Contribuição ao estudo da eliptocitose *

por

W. O. Cruz e R. Pimenta de Melo

* (Com 1 figura no texto e 1 estampa)

I — EXCENTRICIDADE NORMAL DAS HEMATIAS

E' noção corrente ser a fórmas das hemáticas nos mamíferos, com exceção dos camelídeos, aproximadamente circular. Entretanto, mesmo no exame de sangue a fresco pôde-se encontrar hemáticas nitidamente elípticas, independente de qualquer compressão mecânica ou alteração na isotonía do líquido ambiente. Um exame atento revela em qualquer sangue normal a presença de hemáticas ovoides ou mesmo fortemente elípticas.

Günther (1932) foi o primeiro a medir esta variabilidade de fórmas. Este autor em primeiro lugar demonstrou que a fórmua elíptica das hemáticas é um fenômeno normal, próprio à estrutura dessas células, nada tendo a ver com nenhuma causa estranha. Como fatos comprovatórios: 1.º — o gráu de excentricidade nos esfregaços é menor que nos preparados de sangue a fresco. 2.º — nos esfregaços o maior diâmetro das hemáticas elípticas acha-se dirigido em todas as direções. 3.º — a quantidade de hemáticas elípticas de uma população hemática é uma constante individual. Estes fatos provam que as forças mecânicas durante o esfregaço não são causadoras de tais deformações, tal como ser interpretara anteriormente o aparecimento de certas hemáticas elípticas nos esfregaços.

A técnica usada por Günther, 1932, foi a de medir os diâmetros extremos das hemáticas e calcular a excentricidade mediante a fórmula: \[E = \sqrt{\frac{b}{a}} \]^2, na qual \(b \) representa o menor diâmetro e \(a \) o maior.

A excentricidade oscila entre 0 e 1; no caso do círculo, \(a \) sendo igual

* Recebido para publicação a 21 de Junho de 1939 e dado à publicidade em Março de 1940.
a, b, a excentricidade é igual a 0, nas hematias fortemente elíticas os valores atingem 0,90 e mesmo 0,95.

No ponto de vista clínico dividiu Günther (1932) o gráu de excentricidade das hematias em 4 classes distintas: a primeira, de hematias circulares ou aproximadamente circulares — E = 0 a 0,47; a segunda, de hematias ligeiramente elíticas — E = 0,48 a 0,62; a terceira de hematias nitidamente elíticas — E = 0,63 a 0,74; a ultima de hematias fortemente elíticas — E = 0,75 a 1.

Esta distribuição por classes tem um grande valor prático e é muito mais importante que a excentricidade média, como veremos adiante. Após alguma prática, pôde-se determinar o gráu de excentricidade das hematias mesmo sem o fastidioso trabalho de medição, unicamente baseados na apreciação visual direta do esfregaço. O quadro da pag. 127 mostra os limites de excentricidade de cada uma das classes.

E de grande importância padronizar o método de coloração, pois durante a fixação das células, a contração decorrente provoca uma diminuição da excentricidade. Günther fixava o esfregaço pelo May-Grunwald, por conseguinte pelo álcool metílico, enquanto que Penati (1930), usando o acido osmico como fixador encontrou resultados sempre mais elevados. Os resultados definitivos apresentados por esses dois autores foram obtidos pela coloração classica de May-Grunwald.— Giemsa. Nosso método não difere em essência do acima citado, só que fixávamos pelo álcool metílico puro durante 5 minutos e May-Grunwald durante 2 minutos. Os resultados são aproximadamente idênticos como se verifica abaixo:

<table>
<thead>
<tr>
<th>Nome</th>
<th>N. de hematias</th>
<th>Fixação</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob.</td>
<td>200</td>
<td>Alcool metílico (5')</td>
<td>59</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>1,46</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Grunwald (2') Giemsa (20')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rob.</td>
<td>200</td>
<td>May-Grunwald (3') Giemsa (20')</td>
<td>67</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>1,20</td>
<td>3</td>
</tr>
</tbody>
</table>

