
Exercise Physiology

Biomarker responses of cardiac oxidative stress to high intensity
interval training in rats

Lúcio Marques Vieira-Souza1 , Jymmys Lopes dos Santos1 , Anderson Carlos Marçal1 ,
Fabrício Azevedo Voltarelli2 , Felipe José Aidar1 , Rodrigo Miguel-dos-Santos3 ,
Roas de Araújo Costa3 , Dihogo Gama de Matos1 , Sandra Lauton Santos3 ,

Silvan Silva de Araújo1

1Universidade Federal de Sergipe, Programa de Pós-Graduação em Educação Física, São
Cristóvão, SE, Brasil; 2Universidade Federal de Mato Grosso, Programa de Pós-Graduação em
Ciências da Saúde, Cuiabá, MT, Brasil; 3Universidade Federal de Sergipe, Programa de Pós-

Graduação em Ciências Fisiológicas, São Cristóvão, SE, Brasil.

Associate Editor: Camila de Moraes. USP/Ribeirão Preto, SP, Brasil.

Abstract - Aim: The present study aimed to verify the cardiac oxidative stress biomarker responses to high-intensity
interval training (HIIT) in rats. Methods: Sixteen male Wistar rats weighing 250 to 300 g were equally divided into
two groups (8 animals/group): sedentary control (SC) and trained group (HIIT). The exercise protocol consisted of high-
intensity swimming (14% of body weight, 20 s of activity with 10 s of pause performed 14 times) which was performed
for 12 consecutive days. Results: The cardiac tissue concentrations of malondialdehyde and carbonylated proteins
showed no significant changes; on the other hand, hydroperoxide levels were higher in the HIIT group than in the SC
group. The activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes and the levels of reduced
glutathione and sulfhydryl remained unchanged. Conclusion: It is possible to conclude that short-term high-intensity
interval training induces changes in the cardiac oxidative stress biomarker but with no effect on the antioxidant
enzymes.
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Introduction
High-intensity interval training (HIIT) is characterized by
brief and repeated episodes of vigorous activity (approxi-
mately 85%-100% of the maximal oxygen uptake
[VO2max]) followed by short periods of passive or active
rest with exercises1-3. HIIT is considered a promising
method for the reduction of cardiometabolic risk fac-
tors4,5. Oxidative stress is defined as the imbalance
between reactive oxygen species ROS production and
intracellular antioxidant defense capacity6-10. The produc-
tion and exacerbated release of ROS generated by physical
exercise can disrupt intracellular redox homeostasis11,
which can lead to protein oxidation, lipid peroxidation,
and DNA damage12 as well as lesions in cardiac cells10.
As a consequence, cellular responses to significant unre-
paired damage can lead to apoptosis or senescence, con-
tributing to the onset of cardiovascular diseases and, in
some cases, metabolic syndrome13-20.

There is already evidence that HIIT can induce less
membrane peroxidation, and greater competence in the
antioxidant system, reduction in central mediators of
necroptosis induced by myocardial infarction, in addition

to cardioprotection against ischemia-reperfusion injury21

and the expression of cardioprotective proteins in a similar
way to continuous exercise22. In this sense, the control of
the training load is fundamental for the achievement of
your specific objectives, among them, the improvement of
performance. Therefore, the imbalance between volume,
intensity, and density in the training session, an increase in
the concentration of ROS is visible, which can lead to oxi-
dative stress. Thus, this study verified the responses of
cardiac oxidative stress biomarkers to training in rats. The
hypothesis is that HIIT can prevent the occurrence of exa-
cerbated oxidative stress in the cardiac tissue.

Methods

Animals and experimental groups
Sixteen male Wistar rats (Rattus norvegicus) weigh-

ing 250 to 300 g and 60 days of age at the beginning of the
experiment were kept under normal environmental condi-
tions with a temperature of 24 °C ± 2 °C and a light-dark
cycle of 12 h, with free access to filtered water and stan-
dard commercial diet (Labina, Purina®). The animals were
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randomly allocated to two experimental groups (n = 8/
group), sedentary control group (CS), and trained group
(HIIT), and kept in collective cages (4 animals/cage). All
procedures were approved by the Ethics Committee for
Animal Use at the Federal University of Sergipe (Process
number 15/2017) and followed the Guidelines of the Bra-
zilian College of Animal Experiments (COBEA).

Adaptation to water
The animals were acclimated and adapted to the

liquid environment at a temperature of 25 °C ± 1 °C in a
cylindrical tank of 80 cm depth and 80 cm diameter17.
During the first week, only a 10 min adaptation was per-
formed in the water at a depth of 10 cm. In the subsequent
two weeks, the animals had a lead overload (small bags of
cotton cloth and Velcro®) attached to the chest for 10 days;
the overloads used were equivalent to 0%, 1%, and 2% of
the body weight, and each animal was subjected to 10 min
of swimming exercise with 30 s of swimming and 30 s of
rest between the series, totaling 10 series. It is important to
note that the adaptation period was not capable of indu-
cing possible physiological changes due to the low inten-
sities used17,18.

