Molecular Identification of Similar Species of the Genus *Biomphalaria* (Mollusca: Planorbidae) Determined by a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism

Roberta Lima Caldeira, Teofânia HDA Vidigal*, Sônia Torquato Paulinelli, Andrew JG Simpson**, Omar S Carvalho/+.

Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 31190-002 Belo Horizonte, MG, Brasil
*Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brasil **Laboratório de Genética de Câncer, Instituto Ludwig de Pesquisas sobre o Câncer, São Paulo, SP, Brasil

The freshwater snails *Biomphalaria straminea*, *B. intermedia*, *B. kuhniana* and *B. peregrina*, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex *B. straminea*. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: DdeI, MnlI, HaeIII, RsaI, HpaII and AluI. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of *Biomphalaria*. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.

Key words: *Biomphalaria straminea* - *Biomphalaria kuhniana* - *Biomphalaria intermedia* - *Biomphalaria peregrina* - snails - polymerase chain reaction - restriction fragment length polymorphism

Schistosomiasis mansoni is endemic in several countries of the Americas and Africa (WHO 1993). It is caused by *Schistosoma mansoni* (Sambon 1907), the intermediate hosts of which are freshwater snails of the genus *Biomphalaria*. Ten species and one subspecies of this genus are known in Brazil (Paraense 1975, 1981, 1984, 1988), of which only *B. glabrata*, *B. tenagophila* and *B. straminea* have been found with natural infections. Two other species (*B. amazonica* and *B. peregrina*), can also be infected experimentally and are considered to be potential hosts of the trematode (Corrêa & Paraense 1971, Paraense 1973).

The specific identification of *B. straminea*, *B. kuhniana*, *B. intermedia* and *B. peregrina* is based on very similar morphologically characters. Because of this similarity, Paraense (1988) grouped the first three species in a complex named *B. straminea*. Hofman (1987) and Pointier et al. (1993) used isoenzymatic techniques for the differentiation of some of these species. However Steindel et al. (1994) pointed out that this technique had certain limitations, such as the requirement for large quantities of biological material, and the small number of loci examined consequently providing relatively little information at the intraspecific level.

Knight et al. (1991), used RFLP (restriction fragment length polymorphism) in the molecular differentiation of species of the genus *Biomphalaria*, while Vidigal et al. (1996) and Pires et al. (1997) utilized LS-PCR (low stringency polymerase chain reaction) for identification of species of this genus. Langand et al. (1993) and Vidigal et al. (1994) used AP-PCR (arbitrarily primed- polymerase chain reaction) to study genetic variability of *Bulinus* and *Biomphalaria* respectively.

Hope and McManus (1994) analyzed restriction polymorphisms in the internal transcribed spacer region of ribosomal RNA gene generated through the polymerase chain reaction (PCR-RFLP), to distinguish subspecies of *Oncomelania hupensis*. This technique has also been used for the differentiation of *Bulinus* (Stothard et al. 1990).
Molecular Identification of Biomphalaria • Roberta L Caldeira et al.

1996, Stothard & Rollison 1997) and Biomphalaria (Vidigal et al. 1998).

We here describe the identification of B. straminea, B. kuhniana, B. intermedia and B. peregrina using classical morphological identification as well as the PCR-RFLP technique in order to differentiate molecularly these species and to estimate the genetic distances among them.

MATERIALS AND METHODS

Snails populations - The snail species used are listed in Fig. 1, together with their distribution in Brazil (Paraense 1986, 1988, Carvalho et al. 1994, 1997). Populations of snails were collected in the field, except B. straminea from Paraná, Bahia and Piauí specimens which were obtained from the Departamento de Malacologia of Instituto Oswaldo Cruz, Rio de Janeiro. All field-collected specimens were examined for S. mansoni and found to be negative. The snails were killed, fixed (Deslandes 1951, Paraense 1976) and the foot of each specimen removed for subsequent DNA extraction.