No ponto de vista clínico é de maior interesse o número de hematias das duas últimas classes, grupando as hematias para as quais deve-se reservar a denominação de hematias eliptocíticas ou simplesmente eliptocitos. Outras indicações úteis na distribuição da elipticidade entre a população hemática, são: a excentricidade média (E. M.), o índice de excentricidade proposto por Penati, I. E. = (a + 2b + 3c) - 30 na qual a é a porcentagem da 2.ª classe, b a dá 3.ª e c a da 4.ª, e a excentricidade das duas últimas classes de Günther (E. E.).
Na verificação prática da elipticidade das hemácias, basta observar sem qualquer medição, por simples apreciação visual, a distribuição da forma celular entre as 4 classes acima representadas. A classe I, de hemácias circulares ou aproximadamente circulares, compreende 70% das hemácias normais; a classe II, de hemácias ligeiramente elípticas, 26%; quanto as hemácias fortemente elípticas, os 3% restantes, de hemácias nitidamente elípticas agrupam-se na classe III. Quantas pessoas normais, em quatro pessoas normais. No caso de leucemia reticulo-endotelial apresentado, verifica-se 35% na classe III e 24% na classe IV (Ver aspeço do sangue nas fotos da estampa 1).
No homem normal os dados adquiridos referem-se unicamente a 10 pessoas (4 casos de Günther e 6 de Penati); nós apresentamos os resultados de 20 outros casos.

CASOS NORMAIS (GÜNThER)

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.</td>
<td>m.</td>
<td>66,7</td>
<td>19,7</td>
<td>12,0</td>
<td>1,6</td>
<td>1,60</td>
<td>13,6</td>
<td></td>
</tr>
<tr>
<td>W.</td>
<td>m.</td>
<td>60,0</td>
<td>19,0</td>
<td>14,0</td>
<td>7,0</td>
<td>2,26</td>
<td>21,0</td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td>m.</td>
<td>90,0</td>
<td>6,0</td>
<td>4,0</td>
<td>0</td>
<td>0,46</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>m.</td>
<td>91,7</td>
<td>5,7</td>
<td>2,3</td>
<td>0,3</td>
<td>0,37</td>
<td>2,6</td>
<td></td>
</tr>
</tbody>
</table>

Média | 74,4 | 14,9 | 8,2 | 2,5 | 1,29 | 10,3|

CASOS NORMAIS (PENATI)

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. F.</td>
<td>54</td>
<td>44</td>
<td>48,2</td>
<td>7,8</td>
<td>0</td>
<td>2,12</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td>F. A.</td>
<td>18</td>
<td>52,4</td>
<td>32,4</td>
<td>14,8</td>
<td>0,4</td>
<td>2,10</td>
<td>15,2</td>
<td></td>
</tr>
<tr>
<td>C. D.</td>
<td>23</td>
<td>47,6</td>
<td>43,6</td>
<td>8,4</td>
<td>0,4</td>
<td>2,05</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td>L. S.</td>
<td>27</td>
<td>52,0</td>
<td>38,0</td>
<td>9,6</td>
<td>0</td>
<td>1,92</td>
<td>9,6</td>
<td></td>
</tr>
<tr>
<td>S. C.</td>
<td>35</td>
<td>56,1</td>
<td>33,7</td>
<td>9,9</td>
<td>0,3</td>
<td>1,81</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>T. G.</td>
<td>25</td>
<td>58,0</td>
<td>32,4</td>
<td>9,6</td>
<td>0</td>
<td>1,72</td>
<td>9,6</td>
<td></td>
</tr>
</tbody>
</table>

