).(32)

Molecular dynamics simulation of PGL-1 binding to 
the peptide - We carried out molecular dynamics simu-
lations with the aim of inspecting the modes of inter-
action between the proposed peptide and the M. leprae 
trisaccharide PGL-1. The peptide-PGL-1 complex was 
obtained from molecular docking calculations using 
AUTODOCK VINA software;(33) for this, the struc-
ture of PGL-1 was retrieved from the PubChem data-
base (CID: 45480571). The search box was configured 
in such a way that it covered the entire surface of the 
peptide. The built complex with the best pose predicted 
by AUTODOCK VINA was subjected to MD simula-
tions with the GROMACS 2019 package.(34) The amber 
ff99sb-ILDN force field and the TIP3P model were used 
to represent the behavior of protein in water as a solvent. 
PGL-1 was parameterised using the ACPYPE web serv-
er (https://www.bio2byte.be/acpype) to obtain ligand pa-
rameters for GROMACS.(35) The complex was neutral-
ised with Na+ and Cl- ions, brought to a concentration 
of 0.15 M NaCl and then subjected to a potential energy 
minimisation step for 50,000 steps (similar to that used 
for peptide minimisation), followed by two equilibration 
steps, including one NVT (constant volume and temper-
ature) and a series of NPT (constant pressure and tem-
perature) equilibrations, which were carried out for 250 
ps using position restrictions on all heavy atoms. Finally, 
a production stage of 1000 ns (1 μs) was carried out, with 
a temperature of 310 K, which was controlled with the 
V-rescale thermostat, and a 1 bar pressure, which was 
controlled with the Parrinello-Rahman barostat. A time 
step of 2 fs was used. As a control, the peptide in water 
was also simulated following the same procedure. All 
visualisations were created with Chimera UCSF.(36)

Prediction of dimer/PGL-1 interactions - Using the 
minimised structure of the peptide, peptide associa-
tion and oligomerisation were calculated by an ab initio 
strategy with the Galaxy-Homomer server (http://galaxy.
seoklab.org/index.html).(37) This server calculates the in-
terface area (Å2) between predetermined chains (by user) 
Molprobity score(33) and a docking score, in which high 
values determine a greater probability of peptide interac-
tion and the model quality, respectively. As a preliminary 
method in which the predicted homodimer structure was 
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used, we carried out molecular docking of PGL-1 follow-
ing the same procedure used for the single peptide. Pep-
tide oligomer interactions and homodimer/PGL-1 interac-
tions were assessed with Ligplot+ software.(38)

RESULTS

Structural features of the laminin subunit alpha 2 - 
To understand the structural features of the LAMA2 
protein, domain mapping and functional motif analysis 
were performed along with analysis of the whole pro-
tein. Our prediction found 28 sites of N-glycosylation 
in LAMA2, which agrees with the functional annota-
tion in the UniProt database. LAMA2 analysis in the 
SMART tool allowed us to identify the modular com-
position of four domains, including a single LamNT do-
main and the modular arrangement of EGF-Lam, lam-
inin B (LamB), and laminin G (LamG) domains (Fig. 
1). The LamNT domain is located between residues 
33-285 through the N-terminus for protein insertion in 
the cell membrane. In contrast, LAMA2 contains 16 
EGF-laminin domains, which are characterised by the 
presence of many cysteine residues that form disulfide 
bonds. We predicted 66 disulfide bonds that were dis-
tributed across the whole protein (data not shown). Fur-
thermore, our analysis showed two LamB domains lo-
cated between residues 578-710 and 1229-1364 that are 
interspaced by a set of EGF laminin domains. The C-
termini exhibit an arrangement of five LamG domains 
at the C-terminus of the LAMA2 protein.

