Las parasitosis intestinales debidas a geohelmintos son más frecuentes en regiones húmedas y pobres, que en ciudades económicamente desarrolladas (Pessoa & Vianna, 1982), pudiéndose presentar en forma endémica, tanto en regiones tropicales como templadas, siempre y cuando se combinen las malas condiciones higiénicas y sanitarias con elevada humedad ambiental (Croll et al., 1982), debido a que la transmisión de las mismas está vinculada a la contaminación fecal de la tierra y a un inadecuado saneamiento ambiental (Botero, 1981). Razones por las cuales diversos autores y entre ellos Benaroch (1966) consideran que estas parasitosis pueden utilizarse como indicadores de atraso socio-económico.

En general, los trabajos sobre epidemiología de geohelmintiasis humanas se basan en el conteo del número de huevos por gramo de heces que presenten los hospedadores, a partir de cuya información, diversos autores estiman el número de vermes adultos contenidos por dichos individuos (Scorza et al., 1974; Atias, 1979; Urdaneta, 1973); sin embargo, existen dudas sobre la validez de esta metodología, ya que ha sido observado en muchas asociaciones hospedador-parásito, que no existe una relación lineal entre el número de adultos y la producción de huevos (Anderson, 1979; Anderson & May, 1978).

Tomando en consideración que ha sido demostrado que Ascaris lumbricoides y Trichu-
gramo de heces de los geohelmintos *A. lumbricoides* y *T. trichiura*, calculamos el índice de dispersión de Morisita (Is) y la correspondiente prueba F (Brower & Zar, 1977; Morales & Pino, 1987), para determinar si el valor de Is es estadísticamente diferente de 1; ya que en caso de que el mencionado índice resulte superior y estadísticamente diferente de 1, se considera que la distribución de los datos se corresponde con una ley binomial negativa.

El tipo de disposición espacial de los huevos de *A. lumbricoides* y de *T. trichiura* en la materia fecal fue determinado mediante el cálculo del coeficiente de agregación (k), según fórmula suministrada por Southwood (1975) y Poole (1974). Dicho índice ha sido definido como el parámetro de contagio de la distribución binomial negativa (Rojas, 1964; Cancela Da Fonseca, 1966) y es una medida inversa del grado de apilamiento, es decir que bajos valores de k se corresponden con una mayor sobredispersión o contagiosidad (Bliss & Fisher, 1953; Anderson & Gordon, 1982). El valor del coeficiente k será próximo a 8, en la disposición espacial al azar; muy inferior a 8 en la contagiosa o agregativa y negativo en la normal (Poole, 1974; Cabaret, 1982).

Las edades de los individuos cuyas heces fueron examinadas oscilaron entre 1 y 90 años.

Para el cálculo del índice de dispersión de Morisita y del coeficiente de agregación, se utilizaron todos los datos (n = 97, para *A. lumbricoides* y n = 133, para *T. trichiura*). Mientras que para la prueba de U de Mann-Whitney (Morales & Pino, 1987), utilizada para comparar la capacidad contaminante de las heces de individuos jóvenes, respecto a la de los adultos, trabajamos sólo con las muestras positivas (n = 52, para *A. lumbricoides* y n = 99, para *T. trichiura*).

### RESULTADOS

En la Tabla I, observamos que el número de huevos por gramo de heces, tanto en *A. lumbricoides* como en *T. trichiura* sigue una distribución de frecuencias que se ajusta a una ley binomial negativa y los bajos valores del coeficiente k, nos indican que la disposición espacial de dichos huevos en la materia fecal es de tipo contagioso.

### TABLA I

<table>
<thead>
<tr>
<th>Parasito</th>
<th>n</th>
<th>Is</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Ascaris lumbricoides</em></td>
<td>97</td>
<td>6,77**</td>
<td>0,171</td>
</tr>
<tr>
<td><em>Trichuris trichiura</em></td>
<td>133</td>
<td>3,55**</td>
<td>0,389</td>
</tr>
</tbody>
</table>

n = número de muestras examinadas. ** = significativo a un nivel α = 0,01.

Al discriminar las muestras con relación a la edad de los individuos (< de 15 años y ≥ de 15 años), observamos que novedamente la distribución de frecuencias del número de huevos por gramo de heces se ajusta a la probabilidad de distribución de la binomial negativa y que la disposición espacial de los huevos de ambas especies parásitas es de tipo contagiosa (Tablas II y III).

### TABLA II

<table>
<thead>
<tr>
<th>Grupo Etario</th>
<th>n</th>
<th>Is</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menores de 15 años</td>
<td>62</td>
<td>6,05**</td>
<td>0,195</td>
</tr>
<tr>
<td>Mayores de 15 años</td>
<td>35</td>
<td>4,75**</td>
<td>0,259</td>
</tr>
</tbody>
</table>

n = número de muestras consideradas. ** = significativo a un nivel α = 0,01.

### TABLA III

<table>
<thead>
<tr>
<th>Grupo Etario</th>
<th>n</th>
<th>Is</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menores de 15 años</td>
<td>82</td>
<td>3,45**</td>
<td>0,403</td>
</tr>
<tr>
<td>Mayores de 15 años</td>
<td>51</td>
<td>3,84**</td>
<td>0,345</td>
</tr>
</tbody>
</table>

n = número de muestras estudiadas. ** = significativo a un nivel α = 0,01.

