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Experimental Analysis and Theoretical Predictions of the Limit Strains  
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In this work, the formability of a hot-dip galvanized interstitial-free (IF) steel sheet was evaluated 
by means of uniaxial tensile and Forming Limit Curve (FLC) tests. The FLC was defined using the 
flat-bottomed Marciniak’s punch technique, where the strain analysis was made using a digital image 
correlation software. A plastic localization model was also proposed wherein the governing equations 
are solved with the help of the Newton’s method. The investigated hot-dip galvanized IF steel sheet 
presented a very good formability level in the deep-drawing range consistent with the measured 
Lankford values. The predicted limit strains were found to be in good agreement with the experimental 
data of the hot-dip galvanized IF steel sheet owing to the definition of the localization model geometrical 
imperfection as a function of the experimental surface roughness evolution and, in particular, to the 
yield surface flattening near to the plane-strain stress state authorized by the adopted yield criterion.
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1.	 Introduction
The concept of the Forming Limit Diagram (FLD) was 

introduced by Keeler1 in order to assess the formability of 
sheets under biaxial tension. This earlier study applied for 
positive values of the smaller principal strain in the plane of 
the sheet. It was next extended by Goodwin2 to the full range 
between uniaxial and equibiaxial tension. Since that time, 
a very large number of investigations have been devoted to 
the experimental determination and the theoretical modeling 
of limit strains in sheets under biaxial tension. The FLD is 
defined in the axes of minor and major principal strains in the 
plane of the sheet. The curve obtained by plotting the limit 
strains obtained for linear strain paths is the Forming Limit 
Curve (FLC). The FLC is commonly observed to be fairly 
independent of the test used for its determination, provided 
the strain paths remain almost linear up to the occurrence of 
intense flow localization. More generally, the limit strains 
are assumed by most researchers to represent an intrinsic, 
although strain-path dependent, property of the material. 
In other words, structural effects relating to the boundary 
conditions of the deformation process are implicitly assumed 
to be without influence on the limit strains.

The prediction of the forming limits set by the occurrence 
of localized necking in plastically stretched sheets has been 
the subject of a very large number of theoretical analyses. 
The most popular approach is based on the model originally 
proposed by Marciniak and Kuczynski3. This approach, 
hereafter referred to as the M-K model, assumes the 
existence of an initial thickness imperfection across the sheet. 
Afterwards, the forming limits result from the process of flow 

localization in the defective region. Almost all the available 
descriptions of plastic yielding have been implemented in 
such a simple plane-stress analysis involving the existence 
of two individual zones, namely, the homogeneous zone, 
and the defective, thinner zone. In addition to the beneficial 
effects of strain-hardening and strain-rate hardening to delay 
the development of the neck4,5, it is now well established that 
the forming limits strongly depend on the plasticity model 
adopted, and in particular on the shape of the yield surface6-8. 
Thus, considerable advances have been achieved during the 
last twenty years in the prediction of the sheet metal forming 
limits by employing yield criteria proposed to provide an 
improved description of plastic flow under conditions of 
biaxial loading. For instance, predictions in good agreement 
with experimental results have been obtained in the case 
of aluminum alloys9-10 with the yield criteria proposed by 
Barlat et al.11, Karafillis and Boyce12 and Barlat et al.13.

The effects of the through-thickness normal and 
shear stress components have also been taken into 
account within the framework of the M-K model, see 
the recent works14-18. These out-of-plane effects are 
not negligible in some sheet metal forming processes, 
such as hydroforming and incremental sheet forming, 
where significant through‑thickness compressive stress 
components may take place.

On the other hand, the assumption of an ad-hoc 
groove‑like imperfection across the sheet is questionable, 
especially as the M-K analysis is very sensitive to the 
size of this imperfection. Several attempts have hence 
been made to rationalize the physical origin of the M-K 
imperfection. Its initial interpretation in terms of variations 
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in sheet thickness (geometric imperfection) was amended 
by considering also possible variations in the strength of the 
material (material or metallurgical imperfection). This idea 
was already mentioned in the work of Marciniak et al.19, 
and it was later materialized by assuming spatial variations 
in the orientation distribution of grains, giving variations 
in the Taylor factor20. Inhomogeneous damage due to the 
nucleation and growth of microvoids can also occur, for 
instance by decohesion between matrix and inclusion, or 
by fragmentation of inclusions, leading to a decrease in 
the surface area transmitting the load21. Indeed, the flow 
localization process in the presence of an initial thickness 
imperfection is accelerated by the development of damage, 
which is more rapid in the thinner, more stretched region22,23.