Média | 51,7 | 38,1 | 10,0| 0,2 | 1,96 | 10,2|

CASOS NORMAIS DOS AUTORES

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALV.</td>
<td>m.</td>
<td>6</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0,83</td>
<td>0</td>
</tr>
<tr>
<td>GLO.</td>
<td>f.</td>
<td>3</td>
<td>72</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>1,06</td>
<td>4</td>
</tr>
<tr>
<td>CAR.</td>
<td>m.</td>
<td>4</td>
<td>74</td>
<td>22</td>
<td>4</td>
<td>0</td>
<td>1,00</td>
<td>4</td>
</tr>
<tr>
<td>ROD.</td>
<td>m.</td>
<td>22</td>
<td>71</td>
<td>24</td>
<td>5</td>
<td>0</td>
<td>1,13</td>
<td>5</td>
</tr>
<tr>
<td>ANT.</td>
<td>m.</td>
<td>25</td>
<td>60</td>
<td>36</td>
<td>4</td>
<td>0</td>
<td>1,46</td>
<td>4</td>
</tr>
<tr>
<td>SYL.</td>
<td>f.</td>
<td>21</td>
<td>57</td>
<td>32</td>
<td>11</td>
<td>0</td>
<td>1,80</td>
<td>11</td>
</tr>
<tr>
<td>EVA.</td>
<td>m.</td>
<td>29</td>
<td>55</td>
<td>40</td>
<td>4</td>
<td>0</td>
<td>1,60</td>
<td>4</td>
</tr>
<tr>
<td>POR.</td>
<td>m.</td>
<td>22</td>
<td>83</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0,56</td>
<td>0</td>
</tr>
<tr>
<td>EMM.</td>
<td>m.</td>
<td>23</td>
<td>61</td>
<td>36</td>
<td>4</td>
<td>0</td>
<td>1,46</td>
<td>4</td>
</tr>
<tr>
<td>ALB.</td>
<td>m.</td>
<td>29</td>
<td>48</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>1,13</td>
<td>2</td>
</tr>
<tr>
<td>ROB.</td>
<td>m.</td>
<td>20</td>
<td>62</td>
<td>55</td>
<td>3</td>
<td>0</td>
<td>1,36</td>
<td>3</td>
</tr>
<tr>
<td>CRI.</td>
<td>m.</td>
<td>25</td>
<td>51</td>
<td>43</td>
<td>6</td>
<td>0</td>
<td>1,83</td>
<td>6</td>
</tr>
<tr>
<td>E. O. C.</td>
<td>f.</td>
<td>63</td>
<td>86</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0,46</td>
<td>0</td>
</tr>
<tr>
<td>L. O. C.</td>
<td>f.</td>
<td>47</td>
<td>80</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0,73</td>
<td>2</td>
</tr>
<tr>
<td>ERN.</td>
<td>m.</td>
<td>22</td>
<td>60</td>
<td>37</td>
<td>3</td>
<td>0</td>
<td>1,43</td>
<td>3</td>
</tr>
<tr>
<td>PAU.</td>
<td>m.</td>
<td>23</td>
<td>71</td>
<td>24</td>
<td>4</td>
<td>1</td>
<td>1,16</td>
<td>4</td>
</tr>
<tr>
<td>JOR.</td>
<td>m.</td>
<td>22</td>
<td>88</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0,43</td>
<td>1</td>
</tr>
<tr>
<td>W. AL.</td>
<td>m.</td>
<td>31</td>
<td>90</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0,40</td>
<td>2</td>
</tr>
<tr>
<td>GUS.</td>
<td>m.</td>
<td>26</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0,80</td>
<td>0</td>
</tr>
<tr>
<td>LOU.</td>
<td>m.</td>
<td>22</td>
<td>73</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>1,00</td>
<td>3</td>
</tr>
</tbody>
</table>

Média | 71 | 26 | 3 | 0' | 1,06 | 3 |
Günther não observou nenhuma ligação entre a excentricidade e o sexo nem a idade e também não encontrou nenhuma correlação entre a superfície da hematia e a sua excentricidade.

Entre os animais a excentricidade das hematias foi verificada até agora de modo superficial. Enquanto que no homem a E. M. é de 0,46, nos peixes está em torno de 0,70, nos anfíbios 0,75, nas aves 0,83 a 0,86. Entre os camelídeos a E. M. calculada segundo os dados de Guiller, foram, segundo Günther: Camelus dromedarius 0,84, Camelus bactrianus 0,87, Auchenia vicuña 0,85, Auchenia llama 0,85. E importante notar que nos camelídeos o desvio padrão da curva de excentricidade é muitíssimo menor que no homem (0,037 para a llama e 0,16 para o homem). Em 200 hematias de camelo (Camelus bactrianus) encontramos uma excentricidade média de 0,86 (Estampa 1, fig. 6).

