Breeding media used for rearing flies in the Zoological Garden of Rio de Janeiro (Rio-Zoo) — In the Rio-Zoo 7,377 Callipytrate flies, belonging to 4 families and 22 species were bred, from August 1987 to April 1988. The substrate media used were: banana, shrimp, mouse carcasses, dog faeces, human faeces, bovine liver, squid, papaya, fish, crab and tomato. The frequency of the bred species are as follows: Fannia sp. (subgroup pusio), Atherigona orientalis, Chrysomyia megacephala, Phaenicia eximia, Paraphosphopoda chrysostoma, Ophyra genescens, Synthesiomyia nudiseta, Ophyra chalcogaster, Oxysarcodexia fluminensis and Hemilucilia segmentaria. Data concerning the development of the larvae in captive animal faeces is presented. The most prevalent species were: Fannia sp., Sarcophagla occidua, Ophyra chalcogaster, Ravinia belforti and Phaenicia eximia.

Key words: ecology — breeding media — flies — zoological garden

Em jardins zoológicos, os dípteros caliphratos encontram variados substratos para criação, não só nas fezes dos animais como também nos restos de alimentos de origem animal e vegetal, demonstrando serem estes ecossistemas áreas de interessantes estudos sobre biocologia de artrópodos.

Em vista da escassa literatura sobre insetos associados a jardins zoológicos, resolveu-se executar esta pesquisa, apresentando-se um estudo sobre alguns substratos utilizados para o desenvolvimento larvar de moscas no Rio-Zoo. Também se apresenta um trabalho, ainda que incompleto, sobre desenvolvimento larvar de mucoídes em fezes de animais cátivos do Zoo. Com este artigo, dá-se continuidade a uma linha de trabalho sobre substratos usados para a criação de dípteros caliphratos em variados ecossistemas do Rio de Janeiro (d’Almeida, 1986; 1988).

MATERIAIS E MÉTODOS

As larvas foram criadas em latas de óleo combustível com diâmetro de 10 cm e altura de 15 cm, previamente lavadas, contendo serragem úmida até a metade. Os substratos a testar, colocadas diretamente sobre a serragem, foram: peixe (sardinha), figado fresco de bovino, carcaça de camundongo (albino de laboratório), fezes humanas e caninas, siri, camarão, lula. Como substratos vegetais utilizaram-se banana prata madura, mamão e tomate amassados com fermento.

As latas foram colocadas no Rio-Zoo, em local com árvores de grande porte e variados arbustos, fora do acesso do público. Procurou-se colocar as latas em áreas onde pudessem receber sol pelo menos algumas horas do dia. Para cada tipo de substrato foram preparadas três latas de criação que permaneceram três dias expostas à visitação das moscas. Findo esse período as latas foram levadas para o Laboratório de Entomologia do Departamento de Biologia da Fundação Oswaldo Cruz, ficando em temperatura ambiente, sendo as elas acoplados sacos de plástico, cuja posterior remoção permitia a captura das moscas criadas. Os exemplares que iam ecolindo, eram levados para o Laboratório de Entomologia Médica do Departamento de Parasitologia da Universidade Federal do Rio de Janeiro para posterior identificação.

Em uma segunda fase dessa pesquisa, utilizaram-se fezes encontradas em recintos de animais cátivos (Primates: Pan troglodytes, Cebus sp., Ateles sp., Macaca sp.; Canídeos: Cerdoyon sp.; Felídeos: Felis tigrina, Elis pardalis, Panthera tigris, Panthera leo; Herbívoros: Ceratotherium sp., Cervus sp., Giraffa camelopardalis, Elephas maximus; Roedores: Hydrochoerus hydrochoerus; Desdentados: Myrmecophaga jubata; Aves granívoras: Crax sp., Pipile cujubi, Crax sp., Pipile cujubi,
Pavo cristatus; Répteis: Testudo sp. As fezes obtidas eram colocadas nas latas de criação sobre a serragem úmida, seguindo-se a metodologia citada anteriormente. Essa fase da pesquisa foi interrompida precocemente, o que impossibilita uma análise melhor dos resultados.

Os experimentos foram iniciados em agosto de 1987 e terminados em abril de 1988, expondo-se semanalmente à visitação das moscas, três latas de criação para cada tipo de substrato.

