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Recrystallization of an iron single crystal was reported in detail by Vandermeer and Rath (V&R). We present 
predictions of recrystallization based on cellular automata (CA) simulations, and compare them with the data and 
analysis from V&R’s study. Agreement is found between our CA simulations and V&R’s results, provided that the 
CA simulations were carried out using a sufficient dynamic range for time, precision spatial dimensionalization, 
and accommodation of grain shape effects inherent in CA techniques.
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1. Introduction

Recrystallization1 can be grouped among ‘nucleation and growth’ 
reactions, but it remains kinetically distinct from other well-studied 
nucleation and growth reactions, such as precipitation. Firstly, the nu-
cleation mechanism associated with recrystallization cannot normally 
be described by classical fluctuation-based nucleation theory. Nuclea-
tion sites are usually determined by microstructural features that are 
often already present or forming early in the reaction. Thus, nucleation 
frequently takes place quickly and preferred sites become saturated 
early in the reaction, leading to the well-known ‘site-saturated’ situa-
tion. Site-saturation, for example, was recently shown to take place in 
recrystallizing aluminum by 3XRD techniques2. An additional important 
point is that knowledge of the deformed state holds a place of paramount 
importance in recrystallization. In the deformed state a heterogeneous 
distribution of stored energy and of grain orientation, i.e., crystallo-
graphic texture, may be present. Furthermore, interface migration during 
recrystallization is considered to be a local phenomenon, in the sense that 
migration depends only on the local driving force, which is the difference 
in chemical potential between the growing grain and the matrix adjacent 
to the moving interface, and, of course, on the interface mobility. Solute 
transport is thought not to occur, as it usually does in precipitation reac-
tions, although the influence of solutes on interface mobility, might be 
important. The large number of studies on this complex phenomenon is 
justified not only by its intrinsic scientific interest, but also by its impact 
on the industrial processing of metallic materials1.

Nowadays, recrystallization may be qualitatively interpreted and 
quantitatively modeled with the help of both analytical models and 
computer simulations.  These methodologies are not mutually exclu-
sive but may be combined effectively for a better understanding of 
the phenomenon. Analytical models often provide a preliminary idea 
of the general trends and order of magnitude of relevant parameters 
that could prove useful in the design of the computer simulation, even 
in situations in which their assumptions might not be strictly valid. 
We shall compare CA simulation in this paper to experimental data 
and analytical modeling obtained by Vandermeer and Rath3 (V&R) 
in their study of the recrystallization of an iron single crystal. Their 
study produced one of the best published datasets on recrystallization 
kinetics. The absence of interfering grain boundaries in their single 

crystal specimens, achieving a uniform distribution of the nuclei 
that led to equiaxed growth, combine to make this system simpler to 
analyze than would specimens of polycrystalline metals.  Moreover, 
V&R executed a thorough and careful quantitative analytical treat-
ment (see description below) of their data that can be compared with 
our CA simulation results. 

The current analytical methodology employed to model recrystal-
lization is based on the early work of Johnson-Mehl4, Avrami5-7 and 
Kolmogorov8 (JMAK).  JMAK uses a single microstructural descrip-
tor, i.e., the volume fraction of transformed regions, V

V
. Moreover, 

JMAK’s theory was subsequently extended by DeHoff and Gokhale9-12, 
who proposed the use of an additional microstructural measure, 
namely, the interfacial area per unit of volume between transformed 
and untransformed regions, S

V
, and the associated kinetic concept of 

microstructural path. Vandermeer and coworkers13 extended that con-
cept in a theoretical treatment covering variable nucleation and growth 
rates, as well as inclusion of non-spherical regions. They called their 
extended analysis the microstructural path method (MPM). 

The MPM analyses recrystallization in an ‘extended space’. The 
key quantities introduced in MPM are the extended volume fraction, 
V

VE
, and the extended interface area per unit of volume between 

transformed grains and untransformed regions, S
VE

. The former is 
the sum of the volumes of all growing regions, whereas the latter 
is the sum of the interface area of all individual grains. Extended 
quantities are calculated by assuming that the extended regions grow 
freely, that is, that they grow as if each were the only regions growing, 
with any region extending its size indefinitely without impinging on 
any other region. The extended quantities can be transformed into 
measurable quantities of the real microstructure by means of the 
fundamental relationships

 (1a)

which in integrated form is

V
V 

= 1 – exp(–V
E
)  (1b)

and
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 (2)

The advantage of this methodology is that the extended quanti-
ties derive from experimental measurements of just V

V
 and S

V
, both 

of which may be determined from planar sections using standard 
stereological techniques. 