II — HIPEREXCENTRICIDADE, OVALOCITOSE OU ELIPTOCITOSE

Das anomalias sobre a E. da hematia ainda não foi descrito nenhum caso de hiperexcentricidade com alguma significação clínica.

Hiperexcentricidade nítida foi encontrada em três diferentes condições: na anemia perniciosa (Penati, 1930; Günther, 1928; W. O. Cruz e R. Pimenta de Melo), na anemia denominada eliptocítica (Günther) e alguns casos em indivíduos normais descritos como uma anomalia constitucional (Dresbach, 1904 — 1 caso; Bishop, 1914 — 2 casos; Sydénstrickes, 1923 — 1 caso; Huck e Bigalow, 1923 — 2 casos; Van der Bergh, 1928 — 8 casos; Bernhardt, 1928 — 1 caso; Günther, 1928 — 8 casos; Hunter e Adams, 1929 — 8 casos; Lawrence, 1930 — 5 casos; Van der Bergh e Rehorst — 7 casos; Roth e Jung, 1931 — 1 caso; Terry, Hollandsworth e Eugenio, 1932 — 2 casos; Cheney — 14 casos; Mac Carty — 11 casos; Rotter — 9 casos; Rosenow — 11 casos; Babudieri, 1936 — 3 casos; Penati, 1930 — 6 casos).

Nos casos acima citados a soma das duas últimas classes (E. E.) acha-se cerca de três a quatro vezes maior do que o normal. Um aumento discreto de excentricidade (classe III e IV até duas vezes o normal) encontra-se em diversas anemias secundárias e na ictericia hemolítica (Penati, Günther).

A significação da ovalocitose (I. E. > 30%) não é um problema ainda esclarecido, dois fatores parecem intervir nessa modificação estrutural das hematias: um fator interno constitucional e um fator externo ligado à ação lesiva da causa morbida. Günther acredita numa anomalia constitucional nos casos de anemia perniciosa, pois observou que a ovalocitose não desapareceu com o tratamento.
O fator constitucional ficou bem evidente em alguns casos publicados, como os de Hunter e Adams, 1929, que observaram eliptocitose em três gerações de uma mesma família (eliptocitose familiar).

Desde os seus trabalhos iniciais refere Günther a constância na porcentagem de hemacias elípticas em cada indivíduo. Até que ponto esta se faz observar não foi fato convenientemente pesquisado. Encontramos em um caso excentricidade nitidamente acima do normal (I. E. = 26 para um I. E. normal igual a 3) em um esfregaço feito ha cinco anos atrás; repetindo-se o exame deste indivíduo verificou-se um índice de excentricidade igual a 20, praticamente o mesmo que o anterior, pois foram sómente observadas 100 hemacias em cada exame. Neste caso a eliptocitose aparece com uma característica constitucional bem definida.

III — LEUCEMIA RETICULO-ENDOTELIAL E ELIPTOCITOSE

Ao observarmos esfregaços de um caso de leucemia reticulo-endotelial verificamos à primeira vista a presença de numerosisíssimas hemacias fortemente elípticas. Observamos dois esfregaços cinco dias antes da morte do doente e novos esfregaços um dia antes de verificar-se o obito.

OBSERVAÇÃO

A alimentação durante todo o tempo da internação constou de leite, café, caldo de fruta e de legumes. Algumas vezes a paciente vomitou após a ingestão dos mesmos.

MEDICAMENTOS E OUTRAS NOTAS: —

Dias: 22 — Lactato de calcio — 25,0. Uma colher das de chá de 3/3 horas. Tempo de coag era de 14'; tempo de hemorragia 38'.

