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1. Introduction

Several electrode materials (Ti/RuO
2
, Ti/IrO

2
, Pt, Ti/PbO

2
, boron-

doped diamond - BDD and Ti/SnO
2
-Sb) have been used for the 

electrolytic treatment of effluents containing organic compounds1-11. 
Among them, the Ti/SnO

2
-Sb electrode is reported to present high 

efficiency for the oxidation of such compounds due to its high oxygen 
evolution overpotential, which favors the generation of ∙OH radicals 
that act in the indirect oxidation of the organic compounds at the 
electrode surface2,6,8,12-14.

A number of process for manufacturing dimensionally stable 
anodes (DSA) have been reported in the literature: sol-gel14,15, spray 
pyrolysis16, electrodeposition12,17, thermal decomposition13,18-20 and 
precursor solution, known as the Pechini method3,4,20-24. The last one 
is useful to prepare electrode films with controlled stoichiometry due 
to the formation of hydroxicarboxylic acids allied to their ability to 
form chelates with many cations. When these acids are heated in the 
presence of polihydroxylic alcohols an esterification reaction takes 
place and the cations are incorporated in the polymeric net, avoiding 
metal losses by volatilization during film calcination3.

Oliveira-Souza et al.25 have shown that the Ti/IrO
2
 electrode 

prepared by the Pechini’s method presented a longer life than those 
prepared by sol-gel and thermal decomposition methods. Alves1 
studied the electrocatalytic properties of Ti/M

x
S

(1-x)
O

2
 dimensionally 

stable anodes (where M is Ru or Ir; S is Ti or Sn and x is 0.3, 0.5 or 

0.7) obtained by the polymeric precursor method (the inorganic 
precursors were dissolved in isopropanol) for the electrooxidation of 
ethanol in chloride media. The electrodes prepared by the polymeric 
precursor method presented better electrocatalytic properties for the 
generation of oxidizing agents26.

Rodrigues and Olivi3 studied the influence of two different 
temperatures (400 and 500 °C) on the structure of Ti/SnO

2
-Sb 

electrodes prepared by Pechini’s method. They observed that the film 
on the electrode calcined at 400 °C presented a cracked surface, while 
the one calcined at 500 °C, presented a less cracked surface, lower 
roughness and higher particle dispersion on its surface. Grimm et al.23 
used the sol-gel method to prepare a Ti/SnO

2
-Sb electrode, which was 

calcined at 600 °C (with a heating rate of 1 °C/min) and observed that 
the antimony doping was an important feature for phenol oxidation 
with Ti/SnO

2
 electrodes.

It is reported in the literature several methods and calcination 
temperatures employed to prepare electrode materials8-10,12,14-16,20,27; 
however, it is known that their corrosion resistance depends on the 
method used. Then, the objective of this paper was investigating the 
resistance to corrosion of Ti/SnO

2
-Sb electrodes, for phenol oxidation 

in a saline medium, prepared by Pechini’s method with different 
calcination temperatures.
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The counter electrode was a pure titanium plate28,32 and the reference 
was Ag/AgCl in saturated KCl solution (Eo = 0.198V vs. SHE). Unless 
otherwise stated all the tests were carried out at room temperature 
(around 25 °C) and without stirring. The electrochemical tests were 
carried out in 0.34 mol.L-1 NaCl solution containing from 30 to 

2. Experimental

2.1. Electrodes preparation

The electrodes were prepared from 1.0 mm thick pure titanium 
plates with 25 mm wide and 110 mm long. They were previously 
polished with 600-mesh emery paper and treated in a boiling solution 
of 10% (w/w) oxalic acid for 10 minutes28. Then, the plates were 
washed with deionized water, dried with a hot air blown and then 
stored in a vacuum sealed dissecator before being coated with the 
Sb doped SnO

2
 film.

The titanium electrodes were coated with an antimony doped 
SnO

2
 film prepared by Pechini’s method29. The precursor solutions 

were obtained from the following analytically pure reagents: citric 
acid, ethyleneglycol, potassium antimony tartarate, tin(II) chloride 
dihydrate, sodium hydroxide and concentrated nitric acid. Tin citrate 
was prepared according to the procedure described by Besso30. The 
anhydro-citric acid:ethyleneglycol:tin citrate molar ratio for the film 
preparation was 3:10:1. The same ratio was adopted for the antimony 
precursor solution. The final precursor solution was obtained by 
mixing the two precursor solutions rendering a composition of 93% 
SnO

2
 and 7% Sb. A flow sheet of the experimental procedure used 

for preparation of the anode film, including the calcination step, is 
shown in Figure 1. 

