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The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea
grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar de-
rivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some
discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously re-
ported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both
lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from
the atomic coordinates of ConA looked very similar.  However, docking experiments of glucose and
mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used
as a model, revealed conformational changes in side chains of the amino acid residues involved in the
binding of monosaccharides.  These results fully agree with crystallographic data showing that binding
of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
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In recent years, lectins have become very at-
tractive proteins due to their extensive use as probes
for both the characterization and isolation of simple
and complex sugars (Lis & Sharon 1991) and as
useful tools in immunological studies (Moreira et
al. 1991).  Accordingly, lectins are, by now, the
plant proteins of best known three-dimensional
structures.  Following the pioneering works of
Hardman and Ainsworth (1972) and Edelman et
al. (1972) on the three-dimensional structure of
ConA, the 3D-models of seven lectins have been
solved at atomic resolution: PSA from pea
(Einspahr et al. 1986); Favin from Vicia faba
(Reeke & Becker 1986); LoLI from Lathyrus
ochrus (Bourne et al. 1990a); GSIV from Griffonia
simplicifolia (Delbaere et al. 1990); EcoL from
Erythrina corallodendron (Shaanan et al. 1991);
PNA from peanut (Banerjee et al. 1993) and LCA
from lentil (Loris et al. 1993).  In addition, com-
plexes of legume lectins with simple or more com-

plex sugars were solved by X-ray analysis: ConA
with mannose (Derewenda et al. 1989); LoLI with
glucose and mannose (Bourne et al. 1990b), with
a trimannoside (Bourne et al. 1990c), with an
octasaccharide (Bourne et al. 1992) of the N-
acetyllactosaminic type and with Muramic
(MurAc) and N-acetylmuramic (MurNAc) acids
(Bourne et al. 1994a); PSA with a trimannoside
(Rini et al. 1993); GSIV with a tetrasaccharide of
the Lewisb group (Delbaere et al. 1993); LoLII with
a glycoprotein (N2) derived from human
lactotransferrin (Bourne et al. 1994b), and SBA
from soybean with a biantennary analog of the
blood group I antigen (Dessen et al. 1995). These
complexes have shown that the monosaccharide-
binding site of lectins plays a key role in the bind-
ing of either monosaccharides or more complex
glycans.  Along  this way, a single monosaccha-
ride unit of the complex glycan binds to the
monosaccharide-binding site while other non co-
valent bonds occurring at the interface of both
molecules, e.g. hydrogens bonds often mediated
by water molecules and hydrophobic interactions,
stabilize the complex between lectins and their
ligands (Sharon 1993).

Diocleinae lectins have been recently demon-
strated to act as strong inducers of lymphocyte pro-
liferation and γ-interferon production (Barral-Netto
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et al. 1992), macrophage stimulation (Rodriguez et
al. 1992) and leukocyte imigration (Bento et al.
1993). Although it is clear that the monosaccharide-
binding site of Diocleinae lectins is involved in these
biological activities on the immune system, both
possible surface receptors for plant lectins and the
resulting biochemical pathways allowing cell stimu-
lation remain largely unknown. Moreover, except
for ConA from Canavalia ensiformis seeds, no in-
formations are available, until now, on the three-
dimensional structures of other Diocleinae lectins,
that prevents all speculative investigations on the
cell-lectin interactions at the molecular level.  Stud-
ies on molecular modelling and interaction with
sugars and sugar derivatives of two lectins from the
sub-tribe Diocleinae, Canavalia maritima (ConM)
and Dioclea grandiflora (DGL) were performed in
order to provide relevant molecular models of lec-
tin-sugar interaction.

MATERIALS AND METHODS

Carbohydrates, N-acetylmuramic (MurAc) and
N-acetylneuraminic (NANA) acids were purchased
from Sigma. Haemagglutination and inhibition of
haemagglutination were performed in standard

microplates (Flow Laboratories) as previously re-
ported (Ayouba et al. 1993).

The lectins were isolated by affinity
cromatography on Sephadex G-50 as reported by
Moreira et al. (1983) and purity was judged by
SDS-PAGE.

Exposed/buried regions along the amino acid
sequences of both ConM and DGL lectins were
delineated on hydropathic profiles built according
to Kyte and Doolittle (1982).