Equations 1 and 2 are mathematically exact, but their derivation 
involves the underlying assumption that nuclei are located at random 
in the matrix. Recently, it has become increasingly clear that in many 
reactions the nuclei are not located at random.  Thus, additional pa-
rameters that test for non-randomness have been advocated. 

Vandermeer14 proposed in a recent paper that the so-called 
contiguity ratio, Cβ, should be included in the MPM, owing to its 
sensitivity to deviations from randomness in nuclei location. The 
contiguity function requires measurement of the interface area per 
unit of volume between the transformed phase, β, and untransformed 
regions, α. Here, specifically, the interphase interfacial area density 
is designated by the symbol S

Vβ  ,

 (3)

An alternative approach proposed recently by Rios et al.15 defines 
a new function called the impingement function, φ(V

V
), to replace 

the KJMA impingement factor, 1-V
V
, when nuclei are located non-

randomly through the matrix. The function φ, itself, is a measure of 
the non-randomness or underlying ‘signature’ of nuclei located at non-
random sites.  Full details are given in Rios et al.15. Equations 1 and 2 
may now be rewritten by substituting φ(V

V
),

 (4)

 (5)

Unfortunately, earlier studies of recrystallization kinetics did not 
report these parameters, often using JMAK equations in the form

V
V
 = 1 – exp(–ktn) (6)

where n is the time exponent, and K depends on the temperature. 
Notice that, comparing Equation 6 with Equation 1 gives V

VE  
= Ktn. 

In addition to Equation 6 the microstructural path function, S
V
(V

V
 ) or 

S
VE

(V
VE

), is also used. Details of the path functions will be provided 
in the sections below.  

However useful the analytical approach might be, it suffers from 
some shortcomings. One example, as already pointed out, occurs 
when the nuclei are not randomly located, in which case the two 
basic analytical equations, Equations 1 and 2, become invalid. The 
availability of computer simulations of microstructural evolution adds 
quantitative information into the complexity of microstructures that 
extends our insights beyond that of analytical methods. Actually, as 
we advocate here, it is interesting, whenever possible, to couple both 
techniques. Among the wide range of simulation techniques now 
available, an especially convenient simulation technique applicable 
to recrystallization is that of CA, as shown in the pioneering work 
of Hesselbarth and Göbel16. Therefore, it is not surprising that CA is 
the choice of many researchers simulating recrystallization, includ-
ing Gottstein17,18 and Raabe19,20 and many others21-26. We too have 
published a series of papers using CA simulations15,27-31. In those 
papers CA simulation was shown to be geometrically sound in 2-d28 

and 3-d30 by comparing the results with exact analytical theory avail-
able for recrystallization of randomly located nuclei. Moreover, we 
also used CA simulations to study the influence of non-randomness 
of nuclei distribution15,27,29,31. Nevertheless, our studies lacked direct 
comparison of CA simulation to experimental data, as is provided 
here. We choose as ‘simple’ experimental realization of recrystalliza-
tion the single crystal system investigated by V&R3. 

2. Cellular Automata in 3d 

The implementation of CA simulation follows that of Hesselbarth 
and Göbel16 by using the von Neumann neighborhood criterion in 3-d. 
The matrix consisted of a cubic lattice with 300 x 300 x 300 cells. The 
interface velocity used depends on time, the implementation of which 
is describe in detail in Assis32. A probabilistic approach was used to 
implement the variable velocity. For a constant interface velocity, when-
ever a certain cell had one of its neighbors transformed it would itself 
transform. In the probabilistic approach a probability of transformation 
is assigned to this cell. Of course this probability of transformation is 
equal to one if the velocity is constant. A probability of transformation 
that decreases with time results in an interface velocity that decreases 
with reaction time. One of the problems with the probabilistic approach 
is that it may lead to a change of shape when the growth of an isolated 
grain is considered. This change of shape during the reaction may cause 
erroneous microstructural path results32. In the present simulation this 
was avoided by using an algorithm specially developed by Assis32 to 
keep the shape of the transformed regions in extended space constant 
even though the approach remained probabilistic. The velocity was set 
to decrease as a function of (time)–0.4, which is the same time depend-
ence found by V&R. Comparison of their data with our CA simulation 
requires assigning units both for the cell edge and the time step. The 
cell edge was chosen to be 1.5 µm in length. This choice was made 
to insure that a reasonable number of nuclei would be included in the 
simulation. Specifically, 220 nuclei is the number of nuclei per unit of 
volume found by V&R, or 2.4⋅10–6 nuclei.µm–3. A smaller edge length 
would have included too few nuclei that might have caused problems 
with the statistical precision of the simulation. Prior experience with 
CA simulations show that it is important to include at least 100 nuclei 
in the simulation to give a reliable statistics. The nucleation was site-
saturated, i.e., all nuclei appeared instantaneously at t = 0, as was also 
assumed in the analytical treatment of V&R. The correlation between 
the cellular automata time step, t