The microstructure of the titanium plate and electrodes calcined at 
400, 500, 600 °C, before and after electrolytical tests, were analyzed 
by SEM and EDS. Additionally, the detection of Sb3+ and Sb5+ species 
in the electrode coat was performed by classical qualitative chemical 
analysis31. The analysis by Fourier transform infrared spectroscopy 
(FTIR) of the films was carried out with a Nicolet spectrometer, model 
IR-760 using the KBr pellet technique.

The change on the films structure obtained for the different 
temperatures tested was verified by X-ray diffraction (XRD) with a 
Shimadzu diffractometer, model XRD-6000, using Cu-Kα radiation.

2.2. Electrochemical tests

An EG&GPAR model 273A potentiostat/galvanostat connected 
to a microcomputer with the M270 software was used in the 
voltammetric tests. The cell was a 250 mL beaker with an acrylic cover 
and the working electrode was a 4.5 cm2 Ti/SnO

2
-Sb calcined plate. 

Figure 1. Experimental flowsheet used for the preparation of the Ti/SnO
2
-Sb 

anode. Adapted from Rodrigues and Olivi3.

Figure 2. SEM micrographs of Ti plate. a) After grinding; and b) after treatment with hot 10 wt. (%) oxalic acid for 10 minutes.
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Figure 3. SEM micrographs and EDS spectra of Ti/SnO
2
-Sb electrode calcined for 2 hours at different calcination temperatures. a) 400 °C; b) 500 °C; and 

c) 600 °C. Film composition: 93 wt. (%) SnO
2
 and 7 wt. (%) Sb.
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100 mg.L-1 phenol. An initial solution volume of 200 mL was used 
for all the voltammetric tests. The anodic potential was measured 
at the beginning and at the end of each test, and the current density 
was set at 10 mA.cm-2. 

The electrolytic tests were conducted in the same cell used for the 
voltammetry, but under constant moderate stirring. For these tests, 
230 mL of a 0.34 mol.L-1 NaCl solution containing 100 mg.L-1 of 
phenol was used. The anode area was 27 cm2 and the current density 
was fixed at 10 mA cm2. The anodic potential was monitored during 
the tests.

Samples for chemical analysis were collected periodically from 
5 to 60 minutes of electrolysis. Phenol degradation was monitored 
by UV/Vis28,33,34 at 269.5 nm. As hypochlorite band absorbs at the 
same wavelength region of phenol, its presence after electrolysis 
was suppressed by the addition of 0.1 mol.L-1 NaHSO

3
, according 

to Reaction 1:

NaClO + NaHSO
3
 → NaCl + NaHSO

4
 (1)

3. Results and Discussion

SEM micrographs of the titanium surface before and after 
treatment with oxalic acid are presented in Figure 2a and b 
respectively. A drastic modification of the titanium surface, due to 
dissolution of the titanium oxide, was observed, rendering a moderate 
smooth surface, which favors the film adhesion29.

SEM micrographs along with the EDS spectra of the Ti/SnO
2
 

anode doped with 7 wt. (%) Sb and calcined at 400, 500 and 600 °C, 
are shown in Figures 3a, 3b and 3c, respectively. It can be observed 
that the surface structure presents a cracked-clay appearance. At 
400 °C, this structure is composed by dispersed small blocks, while at 

500 °C a smaller number of bigger blocks was observed. At 600 °C, an 
aspect of broken blocks was observed, possibly due to the mechanical 
stress caused by the different thermal expansion coefficients of the 
film and substrate3, giving rise to a more homogeneous distribution 
of the blocks throughout the surface. Furthermore, the temperature 
increase led to a more homogeneous antimony-doped tin oxide 
distribution on titanium surface, since the presence of spots with 
very low tin counts was detected by EDS only at 400 and 500 °C.

The absence of antimony in the EDS spectra can be attributed 
to its low concentration in the precursor solution, around 7 wt. (%). 
Another possibility may be related to the Sn and Sb ionization 
energies, which are close to each other, being 3.4 keV for Sn and 
3.6 keV for Sb. In this way, Sn spectrum may mask the Sb one23. 

