NOMIMOSCOLEX TOUZETI N. SP. (CESTODA), A PARASITE OF
CERATOPHrys CORNUTA (L.): FIRST RECORD OF A MONTICELLIDAE
IN AN AMPHIBIAN HOST

ALAIN DE CHAMBRIER & CLAude VAUCHER

Museum of Natural History, P. O. Box 434, 1211 Geneva 6, Switzerland

Nomimoscolex touzeti n. sp. is described from one Ceratophrys cornuta (L.) caught in
Amazonian Ecuador. Its taxonomic relationships to other species are discussed. This new
species is characterized by a cortical position of vitellaria; by the presence in the uteroduct
of conglomerates of 20-40 eggs; by a weak ovary width/proglottis width ratio; by ventral excretory
canals anastomosed; by a powerful vaginal sphincter and by a long cirrus. N. touzeti is the first
record of a Monticellidae in an amphibian host.

Key words: Nomimoscolex touzeti n. sp. – Ceratophrys cornuta – Monticellid cestode – Amphibian – Ecuador

The invertebrate section of the Geneva Museum of Natural History is studying since
several years parasitic helminths from Ecuadorian vertebrates in cooperation with the
Ecuadorian Museum of Natural History. During these investigations, Jean-Marc Touzet has
collected in March 1986 one specimen of Ceratophrys cornuta (L., 1758) in San Pablo
de Kantesiya (Prov. Napo) which harbored two fully adult specimens of a tapeworm we are
describing in the present paper, that proved to belong to a new species.

MATERIALS AND METHODS

The host has been dissected in the field and the entirely split digestive tract fixed in
hot 4% formaldehyde solution. The parasites were sorted in the laboratory and stained with
Mayer's hydrochloric carmin solution, differentiated in acid alcohol, dehydrated in ethanol,
cleared in Eugenol (clove oil) and mounted in Canada balsam. Transverse sections of fifteen
μm were stained with Weigert's haematoxylin and counterstained with eosine. All
drawings were made with a camera lucida. The host and the parasites are stored in the
Geneva Museum collections.

Nomimoscolex touzeti n. sp.

Material studied
HoIotype: NoMHNG: Inve 15814, 2 whole-
mount slides and 4 slides of transverse
sections.

Paratype: NoMHNG: Inve 15815, 1 whole-
mount slide.

Host: Ceratophrys cornuta (Linnaeus,
1758). No MHNG 2252/063.

Locality and date: San Pablo de Kantesiya
(Rio Aguarico), 6 March 1986, Napo Prov-
ince, Ecuador.

Site of infection: Intestine

DESCRIPTION

Measurements are in μm unless otherwise
stated. Abbreviations: m = mean, n = number,
h = holotype.

The description is based on the holotype
and one paratype. Strobila acraspedote, flat-
tened dorsoventrally, 73 mm (h) and 64 mm
long, 70 (h = 75) proglottid before the appa-
rition of spermatozooids in vas deferens and
about 73 (h = 77) proglottids before first eggs
appear in uterus. Strobila with a relatively fast
growth.

Neck 1400-1600 long. Immature proglottid
830-1665 long by 1540-2170 wide. Proglottid
width to length ratio 1: 0.46-1.16. Mature pro-
glottids 1340-1830 long by 1480-1830 wide.
Proglottid width to length ratio 1: 0.73-0.93.
Gravid proglottids 1950-3105 long by 1300-
1645 wide. Proglottid width to length ratio 1:
0.65-2.40.
Nomimoscolex touseyi n. sp., holotype — Fig. 1: scolex. Figs 2, 3: eggs mounted in water. Fig. 4: transverse section in posterior part of a gravid proglottid. Eggs in uterus are not figured. Fig. 5: transverse section in ovary area of a gravid proglottid. Scale-bar: 1 = 250 μm; 2, 3 = 50 μm; 4, 5 = 500 μm.

Abbreviations: eb = embroyphore; ec = egg clusters; ed = dorsal excretory canal; em = external membrane; im = intermediate membrane; ln = internal longitudinal musculature; ln = longitudinal lateral nerve; mg = Mehlis gland; oc = oocyst; od = oviduct; on = oncosphere; ov = ovary; rs = seminal receptacle; te = testes; ub = uterine branches; us = uteroduct; us = uterine stem; vc = vaginal canal; vd = vitelliduct; vi = vitellaria; vt = vitelline cell.

Scolex 480-530 wide by 365-380 long, with indistinct apical organ 30 in diameter (Fig. 1). No spine-like structures were detected neither on scolex nor on suckers. Four lateral suckers opening slightly forwards, 195-210 (m = 205, n = 8) in diameter.