Peptide selection and pharmacological properties 
- LAMA2 contained 3,122 amino acids, and our com-
putational screening resulted in 52 candidate peptides. 
However, based on our computer-aided peptide design 
strategy and physicochemical criteria, a 60-mer pep-
tide was designed with a predominance of hydrophobic 
residues that are solvent-exposed to ensure a potential 
hydrophobic interaction with PGL-1 (Table). Thus, the 
calculated percentages of the most frequent amino acids 
were Val ratio = 13%, Lys = 10%, Gly = 10%, Leu = 
8%, and 7% for Ile, Phe, Ala, Ser, and Asn residues, re-
spectively. This designed peptide showed a hydrophobic 
ratio of 45%, in which 22 hydrophobic residues (37%) 
were located on the same surface. Other calculated pa-
rameters included 0.18 as a GRAVY value, a Wimley-
White whole-residue hydrophobicity of the peptide of 
7.94, and a protein-binding potential of 0.78 (Table). The 

peptide mapping indicated that our peptide was located 
between the 2161-2220 positions of the LAMA2 protein, 
specifically in the first LamG domain (positioned be-
tween 2166-2311), and seemed to be surface exposed in 
the three-dimensional structure.

Other pharmaceutical properties of our peptide in-
dicated that it was nonallergenic (score: 0.31), nontoxic 
(-1.00), and nonhemolytic.

Peptide 3D structure - The peptide modeling was 
based on artificial intelligence through Alphafold. The 
predicted structure exhibited a high structural quality 
according to its Ramachandra plot, which indicates that 
96.6% of the residues have a favorable stereochemistry 
(Fig. 2A). In addition, AlphaFold provided two confi-
dence indicators to determine the reliability of the results. 
The first indicator, called pLDDT (predicted lDDT-Cα), 
provided a measurement of the local confidence (for each 
residue) on a scale from 0 to 100. The results presented 
in Fig. 2B show that most of the residues had a plDDT > 
80, which corresponded to confidence ranging between 
high and very high. The second indicator, called PAE 
(Predicted Aligned Error), represented the expected er-
ror associated with the relative positions of the different 
domains of the protein. The error values calculated for 
the peptide were consistently low except for the first two 
and last two residues (data not shown), thus indicating 
good confidence in the positions of the beta-strands. Even 
so, after a minimisation step, a structure with improved 
structural quality was obtained based on its Ramachan-
dran plot, which indicates that all (100%) of the amino ac-
ids have favorable stereochemistry (Fig. 2C). An overlay 
of the peptide structure before and after minimisation is 
shown in Fig. 2D. In general, the peptide exhibited a ran-
dom coiled region in the N-termini followed by four an-
tiparallel β-strands. Our peptide lacked Cys residues, and 
its three-dimensional structure resembled a defensin-like 
beta structure without N-glycosylation sites. Additionally, 
the sequence of our peptide has 89.92% sequential identi-
ty, which corresponds to the crystal structure of the LG1-3 
region of LAMA2 (PDB 1QU0) from Mus musculus.

Docking and molecular dynamics analysis - The 
peptide-ligand complex was obtained by molecular 
docking calculations. Given the stochastic nature of 
AutoDock Vina’s search algorithm, we performed a 
triplicate run. All 27 conformations (nine for each run) 

Fig. 1: modular structure of laminin subunit alpha-2 from Homo sapiens (Human). N-linked glycosylation (GlcNAc) labeled asparagine (Asn) 
positions 55, 89, 303, 363, 380, 470, 746, 1061, 1597, 1614, 1700, 1810, 1901, 1916, 1920, 2017, 2028, 2045, 2126, 2240, 2360, 2435, 2478, 2551, 
2558, 2648, 2868, and 2893 as predicted in NetNGlyc 1.0. The peptide position is shown in the red line above the first LamG domain.



Nelson Enrique Arenas et al.4|11

TABLE
List of predicted peptides from the human LAMA2 protein

Region
Hydrophobic 

ratio (%)
Total net 
charge GRAVY

Wimley-White  
whole-residue  
hydrophobicity

Protein binding  
Potential (Kcal/mol)