The presence of Sb3+ and Sb5+ was identified by chemical 
analysis according to procedure described by Vogel31. The qualitative 
results indicate that Sb3+ and Sb5+ ions are present in all samples, 
regardless the calcination temperature utilized. On the other hand, 
it was noticed, by visual observation of the color intensity increase 
of the solution during the qualitative chemical analysis and also by 
the EDS spectra , that the amount of Sb3+ and Sb5+ in the electrode 
increased in the following sequence: 600 °C > 500 °C > 400 °C 
and 400 °C > 500 °C > 600 °C, respectively. This behavior can 
be attributed to decomposition of Sb

2
O

5
 to form Sb

2
O

3
 (Sb3+) at 

temperatures above 340 °C35, indicating that the proportion of Sb3+ and 
Sb5+ present in the material may be responsible for the morphological 
behavior of the electrode calcined at 600 °C.

The FT-IR absorption spectra associated with stretching and 
bending vibrations at 400-4000 cm-1 of the powder precursor 
(SnO

2
-Sb film) and its decomposition products after calcination at 

400, 500 e 600 °C is shown in Figure 4. The spectra profile for the three 
calcination temperatures examined is similar. There are adsorption 

Figure 3. Continued...
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Figure 4. IR spectra obtained from precursor solution used on the SnO
2
-Sb 

film calcined at 400, 500 or 600 °C for 2 hours. Film composition: 93 wt. (%) 
SnO

2
 and 7 wt. (%) Sb.

Figure 5. XRD spectra of the SnO
2
 film doped with 7 wt. (%) antimony and 

calcined at a) 400 °C; b) 500 °C; and c) 600 °C.

Figure 6. Cyclic voltammograms on Ti/SnO
2
-Sb anodes, calcined at different 

temperatures, in a 0.34 mol.L-1 NaCl. ν = 100 mV s-1; anodic area: 4.5 cm2; 
temperature: 25 °C.

Figure 7. Cyclic voltammograms on Ti/SnO
2
-Sb anode, calcined at different 

temperatures, in a 0.34 mol.L-1 NaCl in the absence and presence of 30 mg.L-1 
phenol. ν = 100 mV. s-1; anodic area: 4.5 cm2; temperature: 25 °C.

bands at 3405 cm-1 (Figure 4) due to water (OH-stretching)36,37. The 
bands between 400-1300 cm-1 can be attributed to the formation of 
Sn-O and carbonate species during the calcination process38,39. The 
small peak at 1627 cm-1 can be ascribed to the presence of H

2
O in the 

precipitated phase, as verified by Acarbas et al.38 during preparation 
of nanosized tin oxide (SnO

2
) powder by homogeneous precipitation.

The XRD spectra of the Ti/SnO
2 
anode doped with 7 wt. (%) 

of Sb and calcined at 400, 500 and 600 °C are shown in Figure 5. 
The profile is the same for all calcination temperatures but peak 
intensities increased as calcination temperature was increased. This 
behavior suggests a better formation and growing of SnO

2 
crystals 

at the more elevated temperature. Similar results were found by 
Ding et al.11 with electrodes prepared by electrodeposition method. 
The peak at 2θ = 37.8o, which corresponds to Sb

2
O

3
28, increased as 

calcination temperature was increased. This behavior is probably due 
to the decomposition of Sb

2
O

5
 to Sb

2
O

3
, suggesting that the presence 

of Sb
2
O

3
 may account for the morphology of the electrode calcined 

at 600 °C, as shown in Figure 3c. The peaks at 2θ = 26.6o; 33.8o; 
51.7o; 54.8o and 57.9o may be ascribed to SnO

2
 with a cassiterite-type 

tetragonal structure3,4,11,28,37,40. The slight displacement of the peaks 
when compared to the standard SnO

2
 file may be a consequence of 

the formation of a solid solution due to the presence of antimony11,28. 
The polarization behavior of Ti/SnO

2
-Sb anodes in 0.34 mol.L-1 

NaCl calcined at 400, 500 and 600 °C is presented in Figure 6. It 
can be observed that as the calcination temperature is increased the 
anodic current became higher, indicating a more intense chlorine/
hypochlorite generation. The voltammetric behavior observed for 
the electrode calcined at 600 °C is probably, due to the morphologic 
characteristics of the material which presents higher superficial area, 
favoring the formation of oxidizing agents, when compared with the 
electrodes calcined at 400 and 500 °C10,20,41. 