Selection of the restriction enzymes was done using three specimens from each of the following species and localities: B. kuhniana from Tucuruí (PA); B. straminea from Belém (PA), Monte Carmelo (MG) and Guaíra (PR); B. intermedia from Jales (SP), Paulo Farias (SP) and Planura (MG); and B. peregrina from Taim (RS), Guimaranía (MG) and Alfenas (MG).

DNA extraction - Total DNA was extracted from the foot of each snail as described by Vidigal et al. (1994) and Steiner et al. (1995) with some modifications. The foot of each snail was lysed mechanically with 200 ml of 50 mM Tris-HCl at pH 8.0, 100 mM NaCl, 50 mM EDTA and 0.5% SDS then incubated overnight at 37°C with 50 mg/ml proteinase K. Following incubation, 200 ml of a buffer solution containing 10 mM Tris-HCl and 2.5 mM EDTA at pH 8.0 and 1% polyvinyl-polypyrrolidone (PVPP, insoluble in water) was added and incubated for 20 min at 95°C. This solution was subsequently placed in ice for 5 min, then centrifuged at 14,000 rpm for 10 min. After centrifugation the DNA was transferred to tubes of 1.5 ml and precipitated by the addition of 0.1 vol. Na acetate (3 M, pH 7) and 3 vol. absolute ethanol. The precipitated DNA was washed in 70% ethanol, resuspended in 20 ml water and cooled to -20°C.

Fig. 1: geographical distribution of four Biomphalaria species. (●) Biomphalaria straminea; (■) B. peregrina; (▲) B. intermedia; (★) B. kuhniana. Solid symbols represent field-collected snails and open symbols represent snails from laboratory.
The rDNA-ITS amplification - The entire ITS region (which includes the 5.8S rDNA gene together with the flanking ITS1 and ITS2 spacers) was amplified using the primers ETTS2 (5/-TAACAGG TTTCCGTAGGGTAA-3) and ETTS1 (5/-TGC TTAAGTCCAGCGGT-3) anchored respectively in the conserved extremities of the 18S and 28S ribosomal genes (Kane & Rollinson 1994). The PCR amplification was undertaken in a volume of: 10 ml consisting of: 1-10 ng of template DNA, 10 mM Tris-HCl, pH 8.5, 200 mM each dNTP, 1.5 mM MgCl2, 0.8 U of Taq DNA polymerase (Cenobiot, RS, Brazil), 50 mM KCl, together with 1.0 pmol of each primer. The reactions were covered with a drop of mineral oil and subjected to the following cycle program: initial denaturation step for 5 min at 95°C, and then 32 cycles with: annealing of 54°C for 1 min, extension at 72°C for 2 min, denaturation at 95°C for 45 sec and a final extension step at 72°C for 5 min. A negative control (no template DNA) was included in all experiments. Three ml of the amplification products were visualised on 0.8% ethidium bromide stained agarose gels to check the quality of amplification. The remaining 7 ml were mixed with 93 ml of water and divided into 10 ml aliquots for subsequent enzyme digestion.

RFLP analysis - To evaluate possible enzymes that might yield informative RFLP of the ITS regions, six restriction enzymes (Amersham Life Science) were used: four base cutters HpaII, HaeIII, RsaI, five base cutters DdeI and 11 base cutters MnlI. One ml of each enzyme (10-12 units) was used for each digestion reaction, together with 1.2 ml of the respective enzyme buffer and 10 ml of the diluted amplification product in a final volume of 12.2 ml. The digestion was performed for 3.5 hr at 37°C, and products were separated on 0.8% ethidium bromide stained agarose gels to check the quality of amplification. The remaining 7 ml were mixed with 93 ml of water and divided into 10 ml aliquots for subsequent enzyme digestion.

RFLP analysis - To evaluate possible enzymes that might yield informative RFLP of the ITS regions, six restriction enzymes (Amersham Life Science) were used: four base cutters HpaII, HaeIII, RsaI, five base cutters DdeI and 11 base cutters MnlI. One ml of each enzyme (10-12 units) was used for each digestion reaction, together with 1.2 ml of the respective enzyme buffer and 10 ml of the diluted amplification product in a final volume of 12.2 ml. The digestion was performed for 3.5 hr at 37°C, and products were separated on 0.8% ethidium bromide stained agarose gels to check the quality of amplification. The remaining 7 ml were mixed with 93 ml of water and divided into 10 ml aliquots for subsequent enzyme digestion.