InsightII, Homology and Discover programs
(Biosym Technologies, San Diego, CA, USA) were
used to build and refine the three-dimensional
models of ConM and DGL monomers from X-rays
coordinates of ConA (Protein Data Bank code
2CNA, Brookhaven, NY, USA).  The HCA (Hy-
drophobic Cluster Analysis) (Gaboriaud et al.
1987) method was used to delineate, along the
amino acid sequences of both ConM and DGL, the
structurally conserved regions homologous to those
of ConA.

To built the three-dimentional models of ConM
and DGL, the sequences of these lectins were
aligned with ConA sequence (Fig. 1). Conserved
segments of the sequences, predicted by HCA

Fig. 1: the amino acid sequences of Canavalia ensiformis, Canavalia maritima and Dioclea grandiflora lectins. Amino acids in
headlines form the binding site of ConA, as determined by crystallographic studies.  Identical amino acids are shown in blocks.
Segments underlined in ConA sequence represent the β-structure of this protein which is strongly conserved in other Diocleinae
lectins.  Brackets represent segments of ConM sequence not determined.
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method, were placed in boxes following the as-
signment of the α-carbons coordinates from ConA
to each segment. The segments of ConM primary
sequence not determined were modelled by homol-
ogy with other lectins from Canavalia genus which
show 100% of identity in these regions. Docking
experiments were carried out using the coordinates
of the ConA-α-methyl-mannopyranoside complex
(Derewenda et al. 1989).  Molecular modelling and
docking were performed on a Silicon Graphics
Personal Iris 4D25G workstation. As a result of
the high identity among the primary sequences of
the studied lectins, Ramachandran plots from
ConM and DGL models were very similar to that
of ConA structure. Only few bad contacts were
identified between amino acids in the models. The
bad distances were corrected by altering the dihe-
dral angles involving side chain atoms.

RESULTS

The comparison of amino acid sequences of
ConM and DGL to that of ConA showed a high
degree of both identity and homology (Fig. 1).
Accordingly, the hydropathic profiles (Fig. 2) and
the HCA plots (results not shown) of all these
Diocleinae lectins looked very similar, except for
a few discrepancies.  As a result, the molecular
models of ConM and DGL built up from the coor-
dinates of ConA strongly resembled that of ConA.
Each monomer exhibited a flattened dome-shaped
structure, the walls of which correspond to seven
(front face) and six (back face) strands of antipar-
allel β sheet interconnected by reverse turns and
loops (Fig. 3).  At the top of each monomer, a few
convergent loops forming a small pocket consti-
tute a monosaccharide-binding site responsible for
the binding of simple sugars (mannose, glucose)
to the lectins.

Both ConM and DGL similarly reacted with
simple sugars and their derivatives, including N-
acetylmuramic acid and N-acetylneuraminic acid
(Table). However, few discrepancies occurred with
some of the checked carbohydrates, i.e., raffinose,
glucose and fructose.

Docking experiments performed with both
mannose and glucose showed that the monosac-
charide-binding sites of ConM and DGL are quite
similar to that of ConA (Fig. 4). In this respect, a
network of hydrogen bonds identical to that de-
scribed for ConA (Derewenda et al. 1989) connects
the sugar residues to the amino acids forming the
monosaccharide-binding site.  However, confor-
mational changes in the side chain of some resi-
dues were observed (Fig. 5), which could explain
some of the discrepancies reported in inhibition of
haemagglutination (see Table).

Fig. 2: comparison of the hydropathic profiles of Canavalia
maritima (A) and Dioclea grandiflora (B) lectin plots accord-
ing to Kyte and Doolittle (1982).