Total hydrophobic  
residues on the  
same surface

1-60 43 +2.2 0.09 6.84 0.73 14
61-120 27 +3.5 -1.09 16.95 2.45 7
121-180 40 -2.5 -0.16 6.19 1.18 15
181-240 28 -3.5 -0.58 15.76 1.95 8
241-300 42 +4.5 -0.22 9.70 2.11 9
301-360 33 -3.2 -0.93 20.63 2.57 0
361-420 32 +4.2 -0.47 9.78 1.93 0
421-480 32 +2.5 -0.66 16.97 2.31 ND
481-540 35 -2.0 -0.60 10.36 2.01 7
541-600 33 -0.7 -0.51 7.97 1.44 2
601-660 35 -13.5 -0.37 24.8 1.90 13
661-720 45 +2.5 0.26 5.8 1.06 21
721-780 35 -3.25 0.40 14.49 1.87 ND
781-840 32 -2.7 -0.28 8.34 1.08 ND
841-900 32 -2.0 -0.34 10.81 1.57 2
901-960 37 +0.25 0.55 14.78 2.17 9
961-1020 37 -0.5 0.45 10.53 1.73 2
1021-1080 33 +2.2 -0.49 10.91 1.77 ND
1081-1140 33 +1.5 -0.63 12.98 2.23 2
1141-1200 38 +0.25 -0.21 12.42 1.48 ND
1201-1260 40 0 -0.35 10.71 1.00 9
1261-1320 32 +0.75 -0.66 17.98 2.27 7
1321-1380 37 -1.5 -0.32 15.36 2.04 13
1381-1440 32 -0.75 -0.29 8.23 1.40 4
1441-1500 38 -1.5 -0.22 9.06 1.55 ND
1501-1560 27 -3 -0.60 14.06 1.66 ND
1561-1620 43 -2.5 -0.15 9.86 0.92 18
1621-1680 32 -1.75 -0.75 24.7 2.62 14
1681-1740 37 -2 -0.91 33.88 3.02 17
1741-1800 37 -5 -1.04 36.57 3.1 18
1801-1860 35 -4 -0.83 30.02 2.81 16
1861-1920 35 -5.75 -0.70 27.67 2.41 17
1921-1980 40 +1.25 -0.55 23.59 1.92 20
1981-2040 35 +1.25 -0.85 25.72 2.69 17
2041-2100 38 +2.25 -0.64 23.44 2.2 18
2101-2160 32 +2 -0.85 27.87 2.65 14
2161-2220 45 +2 0.18 7.94 0.78 22
2221-2280 35 -0.5 -0.17 7.69 1.64 11
2281-2340 33 -1 -0.44 17.35 1.64 9
2341-2400 43 +1.25 0.07 3.61 1.4 15
2401-2460 30 -1.75 -0.62 12.57 2.16 12
2461-2520 32 +3 -0.45 13.76 1.74 6
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Region
Hydrophobic 

ratio (%)
Total net 
charge GRAVY

Wimley-White  
whole-residue  
hydrophobicity

Protein binding  
Potential (Kcal/mol)

Total hydrophobic  
residues on the  
same surface

2521-2580 32 +2 -0.23 13.95 1.49 7
2581-2640 35 +4 -0.42 15.12 2.42 12
2641-2700 40 0 -0.25 14.14 1.37 13
2701-2760 38 -4.5 -0.31 22.51 1.29 ND
2761-2820 42 +4.5 -0.21 13.71 2.02 15
2821-2880 30 +1.5 -0.58 11.66 1.77 11
2881-2940 40 +0.5 0.04 7.53 1.13 ND
2941-3000 42 -2.7 0.24 7.55 0.56 14
3001-3060 33 -1.2 -0.58 16.92 1.92 8
3061-3120 39 +3 -0.07 11.44 1.12 ND

ND: nondetermined.

Fig. 2: results for the Ramachandran plot for the structure of the selected peptide before (top-left side) and after energy minimisation (top-right 
side). On the bottom side, the superposition of the structures before (green) and after (blue) the minimisation are shown. The N- and C-termini 
are shown schematically. The peptide is shown as ribbons with all its residues as sticks.
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were located in the same hydrophobic region of the 
chosen peptide, as shown on the left side of Fig. 3A. 
The foregoing suggests that the PGL-1 ligand would 
have a greater affinity or a greater preference to inter-
act with this face of the peptide (from now on, this face 
will be called the front face of the peptide) than with 
the back face, which has a more hydrophilic character 
(Fig. 3A-right). Fig. 3B shows the best pose obtained 
for each run, and the best pose had a binding affinity 
value of -5.1 kcal/mol ± 0.0. One of these conforma-
tions was used as the initial coordinates of the peptide/
PGL-1 complex for the MD simulations.