Internal longitudinal musculature weakly developed, about 40 dorsal and 40 ventral parallel bundles of muscular fibres, occasionally anastomosed (Figs 4, 5).

97-137 (m = 113, n = 32) oval testes in two lateral fields, slightly convergent anteriorely (Figs 6, 7). 22-44 (m = 30, n = 32) preporal testes, 16-29 (m = 23, n = 32) postporal testes, 49-72 (m = 60, n = 32) antiporal testicles; 67-112 long by 28-61 wide (m = 87 x 43, n = 50) in mature proglottids, 81-140 long by 30-59 wide (m = 102 x 42, n = 53) in gravid proglottids. Elongated thick-walled cirrus pouch, 360-500 long by 70-143 wide (m = 415 x 105, n = 33). Cirrus sac length to proglottid width ratio 20-28% (m = 23%, n = 35). Genital ducts passing between the osmoregulatory canals. In-vaginated cirrus elongated 240-380 long by 51-95 wide (m = 335 x 65, n = 35). Cirrus
Nomimoscolex touzeti n. sp., holotype – Fig. 6: mature proglottid, ventral view. Scale-bar = 500 µm.

occupying 72-91% (m = 82%, n = 33) of cirrus sac length (fig. 8). Ejaculatory duct very long and coiled, 28-30 in diameter. Vas deferens coiled, occupying a transversal elongated field between proximal part of cirrus pouch and median part of uterus, 25-130 wide by 95-450 long. Genital atrium 10-40 wide by 45-90 deep. Genital pores irregularly alternating, situated between 33% and 47% (m = 39%, n = 39) or proglottid length.

Ovary relatively small, flattened, with two elongated lobes connected by a narrow isthmus, situated ventrally to seminal receptacle and uteroducte. Ovary 665-1110 (m = 960, n = 33) wide by 95-255 (m = 160, n = 32) long. Ovary occupying 51-57% (m = 54%, n = 33) of proglottid width (Figs 6, 7).

Vagina posterior (58%) or anterior (42%) to cirrus sac, with a powerful vaginal sphincter 30-70 wide by 50-80 long (m = 45 x 65, n = 35). Vaginal duct 12-30 in diameter, dorsal to uterus. Seminal receptacle present. Mehlis' gland small, transversely elongated 100-150 wide by 40-85 long (m = 125 x 55, n = 33).
Uterus performed, already visible in immature proglottids, as a medial longitudinal tube possessing a thick wall of chromophil cells (Fig. 6). Uterus swelling on the whole length in the following proglottids. Eggs appearing simultaneously with the formation of uterine branches. Four to six conglomerates of 20-40 eggs each lacking any apparent membrane, accumulating in the uteroduct (Fig. 9). Eggs entering uterus individually where they remain separated in lateral branches. 24-35 (m = 31, n = 26) narrow uterine branches on each side (Fig. 7) occupying, in gravid proglottid, 85-97% of proglottid width. Uterus tube wall getting thinner, in terminal gravid proglottids. Up to three posterior openings observed on the tegumental surface. Terminal proglottids almost empty.

External egg envelope very thin, hyaline, collapsed, 70-120 in diameter; embryophore thick with irregular outline, 19-24 in diameter; oncosphere 13-14 in diameter with 3 pairs of hooks 7-8 long. Between external envelope and
Nomimoscolex touzeti n. sp., holotype – Fig. 8: cirrus pouch and vagina, ventral view. Fig. 9: ootype region, ventral view. Scale-bar = 100 μm.
Abbreviations: eb = embryophore; ec = egg clusters; ed = dorsal excretory canal; em = external membrane; ev = ventral excretory canal; im = intermediate membrane; lm = internal longitudinal musculature; ln = longitudinal lateral nerve; mg = Mehlis gland; oc = oocyst; od = oviduct; on = oncosphere; ov = ovary; rs = seminal receptacle; te = testes; ub = uterine branches; ud = uteroduct; us = uterine stem; vc = vaginal canal; vd = viteloduct; vi = vitellaria; vt = vitelline cell.
oncosphere, an intermediate envelope, refractive, 26-29 in diameter, with numerous outgrowth on its surface and two small polar lens-shaped swellings (Figs 2, 3). Vitellaria cortical (Figs 4, 5), in two lateral bands, distinctly shorter than total length of the proglottid, situated in its posterior part with tendency to becoming thicker posteriorly (Figs 6, 7). Aporal vitellaria occupying 72-94% (m = 84%, n = 29) of proglottid length. Vitelloducts extending anteriorly further than vitellaria (Figs 6, 7), exceptionally crossing from one proglottid to another. Ventral excretory canals anastomosed and composed by about 5 main canals on each side, 5-20 in diameter (Fig. 6). Dorsal excretory canals thick-walled, about 5 in diameter, without anastomoses and situated in medio-lateral part of proglottid. Longitudinal nerves situated cortically, exteriorly to the vitelline follicles.