23 — Lactato de calcio. Uma colher das de chá de 3/3 horas. Diurese boa (mais ou menos 1.000 cc.).

24 — Lactato de calcio + 5 cc. de coaguleno. Temp. 40 graus; pulso 136; resp. 40.
25 — Lactato de calcio + medula ossea. 3 emps. por dia.
26 — Lactato de calcio + medula ossea.
27 — Lactato de calcio + medula ossea.
Transfusão de sangue 220 cc.
28 — Lactato de calcio + medula ossea.
O estado geral piorou bastante. A doente apresenta-se em semi-
inconsciência. A noite muito agitada, delirou.
29 — Pela manhã estava calma. Foi feita a medicação precedente.
O obito verificou-se ás 23,30 hs.

Na tabela abaixo e microfotografias (Estampa 1) fica bem evidenciada a acentuada eliptocitose deste caso.

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>n. cels</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
<th>E. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. S. lamina nº. 135</td>
<td>f.</td>
<td>38</td>
<td>150</td>
<td>9</td>
<td>27</td>
<td>42</td>
<td>22</td>
<td>5,90</td>
<td>64</td>
<td>—</td>
</tr>
<tr>
<td>P. S. lamina nº. 142</td>
<td>f.</td>
<td>38</td>
<td>150</td>
<td>19</td>
<td>27</td>
<td>29</td>
<td>25</td>
<td>5,33</td>
<td>54</td>
<td>—</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>300</td>
<td>14</td>
<td>27</td>
<td>35</td>
<td>24</td>
<td></td>
<td>5,61</td>
<td>59</td>
<td>0,63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>n. cels</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. D.</th>
<th>E. E.</th>
<th>E. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. S. lamina nº. 153</td>
<td>f.</td>
<td>38</td>
<td>150</td>
<td>37</td>
<td>30</td>
<td>24</td>
<td>9</td>
<td>3,50</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>P. S. lamina nº. 150</td>
<td>f.</td>
<td>38</td>
<td>150</td>
<td>45</td>
<td>30</td>
<td>19</td>
<td>6</td>
<td>2,86</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>300</td>
<td>41</td>
<td>30</td>
<td>21</td>
<td>8</td>
<td></td>
<td>3,18</td>
<td>29</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Para verificar se se tratava de eliptocitose decorrente da doença ou de anomalia constitucional familiar, verificamos a excentricidade hemática em três filhos da doente, cujos resultados apresentaram-se normais (vér tabela abaixo).

<table>
<thead>
<tr>
<th>Nome</th>
<th>sexo</th>
<th>idade</th>
<th>n. cels</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALV.</td>
<td>m.</td>
<td>6</td>
<td>100</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0,83</td>
<td>0</td>
</tr>
<tr>
<td>GLO.</td>
<td>f.</td>
<td>3</td>
<td>100</td>
<td>72</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>1,06</td>
<td>4</td>
</tr>
<tr>
<td>CAR.</td>
<td>m.</td>
<td>4</td>
<td>100</td>
<td>74</td>
<td>22</td>
<td>4</td>
<td>0</td>
<td>1,00</td>
<td>4</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>300</td>
<td>74</td>
<td>23</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0,96</td>
<td>3</td>
</tr>
</tbody>
</table>
Verificamos ainda a excentricidade das hematias publicadas por diversos autores ao descreverem leucemias monocíticas (Piney e Wyard, 1938; Kracke, 1937; Schilling, 1936; Klump e Evans, 1936; Roversi e Solaris, 1938; Ernandez, 1938; Jossy e Young, 1931) ou reticulo-endotelial (Roversi e Solaris, 1938; Gittins e Hawksley, 1933), tendo encontrado no resultado geral, como veremos abaixo, uma nitida hiperexcentricidade.