A quasi-random arrangement of hard elastic inclusions 
was also considered in finite element (FE) calculations to 
generate inhomogeneous strain fields leading to necking of 
the representative volume element24,25. Wu et al.26 performed 
FE computations of the response of a macroscopically 
infinitely small unit cell made of an assembly of elements, 
where each element represents a grain following the 
constitutive laws of crystal plasticity. The orientation 
distribution of grains is representative of a given texture. 
Then, the flow localization process can be analyzed at this 
mesoscopic level under a given average stress-ratio, and 
compared with the M-K analysis results.

The present work aims at evaluating first the formability 
of a hot-dip galvanized interstitial-free steel sheet using the 
Marciniak flat-bottomed punch test technique, where the 
limit strains were defined with the help of a Digital Image 
Correlation (DIC) analysis software. Surface roughness 
measurements were also performed on each FLC blank 
specimen width in attempt to make a correlation to the level 
of the accumulated effective plastic-strain. Also, a M-K 
model is developed within the framework of the flow‑theory 
under the assumption of isotropic work-hardening together 
with a phenomenological orthotropic plasticity yield 
criterion. The geometrical imperfection parameter of the 
M-K model is described as a function of the sheet roughness, 
mean grain size and the effective plastic-strain. The proposed 
M-K model is first validated with available data of a low 
carbon steel sheet, for which FLC tests were performed under 
linear and bi-linear strain-paths and then, applied to forecast 
the experimentally obtained limit strains of the investigated 
hot-dip galvanized interstitial-free steel sheet.

2.	 Experimental Procedure

2.1.	 Material

The experimental procedure was performed with a 
hot-dip galvanized interstitial-free (IF) steel sheet produced 
at the CSN steel plant in Brazil, which has a nominal 

thickness of 0.74 mm. Table 1 presents the IF steel sheet 
chemical composition obtained by optical emission and 
atomic absorption spectrometry (C, S and N). The IF 
hot‑dip galvanized steel microstructure obtained by optical 
metallography is shown in Figure 1, which is composed by 
equiaxed ferrite grains with 8.5 ASTM grain size (19 µm).

2.2.	 Uniaxial tensile testing

The uniaxial tensile tests were performed with an 
Instron 150 kN universal testing machine equipped with 
a non‑contacting video extensometer. The sheet metal 
specimens were stamped as per NBR ISO 6892:200227 with 
a gauge width of 12.5 mm and 50 mm of gauge length. The 
hot-dip galvanized IF steel sheet mechanical properties 
were evaluated from 3 specimens at angular orientations 
α = 0, 45 and 900 with respect to the rolling direction using 
a constant cross-head rate of 10 mm/min up to the failure. 
The yield stress was defined by the 0.2% plastic-strain offset 
method. Also, the true stress (σ)  - plastic strain (εp) data 
along the rolling direction was fitted to the modified Swift 
power law in which the strain-rate effect is considered as19: 

p p
0 0( ) ( )N MKσ = ε + ε ε ε  	 (1)

where: K is the strength coefficient (MPa), ε
0
 is the 

pre‑strain, N is the strain-hardening exponent, M is the 
strain-rate sensitivity index, pε is the true plastic-strain rate 
(s–1) and 0ε  is the reference strain-rate (s–1). The strain-rate 
sensitivity was determined using constant cross-head rate 
of 1 and 10 mm/min, which correspond approximately to 
nominal strain-rates of 3 × 10–4 and 3 × 10–3 s–1, respectively. 
The strain-rate sensitivity was defined from the tests at the 
rolling direction as:

Figure  1. As-received microstructure of the hot-dip galvanized 
interstitial-free steel sheet.

Table 1. IF steel chemical composition (% weight).

C Mn P S Si Al Cu V

0.0029 0.1 0.01 0.007 0.003 0.06 0.012 0.003

Cr Ni N Mo Ti Nb Sn B

0.01 0.005 0.0039 0.001 0.061 0.004 0.001 0.0003
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where: subscripts 1 and 2 denote the measures at the lower 
and higher strain-rates, respectively.