CA
, and V&R’s dimensionless time is 

detailed in a later section.

3. Data and Analytics from V&R

V&R investigated the recrystallization of an iron single crystal, 
cold rolled 70% over a temperature range of 450-600 °C. Their data, 
as depicted in the figures contained in their paper were digitalized 
for comparison with our simulations. V&R were able to normalize 
all data over the experimental temperature range by means of a di-
mensionless time, τ.  Their equations for extended volume fraction 
and interfacial area as functions of τ are

V
VE

 = B
n
⋅τn  (7)

S
VE

 = K
m
⋅τm (8)

where τ is scaled time defined as 

 (9)

Here t is time in minutes; t
i
 is a constant; and i = v, s denotes 

either volume fraction or interfacial area per unit of volume, respec-
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tively. Also, t
v 
= 1.836⋅10–20 s and t

s 
= 1.614⋅10–20 s; Q = 335 kJ.mol–1; 

n = 1.9; m = 1.28; B
n
 = 0.118, K

m
 = 0.0157 µm–1; R = 8.3144 J.mol–1.  

Thus, either a τ
v
 or τ

s
 was selected by V&R, depending whether the 

normalized time refers to V
VE

 or S
VE

, respectively. 
The CA time step will be related to τ

v
. For the present purposes it 

is more convenient to choose a single dimensionless time, and τ = τ
v
, 

was selected. Thus, τ
v
 and τ

s
 are replaced by τ in what follows.  

In order to maintain consistency, the experimental data for S
VE

 
vs. τ

s
 had to be corrected. This correction consisted in multiplying 

τ
s
 (experimental) by t

s
/t

v
, and S

VE
 (experimental) by (t

s
/t

v
)1.28. This 

procedure insures that Equation 8 retains the same form and K
m
 value 

does not change when τ
s
 is replaced by τ. Obviously, no correction 

was required for V&R’s experimental datasets for S
VE

 vs. V
VE

. The 
reason why V&R used two distinct dimensionless times was that 
they adopted V

V 
= 0.1 and S

V 
= 0.010 µm–1 as their reference values, 

as this facilitated the determination of their reference times at each 
temperature. This choice resulted in different reference times. The 
present approach — making the reference times equal — implicitly 
uses S

V 
= 0.014 µm -1 as the reference value.

4. Results

The 3-d microstructure generated by the simulations is illustrated 
in Figures 1a-e, for increasing volume fractions transformed: 1a) Nu-
cleation: V

V
 ≈ 0; 1b) V

V
 = 0.15; 1c) V

V
 = 0.30; 1d) V

V
 = 0.50; and 1e) 

V
V
 = 1. The sequence of figures clearly shows the progression of the 

impingement. Notice that at V
V 

= 0.5, S
V
 becomes a maximum (see 

Figures 4 and 8) Therefore, in spite of impingement, S
V
 increases up 

to V
V 

= 0.5, when impingement starts to predominate and S
V
 decreases 

until it reaches zero when V
V 

= 1.
A key issue when comparing CA simulation with V&R’s ana-

lytical treatment is the difference in the shape of the growing grain. 
Traditional MPM formulations assume that the grains are spherical, 
and inspection of V&R’s micrograph of the early stages of trans-
formation indeed suggests that a spherical grain approximation is 
reasonable. CA simulated grains are, however, not spherical, as may 
be seen in Figure 1. The non-sphericity occurs because CA grains 
are modeled initially from cubic mesh cells, and so their interfaces 
are never smooth. Of course, as the grains ‘collide’ with one another 
during impingement their shapes will change in real space. Insofar 
as we are dealing with ‘extended’ quantities, it is important to insure 
that the grain shapes in extended space, where the grains grow without 
impingement, remain the same. 