<table>
<thead>
<tr>
<th>Número de células contadas</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I. E.</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>7</td>
<td>4,20</td>
<td>44</td>
</tr>
</tbody>
</table>

SUMARIO

Os autores resumem os conhecimentos atuais sobre eliptocitose normal e patológica. Apresentam 20 verificações em indivíduos normais, cujos resultados mostraram uma excentricidade menor que a descrita por autores europeus: 2.000 hematias em 20 indivíduos normais.

\[
\begin{array}{cccccc}
& I & II & III & IV & I. E. & E. E. \\
71 & 26 & 3 & 0 & 1,06 & 3 \\
\end{array}
\]

Confirmaram a hipereliptocitose na anemia perniciosa. Descrevem um caso de hiperexcentricidade constitucional, cujo resultado manteve-se constante durante 5 anos. Por fim descrevem em um caso fatal de leucemia reticulo-endotelial uma hiperexcentricidade bastante acentuada:

\[
\begin{array}{cccccc}
& I & II & III & IV & I. E. & E. E. \\
300 hematias observadas & 14 & 27 & 35 & 24 & 5,63 & 59 \\
\end{array}
\]

Medindo a excentricidade das hematias apresentadas em microfotografias e desenhos de diversos trabalhos referentes à leucemia monocítica ou reticulo-endotelial, verificaram no resultado global uma hiperexcentricidade bem nítida.

O presente trabalho teve valiosa colaboração tecnic de nosso auxiliar Chrysantho Augusto de Almeida, a quem agradecemos.
SUMMARY

The authors summarize all that is known at the present time about normal and pathological eliptocytosis. They present 20 observations of normal persons, the results of which showed a smaller eccentricity than that described by the European authors: 2000 red cells in 20 normal persons.

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I.E.</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>1.06</td>
<td>3</td>
</tr>
</tbody>
</table>

They reassured the fact of a hypereliptocytosis in pernicious anemia. A case of constitutional hyperexcentricity is detailed in which the result was constant during 5 years.

Lastly they describe in a fatal case of reticulo-endothelial leucemia a highly pronounced hyperexcentricity:

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>I.E.</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>27</td>
<td>35</td>
<td>24</td>
<td>5.63</td>
<td>59</td>
</tr>
</tbody>
</table>

Measuring the excentricity of the red cells shown in the microphotographs and sketches of several papers dealing with monocytic or reticulo-endothelial leucemia, the authors verified in the final result, a very clear hiperoxcentricity.

BIBLIOGRAFIA

Babudieri, B.

Bernhardt, H.

Bishop, F. W.

Dresbach, M.
ERNANDEZ, G.

GUNATHER, H.

GITTINS, R. & HAWKESLEY, J.

HUCK, J. G. & BIGALOW, R. M.

HUNTER, W. C. & ADAMS, R. B.

JOSBY, L., YOUNG, M. & LAWRENCE, J.

KLUMPP, T. & EVANS, T.
1936. Monocyte Leukemia. Arch. of Int. Med., 58 (6) : 1057, fig. 3.

KNOLL, W.

KRACKE, R. R.

LAWRENCE, J. S.

PENATI, F.

PINEY & WYARD

ROTH, O. & JUNG, E.
ROVERSI, A. S. & SALARIS, C.

SYDENSTRICKER, V. P.

SCHILLING, V.
 1936. El quadro hematico y su interpretacion clinica. 3.ª ed. : 255, fig. 58.

TERRY, M. C., HOLLINGSWORTH, E. W. & EUGENIO, V.

VAN DER BERGH, A. A. H.
Estampa 1

Fig. 1—Sangue normal. 1000 ×. Excentricidade media = 0,42.
Figs. 2 a 5—Sangue leucemico. Leucemia reticulo-endotelial. 1000 ×. Excentricidade media = 0,63.
Fig. 6—Sangue de camelo (Camelus bactrianus). 1400 ×. Excentricidade media = 0,86.

Plate 1

Fig. 1—Normal blood. 1000 ×. Mean eccentricity = 0,42.
Figs. 2 to 5—Leukemic blood. Reticulo-endotelial Leukemia. 1000 ×. Mean eccentricity = 0,63.
Fig. 6—Camel blood (Camelus bactrianus). 1400 ×. Mean eccentricity = 0,86.
Cruz e Melo: Contribuição ao estudo da eliptocitose.