In our MD simulations, we first inspected the struc-
tural stability of the peptide (Fig. 4). The RMSD results 
(Fig. 4A) suggest that the peptide without PGL-1 was 
more flexible during the simulation, or the peptide in-
teraction with PGL-1 favors conformational changes. 
These greater changes in the RMSD of the peptide with-
out PGL-1 are associated with greater flexibility in the 
N-termini coil region, as shown in Fig. 4B. The fluctua-
tions (RMSF) of the loop regions in the peptide with-
out PGL-1 were considerably greater than those in the 
peptide/PGL-1 complex (Fig. 4B-C). Additionally, we 
tracked the secondary structure of the peptide (Fig. 4D), 
suggesting that the main structure of four antiparallel 
beta sheets is highly stable since after 1000 ns of simula-
tion, the beta sheets were preserved in the presence and 
absence of PGL-1. It was also observed that after ap-
proximately 650 ns, a new beta sheet was formed at the 
N-terminal end of the peptide by PGL-1 binding (Fig. 
4D), which may be related to the fact that the RMSD of 
the peptide in complex with PGL-1 stabilises at ~0.8 nm.

To map the modes of interaction between PGL-1 and 
the selected peptide, we calculated the contact frequen-
cies between them by defining each contact within a 
range of 3 Å in the interaction.

As shown in Fig. 5, the highest interaction frequen-
cies (from 40% to 50%), which define a hydropho-
bic pocket that is delineated by residues Tyr7, Val11, 
Phe24, Ile37 and Phe46. Tyr7 and Val11, are located 
in the loop of the N-terminal end, and the other three 
residues Phe24, Ile37 and Phe46 are part of the peptide 
front face, and each is located in a different beta sheet. 
Additionally, several residues, such as Leu22, Tyr25, 
Ala36, Glu38, Ser45 and Leu47, present interactions of 
less than 20%. Those residues are located on the rear 
face of the peptide in the preferential face of PGL-1 to 
interact with the peptide front face.

Homodimer interactions of LAMA2-derived peptide 
with PGL-1 - Oligomer modeling results were used to cal-
culate the potential peptide-peptide interactions. Oligo-
mer calculations were based on the structure of a laminin 
G-like module of LAMA2 (peptide coverage between 
2157-2216), leading to a homodimer of 7410.55 Å2 (Fig. 
6C). Peptide interacting chains were analysed in Ligplot+ 
software to calculate dimer interactions. Interacting 
chains might be associated with 26 nonbonded contacts 
that involve neutral, aliphatic, aromatic, and positively 
charged residues (Fig. 6A). The molecular docking result 
for PGL-1 in the homodimer docks at a site with similar 
hydrophobicity to that of the peptide alone brought the 
mycobacterial ligand together (Fig. 6B-C). We inspected 
the interactions, which included hydrophobic interac-
tions with residues such as Asn13, Ile37, Met39, Val44, 

Fig. 3: complete results of molecular docking triplicate (A-left) and the back side of the peptide (A-right). The first pose of each molecular dock-
ing run is shown in blue, pink and green (B). The protein is shown as a surface, and the residues are coloured according to their hydrophobicity, 
with blue being very hydrophilic and red being very hydrophobic. PGL-1 is shown in sticks.
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Phe46, and Tyr59, all of which were in chain A, and hy-
drogen bond interactions with Val12 and Gly42 in the A 
chain and with Ser52 in chain B (Fig. 6D).