RESULTADOS E DISCUSSÃO

Foram criados 7.377 dipteros pertencentes a quatro famílias: sendo oito de Sarcophagidae, sete de Muscidae, seis de Calliphoridae e um de Fanniidae.

No Rio-Zoo, as espécies da Família Fanniidae foram as que criaram maior número de exemplares (3.079 – 41,73%); as demais obtiveram os seguintes resultados: Calliphoridae (1.944 – 26,35%), Muscidae (1.640 – 22,23%) e Sarcophagidae (714 – 9,6%). Na área rural e urbana do Rio de Janeiro, as famílias com maior número de exemplares foram Calliphoridae (38,85%) e Muscidae (38,48%) respectivamente (d’Almeida, 1986; 1988).

Na Tabela I observa-se a distribuição das espécies pelos variados substratos utilizados. *Fannia* sp. (subgrupo pusio) obteve o maior número de exemplares (41,73%), tendo sido o camarão o substrato onde incidiu com maior frequência (16,53%).

Na Tabela II apresenta-se a preferência das espécies mais frequentes (100 ou mais exemplares) pelos tipos de substratos usados. Utilizou-se para esta análise estatística o teste χ^2.

Na Tabela III observa-se a distribuição das espécies criadas em fezes de animais cativos do Rio-Zoo, obtidas de defecações nos recintos. *Fannia* sp. (subgrupo pusio) foi a mais frequente. As fezes que se apresentaram como melhores substratos de criação foram as de felídeos e de primatas. O maior número de espécies foi criado nas de felídeos.

Dentre os substratos oferecidos para a criação, no fígado foi onde se desenvolveu maior número de exemplares e espécies (17,41% e 45,45% respectivamente), com 48,44% de calíforídeos. Já na área rural (d’Almeida, 1986) foi no camarão (21,38%) e o de espécies foi no peixe (61,11%). Na área urbana, o fígado também foi o substrato onde se criou maior número de exemplares (19,74%), com 38,43% de calíforídeos (d’Almeida, 1988).

Quanto às espécies criadas nos substratos apresentados, *Fannia* sp. foi a mais frequentemente (41,73%), tendo se criados em todas as substâncias utilizadas, incidindo mais no camarão (16,53%). Na área urbana do Rio de Janeiro, *Fannia* sp. (subgrupo pusio) também teve camarão como substrato preferido (d’Almeida, 1988). Na área rural, esta espécie foi criada com maior frequência em peixe (d’Almeida, 1986).

Em fezes de animais cativos do Zoo, *Fannia* sp. também foi a espécie mais frequente, criando-se com maior abundância em fezes de primatas (Tabela III). Segundo Linhares (1979) e d’Almeida (1983) as espécies do gênero *Fannia*, do subgrupo pusio são siantranótipicas, podendo-se sugerir que a localização geográfica do Rio-Zoo, encravado em um dos bairros mais antigos e populosos, tenha contribuído para que *Fannia* e outros muscídeos siantranótipicos hajam incidido da forma observada.

Torna-se necessário que se efetue um estudo mais aprofundado sobre as espécies siantranótipicas do gênero *Fannia*, pertencentes ao subgrupo pusio, para se entender melhor os mecanismos de domiciliação destas espécies.

Atherigona orientalis foi a segunda espécie criada com maior frequência (12,25%), e na matéria orgânica vegetal se desenvolveu com maior abundância (Tabela I), tendo sido mamão o substrato preferido (50,77%). Na área urbana, esta espécie foi muito abundante, e mamão o melhor substrato (d’Almeida, 1988). Segundo d’Almeida (1986), *A. orientalis* na área rural desenvolveu-se quase exclusivamente em frutas, principalmente em mamão. Diversos autores relatam que esta espécie é frequente em frutas e outros vegetais (Gulzar et al., 1985; Sigh & Chilber, 1972; Pont, 1973). Não se observou *A. orientalis* criando-se em fezes de animais do Rio-Zoo. De acordo com o que se tem observado, este muscídeo não se desenvolve bem em substratos de origem animal em
TABELA I
Dípteros cafipratados criados em diferentes tipos de substratos no Jardim Zoológico do Rio de Janeiro