From the video measurements of both elongation 
and width changes together with the cell load recording, 
the Instron tensile testing machine employs automatic 
methods to define either the strain-hardening exponent 
N and the Lankford coefficient or r-value by means of a 
linear regression fitting of the calculated true stress and 
true plastic‑strain data between 10 and 15% (N

10-15
) and 

2 and 20% (r
2-20

) of longitudinal plastic-strain, respectively.

2.3.	 Marciniak punch test

Numerous tests have been used to determine the 
Forming Limit Curve (FLC). Nowadays, there is a trend 
towards determining the FLC by using a single equipment 
with samples of different widths. This can be achieved with 
the Nakazima28 and the Marciniak19 tests, where the blank 
sheet is fixed at its periphery, and deformed by a punch, the 
shape of which is either spherical (Nakazima) or cylindrical 
flat-bottomed (Marciniak). The Marciniak test was adopted 
in this study to obtain the FLC of the hot-dip galvanized IF 
steel sheet. The tooling geometry is defined by the following 
parameters: flat-punch diameter, 140  mm, flat-punch 
nose radius, 10 mm, die-opening diameter, 147 mm, die 
shoulder radius, 2.5 mm and lockbead diameter, 165 mm, 
respectively. The Marciniak punch experiments were 
carried out on an Amsler 1000 kN capacity single-action 
hydraulic press.

The blank length L is equal to 200 mm which has been 
taken perpendicular with respect to the rolling direction. 
The blank width W is equal to 80, 90, 100, 120, 130, 150, 
160, 170, 180 and 200 mm so as to cover roughly the 
drawing (ε

1
 > 0 and ε

2
 < 0) and the stretching (ε

1
 > 0 and 

ε
2
 > 0) regions of the FLC. The geometries and dimensions 

of the blank specimens are shown in Figure 2. Carrier or 
counter‑blanks with the same blank material and geometries 
were also machined so as to prevent the contact between 
the blank and the flat-punch surfaces and to assure a 
homogeneous straining. Central holes with diameters equal 
to 50 and 60 mm were machined in the carrier blanks for the 
blank specimen widths W = 200 mm and W = 180, 170 and 
160 mm, respectively, whereas counter-blanks were cut in 
two parts (perpendicular to the blank length) for the blank 
specimen widths W = 80, 90, 100, 110, 130 and 150 mm. All 
experiments were conducted with a 0.10 mm Teflon sheet 
between the punch and the carrier-blank, according to the 
ISO 12004–2:200829 standard. The Marciniak punch tests 
were stopped immediately after a drop in the punch load 
in order to avoid the complete separation of the samples.

2.4.	 Strain and roughness measurements

The limit strains are generally determined by carrying 
out a test up to ductile fracture and, then by analyzing the 
strain distributions obtained in the vicinity of the fractured 
zone. The strains are commonly measured using circle 
or square grids printed or electrochemically etched on 
the surface of the sheet. The Hecker’s method30 defines 

the limit strains as the limiting values between principal 
surface strains, namely, ε

1
 and ε

2
, measured on the necked 

or fractured sites, and on adjacent circles or squares. The 
accuracy of strain analysis can also be improved with the 
help of a digital image correlation (DIC) technique to 
determine the displacements fields. In the present work, 
the strain analysis was made using electrochemically 
etched 2.5 mm square grid with the help of the ASAME 
target model system31 using both ASTM E 2218 – 0232 and 
ISO 12004–2:200829 standards to define the limit strains. 
Figure  3 schematically shows the procedure adopted 
according to the ISO 12004–2:2008 standard to define the 
limit strains for the specimen blank width W = 120 mm. 
First, at least three intersections lines nearly perpendicular 
(within ± 150) to the fracture must be defined to obtain the 
true major and minor surface principal strains distributions 
on either sides of the fracture. For each intersection line, the 
true strains are then plotted as function of the grid position 
or node number in order to reject the points subjected to the 
localized necking. This is achieved by first calculating the 
local second derivatives from a parabola fitting of each major 
and minor true strains located at left and right sides of the 
fracture, wherein a range of 5 points is considered excluding 
the corresponding fracture strains, as shown in Figure 4a. 