DISCUSSION

Since ancient times, Hansen’s disease has been a pub-
lic health problem worldwide. Despite the many efforts to 
eradicate this disease, concerns over concomitants, such 
as poverty, delayed diagnosis, and drug resistance, have 
emerged.(2,39,40) The PGL-1 molecule has significantly 
contributed to the serodiagnosis of Hansen’s disease, pro-
viding a specific target to identify M. leprae.(10) Current-
ly, the PGL-1-based ELISA test still contributes to deter-
mining whether a patient is free from leprosy bacilli.(41) 
In addition to its importance in the process of infection, 

Fig. 4: (A) RMSD of the backbone and (B) RMSF of the protein residues for the simulations with (green line) and without PGL-1 (purple line). 
(C) Peptide B-factor ratio. Blue and red represent the increase in movement for the residues in the peptide with and without PGL-1, respectively. 
Similarly, a thicker ribbon indicates greater flexibility. (D) Secondary structure as a function of time of the protein with and without PGL-1. 
α-helix, beta sheets and disordered regions are shown in orange, green and white, respectively.

the PGL-1 saccharide fraction is species-specific for M. 
leprae, constituting a highly immunogenic molecule that 
is quickly recognised by the immune system.(42) Thus, 
the conjugate composition of PGL-1 has been associated 
with its neural tropism from M. leprae.(8)

The domains present in the LAMA2 protein, includ-
ing a set of EGF-laminin domains, are essential for sig-
nal transduction and protein dimerization.(13) The LN 
domain is involved in basement membrane assembly, 
and its role might be a cooperative process in which 
laminins polymerise through their N-terminal domain 
(VI) and anchor to the cell surface. Finally, LamG was 
associated with cellular adhesion to laminins and was 
mediated by a repetitive region of five laminin G-like 
(LG) domains.(43,44) Consistently, our peptide was de-
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signed on the basis of the C-terminal of the LAMA2 
chain, which contains five LamG domains, in which 
PGL-1 seems to contact LAMA2 during the mycobac-
terial invasion of Schwann cells.(8,45)

Our peptide contained a portion of the LamG domain, 
and further analysis showed that it is compatible with the 
steroid-binding site of related proteins containing lam-
inin G-like domains, including those with sexual hor-
mone-binding sites that resemble lipid-related ligands.
(46) In this study, we proposed that this site might anchor 

Fig. 5: interaction frequency in the peptide/PGL-1 complex (left). Schematically, the last conformation of the simulation is shown, highlighting 
the main interactions between the peptide and PGL-1 (right). The N- and C-termini are shown schematically. The peptide is illustrated with 
ribbons, while the main residues and PGL-1 are represented by sticks.

PGL-1 to the cell surface through LAMA2, represent-
ing the initial bacilli-specific interaction. Consistently, a 
study has shown that M. leprae is strongly bound to the 
LAMA2 C-terminal but not to the N-terminal region in 
the proximal G1-G3 subdomains.(12,47)

In this paper, we attempted to identify the region 
from human LAMA2 that was necessary for triggering 
the attachment of M. leprae to Schwann cells. Our com-
putational peptide design supported the 60-residue sim-
ulation that might be sufficient to capture peptide fold-
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ing.(48) The peptide encompassing residues 2161-2220 of 
LAMA2 might be able to bind flexibly to PGL-1, allow-
ing bacterial attachment and subsequent pathogenesis. 
In our MD simulations, the peptide conformation was 
more stable in the presence of PGL-1 than in the absence, 
which hypothetically seems to be an early step in bacilli 
membrane attachment. Additionally, our simulations 
suggest that PGL-1 prefers to interact with one of the two 
faces of the peptide, i.e., the face called the front face in 
this study. For example, PGL-1 might be positioned by 
a network of van der Waals and hydrophobic interac-
tions in the loop region and residues located in three of 
the four main beta-sheets. The docking and simulation 
results also supported that the binding of PGL-1 to the 
LAMA2-derived peptide is flexible on its N-terminal 
region (ΔG -5.1 Kcal/mol) and, thereby, might increase 
the affinity between the ligand and the peptide or even 
homodimers. Our peptide-aided design in the selection 
of peptide candidates promotes hydrophobic interactions 
that might define the PGL-1 binding site and proper ad-
justment to the basal laminin of Schwann cells. Simi-
larly, hydrophobic interactions contribute strongly to 
steroid pocket binding and fine-tuned interactions with 
hydrophobic ligands in proteins containing laminin-like 
domains.(46,49) Our molecular dynamic results suggested 
that a flexible loop region assisted as the gate for PGL-
1 (through interactions with residues, such as Tyr7 and 
Val11), as reported similarly in sex steroid hormones, re-
sembling the capability to bind lipidic ligands with their 
loop segment for ligand-specific rearrangement.(49)