The new species is mainly characterized by following features: vitellaria cortical; eggs agglomerated in uteroduct, but not in uterus; low ovary width/proglottis width ratio; testes field slightly convergent anteriorly; ventral excretory canals anastomosed; powerful vaginal sphincter; long cirrus, occupying about 80% of cirrus pouch length; surface of egg intermediate membrane with numerous outgrowth on its surface.

REMARKS

The cortical situation of vitellaria places the new species in the Monticellidae (Schmidt 1986), and the medullary position of ovary, uterus and testicles, as well as suckers without any lobulation in the genus Nomimoscolex (Woodland, 1934).


Nomimoscolex dorad and N. piraebeba share the presence of the apical organ with N. touzetii; they differ in the testes being arranged in one field and by the bigger ovary width/proglottis width ratio. N. piraebeba has, in addition, a bigger length of cirrus sac/width of proglottid ratio. Furthermore, the presence of egg clusters in the uteroduct is not recorded from other species.

The Australian Ophiotrema hylae Johnston, 1912, a parasite of Hyla aurea, is otherwise the only species of Proteocephalidea from Amphibians known to possess cortical vitellaria (Johnston, 1912). The examination of the original material showed, however, that the vitelline follicles are situated in the medulla. Furthermore, the surface of its scolex is covered with minute spine-like structures, and the apical organ has numerous small hooklets. O. hylae is consequently different from the Ecuadorian material.

The position of vitellaria which defines both Monticellidae and Proteocephalidea is sometimes difficult to observe. Consequently, we have compared also our material with seven species of Proteocephalidea recorded from South American amphibians: Proteocephalus byfonis Vigueras, 1942 from Bufo peltacephalus; Ophiotrema ceratophyos (Parodi & Widakowich, 1916), from Ceratophrys ornata; O. bonariensis Szidat & Soria, 1954, from Leptodactylus ocellatus; O. ecuadorensis Dyer, 1986, from Hyla geographic; Proteocephalus hernandezii Flores-Barroeta, 1955, from Rana sp.; O. noei Wolffhügel, 1948, from Calyptococephalus gayi; O. olsenii Dyer & Altig, 1977, from Hyla geographic (Dyer, 1986; Dyer & Altig, 1977; Flores-Barroeta, 1955; Parodi & Widakowich, 1916; Szidat & Soria, 1954; Vigueras, 1942; Wolffhügel, 1948). Only O. bonariensis and O. ecuadorensis possess, as in our material, an apical organ, but both species are easily distinguished by having a bigger ovary width/proglottis width ratio. Furthermore, in O. bonariensis, the diameter of the apical organ is much larger than the one of the true suckers. In O. ecuadorensis, the vitellaria do not extend beyond the ovarian anterior lobes. Therefore, the Ecuadorian material is proposed as a new species, named in honour of Jean-
Marc Touzet, Quito, who has collected the material: Nomimoscolex touzeti n. sp.

Freze (1963) erected Kapsulotaenia to include species of Acanthotaenia where the egg clusters are surrounded by a membrane. Schmidt (1986) followed this classification. In Proteocephalidae, this kind of capsules is formed, according to Freze (1965), in the fertilization duct. In N. touzeti, we never observed any apparent membrane surrounding the egg conglomerate. The eggs enter the uterus individually where they remain separated. This observation has never been recorded in the literature about Proteocephalidae.

Nomimoscolex touzeti is the first member of Monticellidae found in an amphibian host and the second one, with Vaucherella bicetti (de Chamber, 1987) which parasitize a terrestrial vertebrate.

ACKNOWLEDGEMENTS

To Jean-Marc Touzet, president of the Gustavo Orce Herpetological Foundation in Quito, for his fruitful cooperation. To the Ecuadorian institutions for allowing the field collections, particularly Dr S. Figueroa, Ministry of Agriculture and Livestock, Biol. F. Sarmiento and Ing. M. Moreno Espinosa, Ecuadorian Museum of Natural Sciences. To Dr P. Thomas, South Australian Museum, Adelaide and Dr I. Gibson, Natural History Museum, London, who kindly loaned type material.

REFERENCES


FLORES-BARROETA, L., 1955. Cestodes de Verte-