Figure 2. Geometry and dimensions in mm of the blank specimens 
used in the Marciniak punch testing: (a) machined notched blank 
widths W  =  70, 80, 90 and 100 mm and (b) cut blank widths 
W = 130, 150, 160, 170, 180 and 200 mm.
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The remaining nodes including the ones located on either 
sides of the border necking area, see Figure 4b, are used to 
fit the 6th order polynomial. Then, the section limit strains 
are obtained by replacing the corresponding peak strain 
node in the fitted 6th order polynomial equation. Finally, 
the major and minor limit strains (ε

1
, ε

2
)are defined as the 

averaged values of the selected sections and the procedure 
is repeated for each sample width.

Surface roughness measurements were also performed 
in both as-received and deformed conditions. These 
measurements were carried out with a portable surface 
roughness Mitutoyo tester Surftest SJ-301 with a tip radius 

of 5 µm using a cut-off length of 2.5 µm and the roughness 
average (R

a
) parameter. Three measurements were made in 

each Marciniak punch specimen width at two equidistant 
grid points located on either sides of the fractured regions. 
The surface roughening was then correlated to the level of 
the surface effective plastic strain, ε , the initial sheet surface 
roughness, R

0
, and the initial grain size, d

0
, as33:

0 0R R C d= + ε 	 (3)

In Equation 3, the parameter C is determined from the 
linear fitting of the plot of R – R

0
 versus 0d ε  data. The 

accumulated effective plastic strain was calculated assuming 

Figure 3. Schematic of the digital image correlation technique adopted to define the sections measurements from the major and minor 
in-plane principal strains distributions determined for the blank width W = 120 mm.

354 Materials Research



Experimental Analysis and Theoretical Predictions of the Limit Strains  
of a Hot-dip Galvanized Interstitial-free Steel Sheet

normal plastic anisotropy along with the corresponding 
Hill’s quadratic34 conjugated effective plastic strain measure 
defined under plane-stress conditions as:

1 2
2 2
1 2 1 2

(1 ) 2
11 2

r r
rr

 +  ε = ε + ε + ε ε   ++  
	 (4)

where: 0 45 90( 2 ) / 4r r r r= + +  is the average normal plastic 
anisotropy coefficient while ε

1
 and ε

2
 are the principal 

surface plastic strains determined from the ASAME 
measurements.

3.	 Theoretical Analysis

3.1.	 Constitutive equations

The constitutive equations are defined within the 
framework of small strains from the additive decomposition 

of the total strain-rate tensor, ijε , in an elastic part, ij
eε , and a 

plastic part, p
ijε , which can be cast in an incremental form as:

pe
ij ij ijd d dε = ε + ε 	 (5)

In this work, the elastic strains are neglected in the 
solution of the localization model adopted to predict the 
plastic limit strains in sheet metal forming processes. Thus, 
in order to abridge the notation the superscript p is omitted 
hereafter. The plastic strain components are defined from 
the associated plastic flow-rule as:

ij
ij

d d f∂ε = λ
∂σ

	 (6)

Where: dλ is the plastic multiplier, f is the yield function 
defined under the assumption of isotropic work-hardening 
as:

ij( ) ( , )f F= σ - σ ε ε 	 (7)

In Equation 7, F(σ
ij
) is a first degree homogeneous stress 

function which defines the yield surface shape in the stress-
space whereas σ  is a scalar measure of the effective stress 

that defines the yield surface size and can be identified by 
the measures of effective plastic-strain, ε , and plastic‑strain 

rate, ε , determined from in the uniaxial tensile test. In this 
description, the plastic multiplier in Equation  6 can be 
obtained from the plastic loading condition, that is, f = 0, 
by firstly applying the Euler’s identity of homogeneous 
functions of degree n to the yield function given by 
Equation 7, that is:

( )
( )i

i i
i

F
F

∂
=

∂
x

x n x
x

	 (8)

and then by calculating the associated plastic-work per unit 
volume from the equivalent plastic-work principle, namely: 

ij ijd dσ ε = σ ε 	 (9)

Together with the associated flow-rule law, Equation 6, 
which provides that the plastic multiplier is equal to the 
effective plastic-strain increment conjugated of the effective 
stress σ , that is, d dλ = ε

The yield function adopted in this work corresponds to 
the orthotropic plasticity criterion proposed by Ferron et al.35 
defined for plane-stress conditions as:

1 2( , , ) ( , )f x x= ϕ α - σ ε ε 	 (10)

w h e r e :  x
1
 =  ( σ 1 +  σ 2) / 2 = ( σ x x +  σ y y) / 2  a n d 

2 2
2 1 2( ) 2 ( ) 4xx yy xyx = σ - σ = σ - σ + σ  define the center 

and the radius of the Mohr’s circle, respectively, as a function 
of the in-plane principal stress components (σ

