There are several factors which directly or indirectly contribute to lesions produced by infection with *Trypanosoma cruzi*. Some of these factors are inherent to the parasite (initial parasite-host interactions which are ligand-specific, pleomorphism, tropism, virulence, genetic and antigenic constitution, parasite number of the inoculum, reinfection, parasite strains, clonal selection, mixed populations, etc.); others are related to the host (genetic constitution, sex, age, race, nutrition, immune response, professional macrophages and non-permissive cells, muscle cells, peripheral and central neuroglia, fibroblasts, mast cells and others). As in other infectious diseases, in Chagas disease, the mechanisms by which *T. cruzi* induces lesion are multi-faceted. Depending on these mechanism anatomo-clinical forms will or will not appear. By whatever means *T. cruzi* infects its host, any cell of different tissues and organs can be randomly infected. Several molecules (80 to 200 kDa) responsible for cell adhesion and penetration have been identified on the surface of the parasite (Bosghetti et al. 1987, Alves 1996). After gaining access into the cell, the parasite multiplies and, at this initial phase of the infection, are very aggressive since there is no immunity and no inflammatory reaction around parasitized cells. The escape from the parasitophorus vacuole into the host-cell is due to the action of a hemolysin which functions in acid pH. Thus, the host-cell bursts and both epi and triposmastigote parasite forms as well as organelles are released in the interstitium and work as an antigenic mosaic which will induce a rapid, parasite-specific and cell-mediated immune reaction. In consequence, an acute and focal inflammatory reaction with the exudation of mononucleated cells appears around areas of necrosis. This is seen most notably as myocarditis, myositis (both smooth and striated muscles), perigangliionitis, ganglionitis, perineuritis and neuritis. With the progression of the immune response, parasite levels in blood and tissues drop. Nevertheless, the parasite is not completely eliminated, even in the presence of a Th1 lymphocyte response (IL-2 and IFN gamma) or circulating IgM and IgG antibodies.

The mechanisms underlying the ability of the parasite to escape the immune response are very complex and not completely understood. Several ideas have been pursued to explain such phenomenon, including the complexity and diversity of receptors needed for internalization, the escape from complement-mediated lysis, the endocytosis of antibodies by the parasite, the genetic polymorphism, the expression of several antigenic immunodeterminants at the same time, the antigenic mimetism, the suppression of the release of IFN gamma by Th1 lymphocytes, the polyclonal activation of T and B cells and the excessive production of TNF alpha. Although *T. cruzi* can infect any cell type, there are strains with a greater tropism for certain cells, tissues and organs. Thus, the different anatomo-clinical presentations of the disease will be determined by: (1) the tropism for different organs; (2) the intensity of parasitism; (3) the intensity of the inflammatory response; (4) the build-up and evolution of the immune response. Depending on these factors, anatomo-clinical forms, such as the cardiac or digestive forms, will develop into chronic fibrosing myocarditis with heart failure and/or in the megas, although tissue parasitism is almost absent. However a focal and/or diffuse inflammation is intense. Here, fibrosis (focal and diffuse fibrilopoesis) is the new observation not noticed in the acute forms. In our view, tissue fibrosis associated with parasympatic denervation is the major cause for the progressive functional loss of the affected organ (Tafuri 1979).

Although there is a vast literature about the subject, there is little known about the intimate immunological mechanisms which control the changes in local and general reactivity of the organisms during the evolution of the chagasic infection. For this reason, the reasons underlying the natural history of Chagas disease is still not known. The focal acute inflammation evolves to an asymp-
tomotic chronic phase and the parasitism is sup-
pose controlled by multiple mechanisms which
include, complement fixation, antibodies and
citotoxic lymphocytes (CD8+) which are activated
by Th1-like CD4+ lymphocytes (Gazzinelli et al.
1998). In fact, the importance of cell-mediated
immunity is exemplified by the observation that
the parasitism becomes intense if any immunosup-
pression occurs (e.g. Aids, cyclophosphamide, and
radiotherapy). Even though the cell-mediated
immune response is effective, what are the underly-
ing factors responsible for the modulation of the
immune response in such way that 10-20 years af-
ter the initial infection the patient (20-30% of pa-
tients) evolves to significant organ malfunction,
characterized by the megas and chronic fibrosing
myocarditis? Even in these new anatomical forms
of the disease, there is a low degree of parasitism,
in contrast to an intense inflammation reaction.
It remains the possibility that autoimmune mechan-
isms play a role in disease progression. Indeed,
the role of autoimmunity in the genesis of the
chronic chagasic myocarditis is supported by sev-
eral authors including Santos-Buch and Acosta
(1985), Kierzenbaum (1986), Santos et al. (1992),
but contested by others Tarleton et al. (1997).
Considering these ideas it appears that parasites and
autoantigens are involved in the Chagas disease
(Higushi et al. 1993, Reis et al. 1993, Cunha-Neto
et al. 1995).