El análisis estadístico mediante la prueba "U" de Mann-Whitney, para el número de huevos por gramo de heces de ambos parásitos entre los individuos mayores y menores de 15 años, nos indica que la probabilidad de distribución de la binomial negativa es de tipo contagioso.
años, resultó no significativo, ya que para *A. lumbricoides* el valor del estadístico de prueba (Z) fue igual a 0,89 y para *T. trichiura* a 1,52.

DICUSIÓN

Las malas condiciones higiénicas han sido señaladas como conyugantes de las parasitosis (Urdaneta, 1973) y la presencia de *T. trichiura* ha sido utilizada como un indicador de contaminación fecal (Lowry, 1972). En el mismo sentido, Craig & Faust (1974), consideran que la ascaridiasis es consecuencia, básicamente de la siembra del suelo que rodea a la casa con los huevos presentes en las deyecciones de los individuos parasitados. En síntesis, podemos decir que las infestaciones por geoelmintos afectan principalmente a las poblaciones carentes de recursos, particularmente del sector rural y de las zonas marginales de las ciudades.

Es conocido, que en zonas endémicas la prevalencia y la intensidad de la infestación por *A. lumbricoides* se incrementan rápidamente en la infancia y tienden a permanecer elevadas en los grupos de edades adultas; sin embargo, en ciertas áreas la incidencia de dicho parásito puede declinar en los individuos de edades avanzadas, pero no está demostrado que esto sea el resultado de inmunidad adquirida o de cambios en la rata de contacto con los estados infestivos (Croll et al., 1982). En vista de la similaridad epidemiológica, nosotros pensamos que una situación parecida se da en el caso de *T. trichiura*.

La distribución estadística del número de huevos por gramo de heces y la disposición espacial de los huevos de ambos nematodos en la materia fecal, responden a un mismo patrón, es decir, se ajustan respectivamente al modelo de la binomial negativa y se disponen de manera contagiosa, esto tanto con datos agrupados en un solo bloque, como discriminados en base a la edad de los individuos, cuyas heces fueron muestreadas.

Esta información evidencia la gran heterogeneidad en el interior de los hospedadores, independientemente del grupo etario al cual pertenecen. Una situación similar a la anteriormente descrita fue demostrada para *A. lumbricoides* en individuos infestados bajo condiciones naturales, por Croll et al. (1982) y para una gran cantidad de helmintos parásitos de rumiantes (Cabaret & Morales, 1983; Morales et al., 1985; 1986). Creemos además que la heterogeneidad en la producción de huevos por gramo de heces, puede ser indicativo de que también existe heterogeneidad en las posibilidades de infestación de los hospedadores debida a diferencias en cuanto a hábitos alimenticios e higiénicos (Croll et al., 1982; Morales et al., 1984).

La no existencia de diferencias significativas en cuanto al número de huevos por gramo de heces entre los niños menores y mayores de 15 años, ha sido también señalada por Gabaldón (1967), como fenómeno característico en comunidades con elevadas prevalencias, como la estudiada por nosotros. Sugiriendo la constancia de la intensidad de la infestación en edades adultas, que la inmunidad adquirida no es un rasgo significativo en la epidemiología de estas geoelmintiasis, hecho que fue señalado por Croll et al., 1982, para el caso particular de la ascaridiasis. La prueba de U de Mann-Whitney, nos permitió evidenciar la enorme heterogeneidad en los conteos del número de huevos por gramo de heces, en vista de que los dos grupos etarios estudiados, la distribución de rangos no respondió a un patrón en particular, pues tanto en los hospedadores adulto como en los jóvenes, se encuentran individuos que producen bajas o elevadas cantidades de huevos por gramo de heces.

Para concluir, pensamos que la elevada prevalencia de ambas especies parásitas en las zonas marginales estudiadas (Morales et al., 1984), unida a una intensa agregación de sus huevos en las heces de los hospedadores, nos sugiere que tanto *A. lumbricoides* como *T. trichiura* garantizan la contaminación del medio ambiente y la conquista de nuevos hospedadores, mediante la sobredispersión de sus huevos en las heces, lo cual es indicativo de que el mayor número de huevos por gramo de heces de ambos geoelmintos se concentra en unos pocos individuos, independientemente de su edad, quienes tendrían, por consecuencia, la mayor capacidad contaminante.

RESUMEN

Estrategia de *Ascaris lumbricoides* y *Trichuris trichiura* para la contaminación del medio ambiente, en una zona endémica. La distribución de frecuencias del número de huevos por gramo de heces tanto de *Ascaris lumbricoides* como de *Trichuris trichiura* en humanos infestados en una zona endémica se corresponde con...
una ley binomial negativa y la disposición espacial de dichos huevos en la materia fecal, resultó ser en agregados, independientemente de que los hospedadores sean mayores o menores de 15 años. Estos resultados nos indican que solamente unos pocos hospedadores son los responsables de la mayor contaminación del medio ambiente y que esos individuos no pertenecen a ningún grupo etario en particular.

Palabras claves: Ascaris lumbricoides – Trichuris trichiura – estrategia – contaminación – agregación

REFERENCIAS