1
,σ

2
) or else 

the in-plane orthotropic stress (σ
xx

,σ
yy

,σ
xy

). In Equation 10, 
α = (x,1) = (x,2) is the angle of the orientation between 
the in-plane principal stress directions (1,2) and the 
in‑plane orthotropic symmetry axes (1,2). For numerical 
implementation purposes, Ferron’s orthotropic plane-stress 
function is defined as:

Figure 4. ISO 12004–2:200829 procedure to determine the major and minor limit strains: (a) peak strains and 2nd order polynomial fitting 
and (b) border necking area and the limit strains obtained from the 6th order polynomial fitting.

2013; 16(2) 355



Freitas et al.

1 m62 2 3 2 2 2 2
1 2 1 1 2

2 1
2 1

1 2 m 6 2 2 2
1 2

2
22

m 6 2 2 2
1 2

( ) ( )
(1 )

2( , , ) cos2
(1 ) ( )

b cos 2
(1 ) ( )

m

n

n m

p
q

p m

x A x k x x B x
k

x xax x
k x x

x
k x x

-

-

-

  + - -   -   
 
  ϕ α =  - α
 - +
 
 
 
 + α
 - +  	

(11)

In Equation  11, the exponents m, n, p and q are 
previously known while the material parameters A, B, k, a 
and b can be obtained in two steps. Firstly, the parameters 
(A, B and k) are calculated from the stress-ratios (σ

b
/σ

45
) 

and (σ
b
/τ0) between the equibiaxial yield stress, σ

b
, and 

the uniaxial yield stresses at 450 with respect to the rolling 
direction, σ

45
, and the shear yield stress, τ0, along the rolling 

direction, respectively, along with the plastic anisotropy 
coefficient, r

45
. For steel sheets, the recommended values 

for the exponents are m = 2, n = 1 or 2, p = 1 or 2 and q = 1 
or 235. In particular, a positive value for the parameter k 
allows a flattening of the yield surface near plane-strain 
tension/compression and pure shear stress states. Secondly, 
the parameters a and b describing the initial in-plane sheet 
metal anisotropy, can be obtained from the plastic anisotropy 
coefficients (r

0
 and r

90
) or else from the uniaxial yield stresses 

(σ
0
,σ

45
,σ

90
).

When only uniaxial tension data is available, the 
parameters defining the yield surface at 450 from the 
rolling direction are determined assuming B  =  3A and 
positive k-value. Then, the parameters defining the initial 
planar material anisotropy, a and b in Equation  11, can 
be calculated with the r

0
 and r

90
 values or else from 

the stress‑ratios (σ
45

/σ
0
,σ

90
/σ

0
). Also, Hill’s quadratic34 

anisotropic yield criterion can be obtained as a particular 
case of Equation 11 by setting k = 0, m = 2 and n = p = q =1. 
The yield loci of Ferron’s criterion are plotted in Figure 5 
as a function of the angle α in the principal stress space 
(σ

1
,σ

2
) normalized by the equibiaxial yield stress (σ

b
). In 

this type of representation, g(θ,α) stands for the normalized 
radius defining a point on the yield locus where θ is the 
corresponding polar angle which defines the current stress 
state. The function g(θ,α) is defined as an extension of 
Drucker’s36 isotropic yield criterion as:

6 6 2 1

2 2

(1 ) ( , ) ( ) 2 sin cos

cos2 sin cos 2

m m m n

p q

k g F a

b

- -- θ α = θ - θ

θ α + θ α 	
(12)

Where:

2 2 3 2 2 2 2( ) (cos sin ) cos (cos sin )F θ = θ + θ - θ θ - θA k B 	 (13)

The principal plastic-strain increments are defined with 
the help of the parametric description, Equation 12, as35:

1
2

d ( , )sin( 4 ) ( , )cos( 4 )
d 2 ( , )

g g
g

ε θ α π + θ - θ α π + θ′=
ε θ α 	

(14)

2
2

d ( , )cos( 4 ) ( , )sin( 4 )
d 2 ( , )

g g
g

ε θ α π + θ + θ α π + θ′=
ε θ α 	

(15)