<table>
<thead>
<tr>
<th></th>
<th>Pe*</th>
<th>Fi</th>
<th>Cm</th>
<th>Fc</th>
<th>Fh</th>
<th>Si</th>
<th>Ca</th>
<th>Lu</th>
<th>Ma</th>
<th>Ba</th>
<th>To</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fannia (subgrupo Pusio)</td>
<td>372</td>
<td>12,08</td>
<td>416</td>
<td>13,51</td>
<td>280</td>
<td>9,09</td>
<td>408</td>
<td>13,25</td>
<td>428</td>
<td>13,90</td>
<td>208</td>
<td>6,75</td>
</tr>
<tr>
<td>Atherigona orientalis</td>
<td>39</td>
<td>4,31</td>
<td>11</td>
<td>1,21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chrysomya megacephala</td>
<td>157</td>
<td>17,82</td>
<td>118</td>
<td>13,39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phaenicia eximia</td>
<td>85</td>
<td>11,03</td>
<td>354</td>
<td>43,57</td>
<td>351</td>
<td>45,58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraphorizopoda chrysotoma</td>
<td>50</td>
<td>16,50</td>
<td>16</td>
<td>5,28</td>
<td>15</td>
<td>4,95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ophyra sidense</td>
<td>-</td>
</tr>
<tr>
<td>Synthesomyia nudetsa</td>
<td>36</td>
<td>17,06</td>
<td>-</td>
</tr>
<tr>
<td>Ophyra chilgaster</td>
<td>87</td>
<td>37,33</td>
<td>136</td>
<td>58,36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxya decodexia fluminensis</td>
<td>-</td>
</tr>
<tr>
<td>Hemilucilia segmentaria</td>
<td>-</td>
</tr>
<tr>
<td>Chrysonia albiceps</td>
<td>-</td>
</tr>
<tr>
<td>Patona inermis</td>
<td>19</td>
<td>19,58</td>
<td>60</td>
<td>61,85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sarcophaga occidua</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>51,02</td>
<td>24</td>
</tr>
<tr>
<td>Raponia belforti</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>32,35</td>
<td>23</td>
</tr>
<tr>
<td>Morella flavicornis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>100,0</td>
<td>-</td>
</tr>
<tr>
<td>Phaenicia cuprina</td>
<td>-</td>
</tr>
<tr>
<td>Oxya decodexia amorosa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>80,0</td>
<td>-</td>
</tr>
<tr>
<td>Chrysonia pectoria</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>100,0</td>
<td>-</td>
</tr>
<tr>
<td>Oxya decodexia disa</td>
<td>-</td>
</tr>
<tr>
<td>Sarcophaga ityca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>100,0</td>
<td>-</td>
</tr>
<tr>
<td>Musca domestica</td>
<td>-</td>
</tr>
</tbody>
</table>

*Pe = peixe; Fi = figado; Cm = camundongo; Fc = fezes caninas; Fh = fezes humanas; Si = siri; Ca = camarão; Lu = lula; Ma = mamão; Ba = banana; To = tomate.
TABELA II

Preferência das espécies mais frequentes de dípteros calíptratos, criados no Jardim Zoológico do Rio de Janeiro, em relação a diversos substratos utilizados

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Ordem de Preferência*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fannia sp.</td>
<td>Ca** Pe Fi Fe Lu Pe</td>
</tr>
<tr>
<td>Atherigona orientalis</td>
<td>Ma Ba To Pe Fi</td>
</tr>
<tr>
<td>Chrysomyia megacephala</td>
<td>Ca Pe Fi Si Lu</td>
</tr>
<tr>
<td>Phaenicia eximia</td>
<td>Cm Fi Pe</td>
</tr>
<tr>
<td>Paraprissopoda chrysostoma</td>
<td>Lu Pe Fi Cm Ca Si</td>
</tr>
<tr>
<td>Ophyra aeneascens</td>
<td>Ca Lu Si Fi Cm</td>
</tr>
<tr>
<td>Synthesiomyia nudiseta</td>
<td>Fi Pe Si</td>
</tr>
<tr>
<td>Ophyra chalcogaster</td>
<td>Fh Pe Fc Lu</td>
</tr>
<tr>
<td>Oxyxarcodezia flaminensis</td>
<td>Si Cm</td>
</tr>
<tr>
<td>Hemilucilla segmentaria</td>
<td>Fi Lu</td>
</tr>
</tbody>
</table>

* A ordem é decrescente da esquerda para a direita; os substratos que entre si não diferem significativamente (P > 0,05) estão sublinhados.