Physical training
Physical training was performed according to a pro-

tocol adapted from the study by Terada et al.23. The ani-
mals, which were submitted to overloads equivalent to
14% of body weight, according to the authors this load is
sufficient to superimpose an intensity of 80% of the ani-
mals’ VO2max, also considered to be of high intensity24,25

The rats performed a 20 s swimming session, 14 times.
Between each repetition, the animals were allowed a rest
of 10 s. All rats swam in tanks at a water depth of 60 cm,
for 12 continuous days.

Euthanasia and preparation of tissues
Twenty-four hours after the end of the last physical

training session, the animals were anesthetized with keta-
mine/xylazine (75 mg/kg + 10 mg/kg i.p) followed by
euthanasia via bleeding under anesthesia. Then, the heart
was removed, washed three times with 1.15% potassium
chloride (KCl) solution, dried, weighed, and stored in a
biofreezer at -80º for further analyses of oxidative stress
biomarkers.

Biochemical analyses
Lipoperoxidation products were measured in two

ways: a) concentration of lipid hydroperoxides (HPx) by
the oxidation technique of xylenol orange, in which oxida-
tion of ferrous ion (Fe2+) into ferric ion (Fe3+) occurs
under acidic conditions; b) concentration of thiobarbituric
acid reactive substances26. The concentration of carbony-
lated proteins in assays was determined by the technique
of Lowry et al.27, which quantified the concentrations of

proteins in the samples by comparison with a standard
curve obtained from bovine serum albumin at different
concentrations.

The activity of the superoxide dismutase enzyme
(SOD) was determined by the capacity of the tissue
enzyme to dismutase superoxide anions derived from the
pyrogallol autoxidation and their reaction, reducing bro-
mide 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium and forming formazan crystals28. Catalase (CAT)
activity was determined by the hydrogen peroxide (H2O2)
degradation rate according to the standard protocol pre-
viously described by Nelson and Kiesow29. The activity of
glutathione peroxidase enzyme (GPx) was evaluated by
NADPH oxidation, as described by Paglia and Valen-
tine30. The activity of the glutathione reductase enzyme
was assessed according to the method of Carlberg and
Mannervik31. The determination of sulfhydryl groups was
performed by the reaction between 5’5-dithio-bis-2-nitro-
benzoic acid and free sulfhydryl of the cysteine side
chain32.

Statistical analyses
Data are expressed as mean ± standard deviation.

Data normality was tested by the Shapiro-Wilk test. Non-
paired Student's t-tests were used to evaluate the differ-
ences between the groups. P-values < 0.05 were con-
sidered statistically significant. For all of these procedures,
the statistical software GraphPad Prism version 7.0
(GraphPad Software, San Diego, CA, USA) was used.

Results
Regarding the cardiac oxidative stress biomarkers

(Table 1), there was a significant increase for the HIIT
group in the HPx levels when compared to the CS group.
Regarding antioxidant defense, there was no change in any
of the levels of MDA and PC parameters evaluated
between the groups (Table 2).

Discussion
The present study verified the effect of HIIT on the

cardiac oxidative stress responses in rats. The study
showed that consecutive HIIT sessions caused an increase
in HPx levels.

Table 1 - Effects of high intensity interval training for 12 days on oxida-
tive stress markers hydroperoxides (HPX), malondialdehyde (MDA), and
carbonylated proteins (PC) in cardiac tissues from rats.

CS (n = 08) HIIT (n=08) p (value)

HPX (µML) 3.288 ± 0.2594 5.988 ± 0.5595 0.0006

MDA (nmol/mL) 8.386 ± 0.5837 8.694 ± 0.6250 0.07

PC (nmol/mL) 208.2 ± 10.62 217.0 ± 9.377 0.85

Note: CS = sedentary control group and HIIT = trained group. Data are
presented as mean ± SEM. Student's t-test. (p<0.05).
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Swimming HIIT was performed using a 14% load.
The intensity of the training was defined by the load test,
swimming with a load above 6% of the bodyweight of the
animal is considered to be high-intensity exercise19. Var-
iations of intensity, type, and duration of exercise directly
influence the production of ROS, and consequently, the
oxidative damage caused by it. High-intensity exercise has
been shown to cause higher lipid oxidation in the liver,
muscle, and blood33. During the contractile activity, an
intracellular increase of O2

•, hydrogen peroxide (H2O2),
and nitric oxide occur. It is suggested that the action of the
enzyme NADPH oxidase in the plasma membrane, cel-
lular cytosol, and sarcoplasmic reticulum in the skeletal
and cardiac muscle and also in the localized transverse
tubules of the skeletal muscle is the main source of free
radical production associated with physical exercise9.