Where: ( , ) ( , ) /g gθ α ≡ ∂ θ α ∂θ′ . From the metal plasticity 
incompressibility condition, the plastic anisotropy 
coefficient defined from an uniaxial tensile test at an 
angular orientation α with respect to the rolling direction, 
i.e., rα = dε2/ dε3 = -dε2/(dε1 + dε2), can be obtained from 
Equations 14 and 15 as:

4

1 ( , )
1 ( , )

r g
r g

α

α θ=π

∂ θ α= -
+ θ α ∂θ

	
(16)

where: θ = π/4 defines the uniaxial stress state parallel to the 
in-plane principal stress σ

1
, as shown by the polar‑coordinate 

description in Figure 5.
On the other hand, the plastic-strain increments in the 

orthotropic symmetry axes frame (x,y,z) are determined 
from Equation 6, which depends upon the effective plastic-
strain increment and the yield function partial derivatives. 
The later are obtained by applying the consistency condition, 
df = 0, to the Ferron’s yield function defined in the form of 
Equations 9 and 10, that is:

1 2
1 2

0dx dx d d
x x

∂ϕ ∂ϕ ∂ϕ= + + α - σ =
∂ ∂ ∂α

df 	 (17)

and then, by defining the terms dx
1
, dx

2
 and dα as a 

function of the variables (x
1
,x

2
) along with the help of the 

relations sin 2α = σxy/x2 and cos 2α = (σ
x
 – σ

y
)/(2x

2
), which 

provides:

, , , 0xx xx yy yy xy xyF d F d F d d= σ + σ + σ - σ =df 	 (18)

Where: the yield function partial derivatives 
,ij ijF f≡ ∂ ∂σ  are given by:

Figure 5. Yield loci of Ferron et al.35 orthotropic yield criterion 
plotted in the principal stress space (σ

1
,σ

2
) normalized by the 

equibiaxial yield stress (σ
b
) as a function of the orientation angle 

(α) between the principal stress axes and the in-plane orthotropy 
directions.
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1 2 2

1 sin2, cos2
2 2xxF

x x x
 ∂ϕ ∂ϕ α ∂ϕ= + α - ∂ ∂ ∂α 

	 (19)

1 2 2

1 sin2, cos2
2 2yyF

x x x
 ∂ϕ ∂ϕ α ∂ϕ= - α + ∂ ∂ ∂α 

	 (20)

2 2

1 cos2, 2sin2
2xyF

x x
 ∂ϕ α ∂ϕ= α + ∂ ∂α 

	 (21)

While the partial derivative corresponding to the sheet 
thickness F,

zz
 = –(F, 

x
 + F,

y
) is obtained from the plastic 

incompressibility condition, that is, dε
zz

 = –(dε
x
 + dε

y
).

3.2.	 Marciniak-Kuczynski model

The localization model developed in this section is an 
extension of the original theory proposed by Marciniak 
and Kuczynski3. This model is based upon the existence 
of an initial thickness imperfection across the sheet, 
as depicted in Figure  6, where the superscripts a and b 
denote the homogeneous and the defective, respectively. 
Figure  6 indicates the coordinate systems axes adopted 
in the present M-K model, where a common frame (O, 
n, t, z) is defined by the normal direction n and tangential 
t directions to the imperfection and the in-plane normal 
axis of orthotropy symmetry z. Also, it is assumed that the 
in-plane orthotropic symmetry axes are coincident to the 
in-plane principal stress directions in the homogeneous 
zone a, that is, (xa ≡ 1a, ya ≡ 2a). In the defective zone, the 
orthotropy directions are not coincident with the principal 
stress directions. This can be taken into account by defining 
the orthotropic axes (xb, yb) in a corotational frame, which 
rotates as a function of the plastic deformation process37, 
and is defined by the angle ϕ ≡ (xa, xb) ≡ (ya, yb) shown 
in Figure  6. The rotation of the corotational frame axes 
(xb, yb) with respect to the principal stress directions in the 
homogeneous zone a, is defined by37:

b
bxx
xyb

yy

(1 )d d
(1 )

+ ε
φ = ε

+ ε
	 (22)

where: b
xxε  and b

yyε  are the accumulated strains in the 

orthotropic symmetry axes and b
xydε  is the shear-strain 

increment in the defective zone b.