It is well-known that for a given volume a spherical grain exhib-
its the minimum surface area. Thus, the surface area of CA grains 
is always larger than that of spherical grains of equal volume. As a 
consequence, direct quantitative comparison of the interfacial area 
generated by CA simulation with the analytical model becomes 
possible only by multiplying by a suitable shape factor. In the CA 
implementation used here, care was taken to insure that the shape 
of the growing grains in extended space remained constant.  As a 

Figure 1. CA simulated microstructures of the recrystallization of an iron single crystal studied by Vandermeer and Rath3. The increase in the fraction recrys-
tallized, V

V
, is shown: a) Nucleation: V

V
 ≈ 0; b) V

V
 = 0.15; c) V

V
 = 0.30; d) V

V
 = 0.50; and e) V

V
 = 1.

(a) (b) (c)

(e)(d)
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consequence, their shape is independent of time. Interestingly, this 
important, but non-obvious point is seldom ever mentioned in pub-
lished CA simulations. An in-depth investigation of CA grain shape 
in 2-d and 3-d may be found in Rios et al.28,30.

The theoretical microstructural path in extended space is given by

S
VE

 = C (V
VE

)q (10)

where q = 2/3 for  site-saturated reactions.

For CA simulations,  and for a spherical model 

. Thus, the ratio of these factors is

 (11)

If one assumes that the extended volume is identical in both cases, 
the relationship between extended interfacial areas becomes

 (12)

where  and  are the extended interfacial area per unit of vol-
ume of the CA simulation and of the spherical model, respectively. 
Therefore, in all comparisons that follow, extended interfacial area 
generated by CA simulation will always be divided by 2.048. Bear-
ing this in mind, all extended interfacial areas will be designated 
simply by S

VE
.

Figure 2 shows the microstructural path data in extended space in 
a log

10 
–log

10
 plot. V&R fitted a straight line to their experimental data. 

Their best-fit yielded C = 0.0650 µm-1 and q = 0.64.  CA simulation 
data are also depicted in Figure 2, and show good agreement with 
the experimental data. V&R also calculated the number of grains 
per unit of volume by setting C = 0.065 = (36 πN

V
)1/3 and obtained 

2.4⋅10–6 nuclei.µm–3.  This value was used in our CA simulation as 
already mentioned in section 2. 

In order to assess the scatter of the data, the microstructural path 
is plotted in real space in Figure 3. The solid line in Figure 3 corre-
sponds to the best-fitted line by V&R in Figure 2. Their experimental 
data lie somewhat above the best-fitted line and the simulation for the 
mid-range of V

V
. Still the agreement remains reasonable. For further 

comparison, the line corresponding to the exact microstructural path 

for spherical grains with C = 0.065 and q = 2/3 is also shown. All 
three approaches, best-fitted, exact, and CA, in fact, fall close to one 
another and give a reasonable description of the experimental data, 
despite that these data are unavoidably subjected to experimental er-
rors. Unfortunately, V&R did not report the magnitude of these errors.  
We note that for site-saturated recrystallization the microstructural 
path does not depend on the interface velocity. Thus, for Figures 2 and 
3 there was no need to relate the CA time step and the experimental 
time, as will be done next.

In order to compare V&R results with the present CA simula-
tion, V&R’s dimensionless time was used. A log

10 
–log

10
 plot of V

VE
 

vs. τ is shown in Figure 4. The method by which the CA time step, 
t
CA

, was related to V&R’s dimensionless time, τ, is straightforward. 
For τ =1 and τ = 8 the corresponding CA time steps, t

CA
(τ = 1) and 

t
CA

( τ = 8) were found that gave the same value of V
VE

. For example, 
V

VE
( τ = 1)= V

VE
 (t

CA
(τ = 1)). A relationship between τ and t

CA
 was 

then found from the ratio of both intervals
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Figure 2. Microstructural path in extended space: extended interfacial area per 
unit of volume between transformed and untransformed region, S

VE
, plotted 

against extended volume fraction transformed, V
VE

.  
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Figure 3. Microstructural path in real space: interfacial area per unit of volume 
between transformed and untransformed region, S

V
, plotted against volume 

fraction transformed, V
V
.  