Since HPx is considered a specific and direct bio-
marker of lipid peroxidation, the higher HPx concentra-
tions in the HIIT group compared SC group in the present
study show that this type of training, associated with short
recovery periods, can generate adaptations in cardiac tis-
sue34,35 as well as cause structural remodeling of the cell
membrane and its lipoproteins23, both resulting from the
momentary hypoxia induced by HIIT. Casuso et al.36
found a decrease in the plasma HPx levels in swimmers
subjected to hypoxia compared with those maintained
under normal conditions. Some studies indicate that the
cardioprotective effects of moderate to severe exercise can
be attributed to a decrease in vascular inflammation and
oxidative damage4, confirming previous data on blood
plasma37. Increases in serum levels of aspartate amino-
transferase and alanine aminotransferase enzymes follow-
ing damage to tissues like the heart increases the levels of
some markers, such as malondialdehyde (MDA; an
authentic index of oxidative stress), and decreases the
levels of antioxidant enzymes such as SOD, GPx, and
CAT38. In the present study, there were no significant
alterations in MDA levels in the cardiac tissue of rats. On
the other hand, Freitas et al.39 demonstrated a reduction of
this lipoperoxidation biomarker in rats submitted to 36
running sessions on a treadmill, unlike the present study
which used the swimming exercise. Thus, we cannot rule
out that the protocol-dependent design may have gener-
ated divergent results among studies. On the other hand, in

a study involving humans, Tauler et al.40 measured both
plasma MDA and lymphocyte protein carbonyl levels fol-
lowing a mountain stage cycling protocol. They reported a
significant increase in both indices of oxidative stress.

Rosa-Lima et al.12 emphasized that protein oxidation
can cause cell death, and carbonylated proteins are indirect
markers of protein damage41. Oxidative damage can have
a devastating effect on the structure and activity of pro-
teins and can even lead to cell death. Amino acids con-
taining cysteine and methionine are particularly
susceptible to ROS and reactive chlorine species, which
can damage proteins42. In the present study, there were no
significant changes in the carbonylated proteins in any of
the experimental groups, denoting that the HIIT protocol
used did not promote oxidative damage in the cardiac tis-
sue. HIIT has been an important protocol of signaling to a
multitude of target cells allowing aerobic adaptations dur-
ing the short-term, further than the traditional endurance
training43. Some studies have reported that endurance
training in rats may attenuate the natural loss of protein
but not increase the aerobic capacity in comparison with
the baseline44.

Exercise stimulates the production of ROS in tis-
sues and blood due to large increases in oxygen uptake,
while ROS are formed during physical stress, the anti-
oxidant system improves the endogenous enzymes45.
Azizbeigi et al.46 reported that high-intensity exercise
strengthens the defensive system of erythrocytes against
free radical damage. The results obtained in the present
study did not indicate changes in the cardiac tissue con-
centrations of sulfhydryl groups in response to HIIT as in
the activity of antioxidant enzymes, corroborating the
findings of de Araújo et al.43 and Songstad et al.47, who
subjected rats to high-intensity training with water jump-
ing and treadmill running, respectively. The antioxidant
enzyme levels remained unchanged significantly in rela-
tion to control, showing an insignificant disturbance of
ROS.

It is important to note that the present study investi-
gated only the effects of HIIT on the cardiac oxidative
stress markers in rats, with the possible limitation of the
use of the swimming model for HIIT. Hence, it is sug-
gested to use other types of ergometers such as water
jumping or ladder climbing for comparison purposes.

Table 2 - Effects of high intensity interval training for 12 days on enzymatic antioxidant activity superoxide dismutase (SOD), catalase (CAT), glu-
tathione peroxidase (GPx) and glutathione reductase (GR), and non-enzymatic total sulfhydryl (SH) in cardiac tissues from rats.

CS (n = 08) HIIT (n=08) p (value)

SOD (U/mg protein) 0.1265 ± 0.01760 0.1661 ± 0.03506 0.33

CAT (U/mg protein) 0.02038 ± 0.003845 0.03225 ± 0.005864 0.11

GPx (U/mg protein) 0.8525 ± 0.1435 0.83 ± 0.127 0.91

GR (µmol) 1.819 ± 0.632 1.378 ± 0.2635 0.53

SH (nmol/mL) 208.2 ± 10.62 217.0 ± 9.37 0.54

Note: CS = sedentary control group and HIIT = trained group. Data are presented as mean ±SEM. Student's t-test. (p <0.05).
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Conclusion
Taken together, the results of the present study sug-

gest that short-term HIIT induces changes in the cardiac
oxidative stress biomarker responses without affecting the
antioxidant enzymes analyzed.
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