RESULTS

RFLP analysis - DNA amplification with the ETTS1 and ETTS2 primers generated a fragment of approximately 1.300 pb. Among the enzymes used, Dde I presented the best profile for the separation of the snail species (Fig. 2). The enzyme Rsa I presented the same profile for B. straminae and B. intermedia (data not shown), while the remaining enzymes presented a polymorphic profile for B. peregrina (Fig. 3).

In order to confirm the reproducibility of the profiles obtained for Dde I two samples were used from each locality, as well as additional specimens from the following species and localities: B. straminae from Picos (PI), Varzea do Porto (BA) and Icém (SP) and B. intermedia from Tupaciguara (MG) (data not shown).

Quantitative analysis of restriction profiles - The trees were constructed using 79 bands produced by six enzymes, reflecting the genetic distance (Fig. 5a) and similarity (Fig. 5b) among the 12 examples of the four snail species. The genetic distance matrix is shown in the Fig. 4. The bootstrap methods showed that these clades are confirmed with high statistical reliability. Intraspecific distance was observed only among specimens of B. peregrina. The degree of intraspecific similarity was 100% for B. kuhniana, B. intermedia, B. straminae and 70% for B. peregrina. The mean percentage of bands shared among all the possible pairs was 44%, represented in the dendrogram by the dotted dividing line.

DISCUSSION

The separation of B. straminae, B. kuhniana, B. intermedia and B. peregrina (Paraense 1975, 1988) is based on subtle morphological differences in characters such as the degree of wrinkling of the vaginal wall (absent in B. peregrina, intermediate in B. kuhniana and B. intermedia and con-
spicuous in *B. straminea* and the diameter of the median portion of the penis sheath (in *B. peregrina* this is greater than the diameter of the vas deferens, while in the other species the diameters are equal). In addition, *B. straminea* has three muscle layers in the wall of the penis (longitudinal, oblique and circular), differing from *B. kuhniana*, *B. intermedia* and *B. peregrina* that have only two (longitudinal and circular) (Paraense 1975, 1988).

The separation of these species is further com-
Fig. 4: genetic distance matrix. The letters refer to species and the localities from which the snails originate. Abreviations used in the figure: B.k.1, B.k.2 and B.k.3 = Biomphalaria kuhniana from Tucuruí (PA); B.s.1 = B. straminea from Guaira (PR); B.s.2 = B. straminea from Monte Carmelo (MG); B.s.3 = B. straminea from Belém (PA); B.i.1 = B. intermedia from Planura (MG); B.i.2 = B. intermedia from Paulo Farias (SP); B.i.3 = B. intermedia from Jales (SP); B.p.1 = B. peregrina from Alfenas (MG); B.p. 2 = B. peregrina from Guimarania (MG); B.p. 3 = B. peregrina from Taim (RS).

<table>
<thead>
<tr>
<th></th>
<th>B.k.1</th>
<th>B.k.2</th>
<th>B.k.3</th>
<th>B.s.1</th>
<th>B.s.2</th>
<th>B.s.3</th>
<th>B.i.1</th>
<th>B.i.2</th>
<th>B.i.3</th>
<th>B.p.1</th>
<th>B.p.2</th>
<th>B.p.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.k.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.96</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>B.k.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.96</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>B.k.3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.96</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>B.s.1</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.98</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>B.s.2</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.98</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>B.s.3</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.98</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>B.i.1</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.90</td>
<td>0.91</td>
<td>0.93</td>
<td>0.90</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>B.i.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.91</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.i.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.91</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.p.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>B.p.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>B.p.3</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5a: neighbor-joining tree unrooted of Biomphalaria kuhniana, B. straminea, B. intermedia and B. peregrina constructed using the PCR-RFLPs profiles produced with all enzymes used. The numbers are bootstrap percent values based on 1,000 pseudoreplications. Fig. 5b: UPGMA tree of B. kuhniana, B. straminea, B. intermedia and B. peregrina constructed using the PCR-RFLPs profiles produced with all enzymes used. The numbers shown on top are indices of similarity. The vertical line is the phenon line, which shows the average level of similarity between all of the pair samples analyzed.
plicated by the high genetic variability observed in the genus *Biomphalaria* and by the small size of the specimens, making dissection and perception of morphological differences difficult (Paraense 1975, Vidigal et al. 1994). Pointier et al. (1993), using isoenzyme technique observed that *B. kuhniana* presented slight genetic differences in relation to *B. straminea*, concluding that these differences could be attributed to geographical isolation or due to the fact that *B. straminea* was a complex of species rather than a single taxonomic entity. In this study, a similarity of 64% and a smaller genetic distance (0.58) between the two species was found supporting the results of the previous authors.