** Ba = banana; Ca = camarão; Cm = camundongo; Fe = fezes caninas; Fh = fezes humanas; Fi = fígado bovino; Lu = lula; Ma = mamão; Pe = peixe; Si = siri; To = tomate.

Comparações com os de origem vegetal (d’Almeida, 1986; 1988). Segundo Bohart & Gressit (1951), *A. orientalis* pode ser criada em uma grande variedade de substratos, desde carcaças de animais, frutas e vegetais em decomposição até fezes humanas. Segundo d’Almeida (1983) esta espécie é atraida com frequência pela isca de peixe, tendo sido o muscídeo mais frequente no Rio de Janeiro, podendo-se sugerir que é atraída por qualquer tipo de matéria orgânica em decomposição, mas o desenvolvimento larvar se dá com maior frequência nos vegetais.

Carcaças de camundongos e fígado foram os meios de preferência de *Phaenicia eximia* (45,58% e 43,37%, respectivamente). Segundo d’Almeida (1986), na área rural esta espécie criou-se com maior frequência em carcaça de camundongo (90,68%). Na área urbana, o fígado foi o meio preferido (d’Almeida, 1988). Lopes (1973) civta *P. eximia* criando-se em peixe, no Paraná, e em carcaça de camundongo em área florestal do Rio de Janeiro. Dentre as fezes de animais do Rio-Zoo, esta espécie desenvolveu-se nas de herbívoros (Tabela III).

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Ca*</th>
<th>Fe</th>
<th>Re</th>
<th>He</th>
<th>Ro</th>
<th>De</th>
<th>Ag</th>
<th>Pr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
<td>%</td>
<td>Nº</td>
</tr>
<tr>
<td>Myospilla obsoleta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcophagula occidua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxysarcodexia fluminensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fannia sp. (subgrupo psio)</td>
<td>35</td>
<td>22,29</td>
<td>22</td>
<td>14,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaenicia eximia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophyra chalcogaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxysarcodexia thornax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravinia belforti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysomyia megacephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxysarcodexia amorosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>7,38</td>
<td>169</td>
<td>35,65</td>
<td>16</td>
<td>3,37</td>
<td>13</td>
<td>2,74</td>
<td>12</td>
</tr>
</tbody>
</table>

*Ca = fezes de canídeos; Fe = fezes de felídeos; Re = fezes de répteis; He = fezes de herbívoros; Ro = fezes de roedores; De = fezes de desdentados; Ag = fezes de aves grãivoras; Pr = fezes de primatas.
No presente trabalho, as moscas do gênero Ophyra, O. aenesescens e O. chalcogaster, tiveram camarão e fezes humanas como substratos preferidos (Tabelas I e II). Na área urbana, a substância preferida foi fezes humanas por O. chalcogaster (d’Almeida, 1988) e peixe pela O. aenesescens na área rural (d’Almeida, 1986). Segundo d’Almeida (1986), O. chalcogaster não se criou na área rural, enquanto que o O. aenesescens desenvolveu-se em figado e siri. Quanto às fezes de animais cativos, as de felídeos foram as melhores para O. chalcogaster (Tabela III).

Dentre os meios para criação testados no Rio-Zoo, Synthesiomyia nudiseta criou-se com maior frequência em figado (58,36%), resultado idêntico ao observado na área urbana (d’Almeida, 1988); quanto à rural cria-se melhor em peixe (d’Almeida, 1986).

Oxysarcodexia fluminensis, um dos sarcofágidos mais sinantrópicos capturados no Rio de Janeiro (d’Almeida, 1983), criou-se com maior abundância em siri (Tabelas I e II). Na área urbana e rural não foi criada. Na segunda etapa da pesquisa, O. fluminensis desenvolveu-se em fezes de primatas (Tabela III).

Hemilucilia segmentaria criou-se quase que exclusivamente em figado (95,27%) e não se desenvolveu nas áreas urbana e rural. Segundo d’Almeida & Lopes (1983), H. segmentaria teve o figado como a principal isca de atracção e incidiu com maior frequência em área florestal.