Fig. 3: three-dimensional models showing the front faces of
Dioclea grandiflora (A) and Canavalia maritima (B) lectins
and the side views of DGL (C) and ConM (D).  The location
of the monosaccharide-binding sites is indicated by arrows.
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DISCUSSION

Despite some changes occurring in the amino
acid sequences of Diocleinae lectins, their three-
dimensional structures have been nicely conserved
during evolution and strongly resemble those of
other legume lectins (for review see Rougé et al.
1991).  The structural similarities observed among
Diocleinae lectins confirm these proteins as excel-
lent phylogenetic markers as proposed by Moreira
et al. (1995). The amino acid residues involved in
the binding of monosaccharides (Tyrl2, Asn14,
Leu99, Tyr100, Asp208 and Arg228) by ConA are
completely conserved in other Diocleinae lectins.
As a result, all these lectins exhibit a quite similar
carbohydrate-binding specificity as shown by hap-
ten-inhibition of haemagglutination by simple sug-
ars and derivatives (Table).  Their ability to bind
N-acetylmuramic acid and N-acetylneuraminic
acid, which has been reported for many legume
lectins (Ayouba et al. 1991, 1992), is of special
interest since these molecules are surface compo-
nents of various saprophytic or pathogenic bacte-
ria or fungi.  Moreover, LoLI from Lathyrus ochrus
seeds has been recently co-crystallized with both
muramic acid and muramyl-dipeptides (Bourne et
al. 1994a).

These results suggest that lectins could play
similar biological roles possibly related with rec-
ognition processes occurring between plants and
microorganisms. However, the analysis of carbo-

Fig. 4: molecular docking in the monosaccharide-binding site
of  the studied lectins (thick lines) with glucose (A) and man-
nose (B).

Fig. 5: superimposition of the monosaccharide-binding sites
of Dioclea grandiflora (thin lines) and Canavalia ensiformis
lectins complexed with α-methyl-mannopyranoside (thick
lines) showing the changes in side chain disposition in the
complexed structure.

TABLE

Inhibition of the haemagglutinating activity of
Canavalia maritima and Dioclea grandiflora lectins

by sugarsa

Sugars Lectins
ConM DGL

β-D(-)fructoseb 4.2 16.7
maltoseb 1.0 4.2
L(-)sorboseb 8.3 16.7
D(+)threaloseb 1.0 2.1
α-D(+)mellibioseb 2.1 2.1
sucroseb 8.3 16.7
D(+)raffinoseb 16.7 NI
N-acetylmuramic acidc 4.2 4.2
N-acetylneuraminic acidc 8.3 8.3
α-D(+)galactoseb NI NI
polygalacturonic acidd NI NI
P-nitrophenyl-6-O-β-D
(+)galactopyranosidee NI NI
α-D(+)mannoseb 2.1 2.1
α-D(+)glucoseb 4.2 16.7

a: minimal concentration required to inhibit 1 haemag-
glutination unit; NI: not inhibitory even at the following
concentrations: 33.3 mM b, 8.3 mM c, 0.33% d and 3.3
mM e.
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hydrate-specificity of ConM and DGL towards
mono-, di- and trisaccharides reveals some discrep-
ancies, as previously shown for other lectins from
the Diocleinae sub-tribe (Ayouba et al. 1993).  Our
molecular modelling studies confirm that the
monosaccharide-binding sites of ConM and DGL
are very similar to that of ConA. Similarly, our
docking experiments performed with glucose and
mannose show that a hydrogen bonding scheme
similar to that observed in ConA (Derewenda et
al. 1989) connects both sugars to the sites (Fig. 4).
As shown in ConA-sugar complexes (Naismith et
al. 1994), although the main chain positions of the
amino acid residues forming the monosaccharide-
binding site of ConA remain very similar in both
complexed and native structures of ConA, their side
chains are altered in the complexed form.  Espe-
cially, Leu99, Tyr100 and Arg228 undergo drastic
conformational changes upon binding to sugars.
These findings suggest that suitable conformational
changes occur in Diocleinae lectin binding-sites
to make possible their interaction with monosac-
charides. This monosaccharide-binding site flex-
ibility observed for ConA, ConM and DGL could
explain, at least in part, the overall ability of le-
gume lectins to recognize distinct glycan structures.
As far as our results of docking experiments are
concerned, it is reasonable to speculate that the
monosaccharide-binding site of Diocleinae lectins
may be somehow particular for each one, thus gen-
erating slight discrepancies in the affinity of closely
related lectins towards identical ligands as showed
for raffinose, glucose and fructose (Table) and
hence towards complex carbohydrate structures.
In addition, preliminary results based on the fine
interaction of Diocleinae lectins, measured by sur-
face plasmon ressonance, showed that remarkable
differences exist in the association of each lectin
and a specific ligand.
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