To confirm our results, two cluster analysis methods were used, the UPGMA which assume that all lineages (OTU’s) have diverged equal amounts and the NJ which is conceptually related to traditional cluster analysis, but removes the assumption that all lineages have diverged equal amounts (Swofford et al. 1996).

The trees produced by these methods showed the same topology with the formation of three distinct groups: the first clustered *B. straminea* and *B. kuhniana* species, the second consisted by only specimens of *B. intermedia* and the third only by specimens of *B. peregrina*. However, *B. intermedia* is more related to *B. straminea* and *B. kuhniana* than to *B. peregrina*. This molecular results reinforces data of Paraense (1988) which grouped *B. straminea* and *B. kuhniana* and *B. intermedia* in *B. straminea* complex.

The intraspecific genetic distance seen in *B. peregrina* may be attributed to its dispersion in the world, deriving its scientific name “from the latin *peregrinus*, meaning wanderer, in reference to its wide geographical distribution” (Paraense 1975).

The sequences of ITS regions will be analyzed in the future to better understand the intraspecific genetic variation in terms of restriction fragment length polymorphism in the intermediate host *Biomphalaria glabrata*. Exper Parasitol 73: 285-294.

The trees produced by these methods showed the same topology with the formation of three distinct groups: the first clustered *B. straminea* and *B. kuhniana* species, the second consisted by only specimens of *B. intermedia* and the third only by specimens of *B. peregrina*. However, *B. intermedia* is more related to *B. straminea* and *B. kuhniana* than to *B. peregrina*. This molecular results reinforces data of Paraense (1988) which grouped *B. straminea* and *B. kuhniana* and *B. intermedia* in *B. straminea* complex.

The trees produced by these methods showed the same topology with the formation of three distinct groups: the first clustered *B. straminea* and *B. kuhniana* species, the second consisted by only specimens of *B. intermedia* and the third only by specimens of *B. peregrina*. However, *B. intermedia* is more related to *B. straminea* and *B. kuhniana* than to *B. peregrina*. This molecular results reinforces data of Paraense (1988) which grouped *B. straminea* and *B. kuhniana* and *B. intermedia* in *B. straminea* complex.

ACKNOWLEDGMENTS

To Dr W Lobato Paraense, Departamento de Malacologia, Instituto Oswaldo Cruz (RJ) for providing material and confirming the identification of *B. kuhniana*; to Dr Jorge Travassos and Dr Izabel de Carvalho Rodrigues, Instituto Evandro Chagas (Belém, PA); to Ildenê CS Gomes, Fundação Nacional de Saúde (Tucuruí, Pará); to Horício MS Teles (São Paulo, SP) and Sirle Abdó Solloum Scandar (São José do Rio Preto, SP), Superiendência de Controle de Endemias; to Izabel Michelin Nunes, Fundação Nacional de Saúde (Porto Alegre, RS) for facilities for field work.

REFERENCES

Paraense WL 1984. *Biomphalaria tenagophila guaiabensis* sp.n. from southern Brazil and Uruguay.
Molecular Identification of Biomphalaria • Roberta L Caldeira et al.