Figure 4. Extended volume fraction transformed, V
VE

, as a function of di-
mensionless time, τ, for V&R’s recrystallization of an iron single crystal and 
for CA simulation. 
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 (13)

Figure 4 shows that there is agreement between the CA simu-
lation and V&R’s data. The solid line in Figure 4 corresponds to 
V&R’s best-fitted straight line to their data, which gives Equation 7 
in section 3.

Figure 5 provides a better idea of the data scatter by re-plotting 
Figure 4 in real space. The data corresponding to the mid-range 
times, τ ≈ 3, seems to be somewhat farther from the fitted line. 
Again, CA simulation and best-fitted line remain close. Note, that 
the solid line in Figure 5 corresponds to the solid line best-fitted by 
V&R in Figure 4.

A log
10 

–log
10

 plot of S
VE

 vs. τ is shown in Figure 6. It is clear that 
good agreement occurs between CA simulation and V&R’s data. The 
solid line in Figure 6 corresponds to V&R’s best-fitted straight line 
to the data, resulting in Equation 8 in section 3. Figure 7 is a plot of 
Figure 6 in real space. The data up to τ ≈ 3 seems to give better agree-
ment than that at later times. Again, CA simulation and the best-fitted 

line remain close. We note that the solid line in Figure 6 corresponds 
to the solid line best-fitted by V&R in Figure 7. 

The grain boundary velocity, G, can be calculated by means of 
the Cahn and Hagel33 equation

 (14)

Inserting V
VE

 and S
VE

 vs. τ into the Cahn and Hagel equation 
using the V&R data, Equations 7 and 8, gives 

G
VR

 = 14.4τ–0.38 µm/dimensionless time (15)

For the CA simulations, the velocity was evaluated numeri-
cally from the simulated data, to which an analytical expression 
was best-fitted, as shown in Figure 8. That procedure yields  

G
CA

 = 14.3τ–0.4 µm/dimensionless time (16)

where the correlation coefficient R = 0.97.  
G

CA 
and G

VR
 are indeed close to one another. Both are shown 

in Figure 8 and appear almost indistinguishable in this plot. In 
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Figure 5. Volume fraction transformed, V
V
, as a function of dimensionless 

time, τ, for Vandermeer and Rath’s recrystallization of an iron single crystal 
and for CA simulation. 

Figure 6. Extended interfacial area per unit of volume between transformed 
and untransformed regions, S

VE
, plotted as a function of dimensionless time, τ, 

for V&R’s recrystallization of an iron single crystal and for CA simulation. 
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recrystallization of an iron single crystal and for CA simulation. 

Figure 8. Grain boundary velocity, G, as a function of dimensionless time, τ, 
for V&R’s recrystallization of an iron single crystal and for CA simulation. 
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order to improve visualization not all simulated points are plotted 
in Figure 8.

5. Discussion

Overall, good agreement was obtained between CA simulations 
with experimental recrystallization data as well as with V&R’s ana-
lytical description of their data. The plots of real, rather than extended, 
quantities indicate that the scatter of these data was significant. Some 
departures from the experimental data were apparent in all plots of 
real quantities, with perhaps the best agreement exhibited by the 
microstructural path, S

V
 vs. V

V
, plot. In all three real quantity plots, 

viz., Figures 2, 4 and 6, deviations of experimental data from theory 
appear, but these deviations did not occur at quite the same point in 
the reaction evolution. The causes of these disparities are difficult to 
determine in view of the scatter in the original data. The scatter itself 
could provide the reason behind the disparity. Another possibility 
would be non-randomness. However, if this non-randomness is weak, 
and falls below the experimental limits of error, then one might still 
consider the nucleation sites to be ‘randomly’ located. 