The polarization behavior of Ti/SnO
2
-Sb anodes in a 0.34 mol.L-1 

NaCl with and without phenol (30 mg.L-1) calcined at 400, 500 and 
600 °C is presented in Figure 7. For all temperatures the presence 
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Figure 8. SEM micrographs of Ti/SnO
2
-Sb anode calcined at different temperature, after electrolysis of a 0.34 mol.L-1 NaCl solution containing 100 mg.L-1 

phenol. Anodic area: 27 cm2; temperature: 25 °C; i = 10 mA.cm-2. a) 400 °C; and b) 500 °C after 30 minutes of electrolysis; and c) 600 °C after 60 minutes 
of electrolysis. 
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the coating erosion. As the electrode calcined at 600 °C presents a 
more uniform cracked clay structure, it seems to be less affected by 
the aggressive conditions necessary to phenol oxidation in chloride 
solutions. However, for electrolysis time longer than 60 minutes 
(Figure 8c), under a current density of 10 mA.cm-2 a slight loss of 
the SnO

2
-Sb coating was detected. 

The anode degradation can be minimized by keeping pH between 
7 and 10, through controlled HCl additions, avoiding the domain 
of soluble tin species in the E

h
 vs. pH diagram42. However, anode 

degradation still persists due to electrolyte penetration and gas 
evolution, especially for the anodes calcined at 400 and 500 °C, which 
do not present a very uniform and adherent coating. The aspect of 
the SnO

2
-Sb coating of the anodes calcined at 400, 500 and 600 °C, 

after 60 min of electrolysis under a current density of 10 mA.cm-2, 
with pH kept in the range of 7 to 10, is presented in Figure 9. In this 
way, a smaller coating loss was observed for the anodes calcined 
at 400 and 500 °C, while no coating loss was detected in the anode 
calcined at 600 °C.

The influence of electrolysis time on the phenol removal in 
chloride medium using the anode calcined at 600 °C is presented in 
Figure 10. Phenol removal increased with the increase of electrolysis 
time43. The low phenol removal in the first minutes can be attributed 
to the formation of organic intermediate compounds, such as 
chlorophenols. During electrolysis, the hypochlorite concentration 
increased due to the NaCl oxidation, after which phenol removal rate 
increased substantially. When most phenol was oxidized, its removal 
rate remains constant because phenol concentration was lower and 
the effect of the excess of hypochlorite used in the indirect oxidation 
mechanism was less noticeable. The phenol removal after 60 minutes 
of electrolysis with current densities of 10 mA.cm-2 reached 90%.

of phenol inhibited the anodic current density and displaced the 
curves to slightly higher potentials. This behavior can be attributed 
to the formation of chlorophenols via organic intermediate products 
reactions with the hypochlorite ions generated on the anode; the 
chlorophenols tend to adsorb on the anode surface, blocking it 
partially and causing a decrease on the current density19.

The anodic potential of the Ti/SnO
2
-Sb anodes calcined at 400, 

500 and 600 °C rose from 2.0 to respectively 9.8 V, 12.8 V and 2.4 V, 
vs. Ag/AgCl (Eo = 0.198V in saturated KCl solution) after 30 minutes 
of electrolysis, indicating a strong degradation of the anodes calcined 
at 400 and 500 °C, while the anode calcined at 600 °C remained 
almost unattacked. This behavior can be better understood when the 
anodes surface micrographs before (Figure 3) and after (Figure 8) 
electrolysis are compared. In Figure 8a (anode calcined at 400 °C), 
after the electrolysis, the aspect was changed due to the loss of 
SnO

2
-Sb coating in some spots, which is corroborated by the EDS 

microanalysis, where no Sn was detected after electrolysis. A similar 
behavior can be observed in Figure 8b, for the sample calcined at 
500 °C; however, the coating loss was more severe. Probably, the 
absence of tin can also be associated to the anodic growth of the 
insulating TiO

2
 layer. When the anode was calcined at 600 °C less 

coating loss was observed after 30 minutes of electrolysis, and the 
aspect is similar to the electrode presented in Figure 3c. Furthermore, 
the EDS microanalysis did indicate the presence of tin, which did not 
occur on most of the electrodes surface calcined at 400 and 500 °C. 
The more intense coating loss may be associated to the less uniform 
structure of the anodes calcined at 400 and 500 °C and also to the 
pH raise during the electrolysis, which can bring the anode to the 
domain of tin corrosion in the E

h
 vs. pH diagram42. Moreover, the 

cracked clay structure of the electrodes can allow the penetration of 
the electrolyte, which allied to anodic gases evolution, may favor 

Figure 8. Continued...
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