Protein interactions with cellular membranes have 
been thoroughly studied as computational models in 
antimicrobial peptides.(50,51) However, we performed 

peptide-glycolipid molecular modeling predictions as a 
novel approach for antimicrobial peptide design against 
a key conjugate molecule from leprosy bacilli. Our cal-
culations included the possibility of peptide homodi-
merization and homodimer interaction with PGL-1. 
Although the predicted affinity for the homodimer was 
lower (4.8 kcal/mol) than that for the peptide alone (5.1 
kcal/mol), it is necessary to mention that this bond is 
flexible; that is, this affinity can vary over time and, as 
expected, depends on the conformational changes that 
occur in the receptor. Interaction percentages less than 
40% and a variety of structural conformations were re-
ported for the organic compounds that interacted with 
highly flexible proteins.(52) Given that we found higher 
percentages of interaction and a high conformational 
stability, our results are promising.

The LAMA2-based peptide might interact with 
membranes and has a chance to be an antimicrobial pep-
tide in which aligning is performed to find the most sim-
ilar peptides in the APD database. This peptide showed 
a 32% similarity with halocin-like peptides (halocin S8 
and halocin R1), which have activity against Gram-posi-
tive and Gram-negative bacteria and a similar hydropho-
bic ratio.(53) The results showed that peptides with a low 
similarity (below 30%) presented a shared hydrophobic-
ity percentage with PGL-1 based on the sequence com-
parison, which was performed to find antimicrobial pep-
tides that most resembled our input peptide sequence in 
the APD. Consistently, previous approaches with host-
based peptides were tested successfully to control my-
cobacterial growth, and hydrophobicity was determined 
to be a key parameter for enhancing mycobactericidal 
activity and selectivity.(54,55,56,57)

Fig. 6: (A) 2D interactions between peptide chains in the homodimer. Structure of the complex formed by the homodimer and PGL-1 using rib-
bons (B) for the homodimer and hydrophobic surface (in which blue indicates the most hydrophilic residues, red indicates the most hydrophobic 
residues) (C); in both cases, sticks are used for PGL-1. (D) 2D interaction between the homodimer and PGL-1. (A and B) Chains A and B are 
shown in red and pink, respectively. (A and D) Hydrogen bonds are shown as green dashed lines, and hydrophobic interactions are shown as 
half circles with lines through them.
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Our findings might contribute to deciphering the 
first step of how M. leprae establishes initial host con-
tact for manipulating signaling pathways leading to axo-
nal damage and hindering myelin maintenance in the 
basal lamina.(58) Similar mechanisms have been reported 
involving other host receptors that contain laminin-like 
domains for the entry of viral pathogens.(59,60) For exam-
ple, the virus that causes Lassa fever targets Schwann 
cells, selectively interfering with the myelination pro-
cess through its viral receptor dystroglycan, leading to 
neurological disorders.(61)

Our study might provide insights into how mycobac-
terial glycolipids interact with host laminin and suggests 
a new strategy for exploring the development of new di-
agnostic or therapeutic options based on the druggable 
proteome from the leprosy bacillus.(62,63,64)

In conclusion - We identified N-glycosylation sites, 
disulfide bridges, and domains along human LAMA2. 
We dissected the LAMA2 sequence into 52 peptides, 
including the potential PGL-1 binding site from M. lep-
rae. Our peptide targeting PGL-1 is located between 
residues 2161-2220, and its structure exhibits a combi-
nation of β-sheets and random coiled region that might 
flexibly bind PGL-1. Thus, our approach with a spe-
cific peptide could block the interaction of M. leprae 
with the host cell, thereby preventing long therapeutic 
regimens, disease chronicity, and possibly nerve dam-
age in Hansen’s disease patients.
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