Another issue might be the differences in the shapes of CA, 
real, and spherical grains. Such differences are less problematic 
if accounted for by a shape factor that is independent of time, as 
was done here. Clearly, the correction factor used here allowed the 
quantitative data to match, but still one must bear in mind that the 
simulated microstructures do have different interfacial area per unit 
of volume than the real ones. Therefore, considerable care must be 
exercised when comparing absolute values of interfacial areas of 
simulated and real microstructures. This is especially the case when 
modeling complex microstructures involving deformation gradients 
and textures. These cases are beyond theoretical analysis precluding 
some type of shape factor correction.  Even accounting for shape 
differences CA grains may give higher interfacial areas per unit of 
volume. Mukhopadhyay et al.18 proposed in a recent work a method 
to make the interface of the CA grain smooth. It is doubtful that their 
method fully corrected for shape differences between CA and real 
polyhedral grains. 

The present agreement between CA simulation and the experi-
mental data provides two conclusions. The first is that the agreement 
validates our CA simulation methodology, showing that it is able to 
describe experimental data reasonably well, provided the necessary 
time and space dimensionalizations are correctly scaled, and any dif-
ferences in grain shape are taken into account. The other conclusion is 
more subtle, and relates to our prior investigations on non-randomly 
located nuclei.  In those investigations it was found that Equation 
6, and to a lesser extent also Equation 10, gave an excellent fit even 
when nuclei were not located randomly. 

This result confirmed Vandermeer’s suggestion for adding more 
parameters or relationships to MPM methodology, such as, the con-
tiguity, to assess deviations from random nuclei placement. Earlier 
works, such as that of V&R did not measure contiguity. The absence 
of such measurements raises concern about previous analysis of ex-
perimental data carried out based on Equation 6, exclusively, and to a 
lesser extent analyses based on Equations 6 and 10.  Such an analysis 
may yield good curve fitting, but will obtain fitting parameters that are 
inaccurate. For example, in previous works, Rios et al.15,29,31 showed 
that CA simulations with non-randomly located nuclei yield a fitted 
value of the number of nuclei per unit of volume, N

V
, and a time ex-

ponent for the velocity from Equation 6 that were different from the 
number of nuclei per unit of volume and time exponent used in the 
simulation. Consequently, in the present work, the fact that we repro-
duced experimental results using quantities extracted from analytical 
models validates the CA simulation and the analytical treatment by 

V&R. However, in studies in which one has less experimental data 
this could become an issue. This is particularly true in studies that 
report only the volume fraction as function of time data.

Thus, a methodology of analysis is proposed in this work coupling 
CA simulations and analytical description. This methodology can be 
explained as follows. Firstly, the data are analyzed using the analytical 
approach, Equations 6 and 10, that assumes randomness. From that 
starting point the interfacial velocity and the number of grains per 
unit of volume may be obtained. A CA simulation is then conducted 
using the same quantities with random nucleation. If the result differs 
from the experimental result it implies that the original assumption of 
randomness was not justified. On the other hand, if the CA simulation 
yields good agreement with experimental data, one is reassured that 
the random assumption was satisfied, and, consequently, the results 
from the analytical approach are correct. Of course, one might argue 
that many difficulties could be avoided by measuring the contiguity, 
or even the φ function. This is not always feasible. For example, in 
phase transformation studies one often uses indirect methods, e.g., 
dilatometry, which yield only V

V
 vs. time curves. In other situations 

measurements of the interfacial area per unit of volume between 
transformed regions may be difficult, as the grain boundaries between 
transformed regions are not always easy to reveal.

Thus, CA simulation can be used to aid in the interpretation of 
microstructure evolution by simulating the process, and injecting con-
clusions, or even conjectures, inferred from analytical /experimental 
analysis of the data. This could be helpful in clarifying situations 
when the assumptions in which the analytical treatment is based are 
not met, as is the case of non-randomly located nuclei.

6. Summary and Conclusions

•	 Agreement	was	obtained	between	CA	simulation	with	experi-
mental data as well as with V&R analytical description of the 
data of the recrystallization of an iron single crystal1;

•	 Proper	time	and	space	dimensionalization	of	CA	simulation	
was required as well as consideration of the difference in shape 
between CA and experimental/spherical grains;

•	 The	fact	that	experimental	results	were	correctly	reproduced	
using quantities extracted from analytical analysis not only 
validated the CA simulation but also validated the analytical 
treatment of V&R; and

•	 A	methodology	of	analysis	is	proposed	in	this	work	coupling	
CA and analytical description. A CA simulation using conclu-
sions and parameters obtained from analytical treatment might 
or might not confirm the analytical results depending on the 
assumptions made in formulating the analytical treatment.
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