As one reads the vast literature on Chagas dis-
ease, it is easy to note an almost complete absence
of studies about the structured and non-structured
components of the extracellular matrix and their
relation to the immune response in the acute and
chronic phases of human and experimental Chagas.
The extracellular matrix components of the heart
are made of an intricate tridimensional net involv-
ing each cardiac muscle cell. These components
are in constant and dynamic changes, which de-
pend on a range of physiologic, homeostatic and
immunological stimulus, such as those after ag-
gression by pathogens (e.g. T. cruzi), and those of
any fibrosing disease. As the extracellular matrix
is in intimate contact with the cardiomyocytes, it
is easy to understand that any quantitative or qual-
itative change in matrix expression may induce
functional alterations of cardiomyocytes and the
heart. Fibroblasts are the main cell type, which
synthesize and release the different types of col-
lagens where the alpha-B1 integrin (metallopro-
tease) plays an important role in the functions of
the cell matrix (Kanekar 1998). Integrins are one
of the four families of specific transmembrane re-
ceptors that are attached to the citoeskeleton. They
are responsible for the transmission of signals from
the matrix to the cells. It is our working hypo-
thesis on Chagas disease that the immune response
deviations are directly involved in the alterations
of extracellular matrix. Macrophages, lymphocytes,
fibroblasts and cytokines may play a central role
in this context.

REFERENCES

Alves MMJ. 1996. Members of the Tc-Bb protein fam-
ily from Trypanosoma cruzi and adhesion proteins.

Bosghetti MA, Piras MM, Piras HD 1987. The interac-
tion of Trypanosoma cruzi surface protein with vero
cells and its relationship with parasite adhesion. Mol
Biol Parasitol 24: 175-184.

Cunha-Neto E, Durante M, Gruber A, Zingales B, Messia
I, Stoff N, Belloti G, Patarroyo ME, Pellegi F, Kalil
J 1995. Autoimmunity in chagas disease cardiopathy:
Biological relevance of cardiac myosin-specific
epitop crossreactive to an immunodominant Trypa-
osoma cruzi. Proc Natl Acad Sci USA 98: 3541-
3545

Gazzinelli RT, Talvani A, Camargo MM, Santiago HC,
Oliveira MAP, Vieira LQ, Martins GA, Aliberti JCS,
Silva JS 1998. Induction of cell-mediated immunity
during stages of infection with intracellular proto-

Higuchi MT, Gutierrez PS, Aiello PD, Palomino S,
Boschi E, Kalil J, Belloti G, Pileggi F 1993. Immuno-
chemical characterization of infiltrating cells in
human chronic chagasic myocarditis comparision with
myocardial rejection process. Virchow Arch (A), 423:
157-160

Cardiac fibroblast form and function. Cardio-Pat-Pathol
7: 127-133

Parasitol 72: 201-211

Reis DD, Jonnes EM, Tostes S, Lopes ER, Gazinneli J,
Colley DG, Curley TL 1993. Characterization of
inflammatory infiltrates in chronic chagasic myocardial
lesions. Presence of tumor necrosis factor a cells and
dominance of granzyme A CD8 lymphocytes.

Santos-Buch CA, Acosta AM 1985. Pathology of Chagas
disease, p. 145-184. In I Tizard, Immunology and
Pathogenesis of Trypanosomiasis, CRC Press, Boca
Raton, Fl.

Santos RR, Rossi MA, Lins JL, Silva JS, Savino W,
Mengel J 1992. Anti-CD4 abrogates rejection and
reestablishes long term tolerance to syngenic new-
born hearts in mice chronically infected with Trypa-

547-610, Acad. Press.

Tarleton RL, Zhang L, Downs MO 1997. Autoimmune re-
jection of neonatal transplants in experimental Chagas
disease is a parasite-specific response to injected host
tissue. Proc Natl Acad Sci USA 94: 3932-3937.