Dentro do gênero Chrysomyia, além de C. megacephala, foram criadas C. puctoria e C. albiceps, a primeira no figado e em quantidade pequena (Tabela I). C. albiceps desenvolveu-se exclusivamente em lula (Tabela I); quanto às áreas urbana e rural poucos exemplares foram criados. É uma espécie considerada sinantrópica, atraída principalmente por peixe (d’Almeida & Lopes, 1983). Segundo Povolny (1971), C. albiceps apresenta larvas predadoras, que atacam outras espécies de larvas de moscas sinantrópicas.

S. occidenta, R. belforti criaram-se também em fezes de animais cativos do Rio-Zoo (Tabela III).

Constatou-se Myospila obsolota desenvolven-do-se em fezes de primatas; quanto aos substra-tos testados, criou-se apenas em siri e não foi observada na área urbana e rural. Segundo d’Almeida (1983), este muscículo foi capturado com maior frequência na área urbana do Rio de Janeiro, atraído por fezes humanas.

Quanto à Musca domestica, espécie altamente sinantrópica, criada com frequência na área urbana do Rio de Janeiro, praticamente não se desenvolveu na presente pesquisa, talvez pelas condições da área onde foram executados os experimentos, um pouco afastada das construções habitadas pelo homem. Segundo d’Almeida (1986), na área rural foi a espécie criada com maior frequência, tendo o siri como substrato de preferência.

Em comparação com as áreas urbana e rural, a ocorrência de parasitoides foi pequena; quanto aos dipteros Aschiza da família Phoridae foram frequentes e criados em praticamente todas as fezes de animais cativos do Rio-Zoo.

Os jardins zoológicos podem ser considerados como importantes ecossistemas para o desenvolvimento de moscas e de variados insetos, pois dentre outras características, nestes locais constantemente são fornecidos substratos de criação. A localização geográfica do Rio-Zoo, pode ter contribuído decisivamente para o resultado da pesquisa que ora se apresenta, por permitir uma constante movimentação dos muscóides sinantrópicos do bairro de São Cristóvão.

O experimento com fezes de animais cativos não foi concluído, mas assim mesmo pode-se chamar atenção para certos fatores que podem interferir em um trabalho deste tipo; dentre eles o regime alimentar e a idade das fezes (tempo pós-emissão) podem ser os mais importantes. Observou-se que fezes de carnívoros são as mais atrativas (pelo odor) e também as que funcionam como melhores substratos de criação. Nunes (1987) utilizou dietas alimentares especiais nos animais que usou para a obtenção de fezes para a criação de Musca domestica, ressaltando
que fezes de suínos com 72 h pós-emissão e fezes de galinhas e equinos recém-emittidas são os melhores meios para o desenvolvimento de M. domestica. No presente trabalho pode-se constatar que fezes de herbívoros não funcionaram como bons substratos, talvez pela falta de controle na avaliação do tempo pós-emissão. Beards & Sands (1973) verificaram a influência do tempo pós-emissão em fezes de galinhas, concluindo que a qualidade das fezes como substratos de criação de moscas, diminui com o tempo, assim como o metabolismo bacteriano que ocorre na biodegradação das fezes afeta o desenvolvimento larvar de dipteros.

Com os resultados desta pesquisa, apresenta-se mais um subsídio para o estudo da biocologia de dipteros calíptratos em ecossistemas variados no Rio de Janeiro.

RESUMO

As espécies criadas com maior frequência foram: Fannia sp. (subgrupo pusio), Atherigona orientalis, Chrysomyia megacephala, Phaenicia eximia, Paraph里斯ospora chrysosoma, Ophyra aeneascens, Synthesomyia nudiseta, Ophyra chalchogaster, Oxysarcodexia fluminensis e Hemilucilia segmentaria.

Foi efetuado um estudo, ainda que incompleto, das espécies que se desenvolvem em fezes de animais cativos do Rio-Zoo. Dentre as mais frequentes destacam-se: Fannia sp., Sarcophagula occidua, Ophyra chalchogaster, Ravinia belforti e Phaenicia eximia.

Palavras-chave: ecologia – substratos de criação – moscas – jardim zoológico

AGRADECIMENTOS

Ao Prof. Hugo de Souza Lopes pela orientação e apoio recebidos, e à Direção da Fundação Rio-Zoo pela permissão para efetuar o trabalho, e por todo apoio recebido durante a fase de coletas.

REFERENSAS