The M-K geometrical imperfection has an initial angular 
orientation defined by the angle: Ψ ≡ (xa, n) ≡ (ya, t), see 
Figure 6. This angle evolves during the plastic deformation 
process, which rotation is given by38:

a
1
a
2

(1 d )tg( ) tg( )
(1 d )

d + ε
ψ + ψ = ψ

+ ε
	 (23)

where: a
1dε  and a

2dε  are the principal strain increments in 
the homogeneous zone a.

The initial imperfection value is defined by the ratio 

between the initial thicknesses of the defective zone, 0
bt , 

and homogeneous zone, 0
at , as:

0
0

0

b

a
t

f
t

= 	 (24)

In this work, the geometrical imperfection is assumed 
to be dependent on the current sheet roughness R, which is 
defined by Equation 3, as33:

0
0

0

2a

a
t R

f
t
-

= 	 (25)

In Equation 25, the effective plastic strain measure bε  
in the geometrical imperfection zone is used in Equation 3 
and, thus, the current geometrical imperfection is defined as: 

( )
1/2

0 0 00

0 0

2exp( )
exp

exp( )

a bb bb
b azz
zz zza a a a

zz

t R C dttf
t t t

 - + εε  = = = ε - ε
ε

	 (26)

The localization problem within the framework of the 
M-K analysis is based on the equilibrium of forces between 
the two zones along the normal (n) and tangential (t) 
directions of the geometrical imperfection, that is:

a b
nn nnF F= 	 (27)

a b
nt ntF F= 	 (28)

Which can be written as force per unit width as function 
of the stress components along the imperfection axes (n,t) 
and the actual thickness of the two zones, that is:

a a b b
nn nnt tσ = σ 	 (29)

a a b b
nt ntt tσ = σ 	 (30)

Also, the geometrical compatibility condition imposes 
that the strain increments along the tangential direction t 
must be the same between the zones a and b, namely,

d da b
tt ttε = ε 	 (31)

The solution of the M-K problem is obtained assuming 
firstly a given strain-ratio defined in the homogeneous 
zone between the minor and major in-plane principal strain 
increments, which is expressed by Ferron’s yield criterion, 
see Equations 14 and 15, as:

2

1

d ( , )cos( 4 ) ( , )sin( 4 )
( , )sin( 4 ) ( , )cos( 4 )d

a
a

a
g g
g g

ε θ α π + θ + θ α π + θ′ρ = =
θ α π + θ - θ α π + θ′ε 	

(32)Figure  6. Schematic of the Marciniak-Kuczynski localization 
model with the homogeneous and geometrical imperfection zones.
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and, then solving Equation 32 for the angle θ to determine 
the corresponding stress-state. In the present work, the 
strain-ratio is varied from the uniaxial tensile stress-state 

( / 4a
UTθ = π ) to the equibiaxial straining mode defined by 

ρa = 1( a a
ESθ = θ ). Secondly, the homogeneous zone a is loaded 

incrementally for a fixed strain-ratio (or stress‑state) with a 

small effective-strain increment value ( a 4d 10-ε = ). In this 
way, the stress and strain components in the homogeneous 
zone  a can be straightforwardly determined. With 
Ferron’s orthotropic yield function written in parametric 
coordinates, see Equation 12, and according to the Figure 6 
with the variables 1 1 2( ) 2 ( , )cosx gσ = σ + σ = θ α θ  and 

2 1 2( ) 2 ( , )sinx gσ = σ - σ = θ α θ , one obtains the principal 
stress components as:

1 ( , )(cos sin )a a a a agσ = σ θ α θ + θ 	 (33)

and

2 ( , )(cos sin )a a a a agσ = σ θ α θ - θ 	 (34)

In Equations  33 and 34 aσ  is the effective stress 
measure, which in Ferron’s yield criterion is identified as 
the equibiaxial yield stress σ

b
. Thus, it is more appropriate 

to define the stress-strain effective measures in the work-
hardening law given by Equation 1 under the equibiaxial 
tension stress-state. This is achieved noting from Figure 5 
that the ratio between the equibiaxial yield stress and the 
uniaxial tension yield stress at an angular orientation α with 
respect to the rolling direction is defined by Equations 33 
and 34 as / 2 / [2 ( 4, )]b b gα ασ σ = σ = π α , which gives:

1/3 2 6 /2 1 2

/6
[( 1) ( 1) ] 2 [2 cos2 2 cos 2

2 (1 )

mm m n p q

b m m
A k B a b

k

- -

α
 + - - - α - α σ =  

-  
	 (35)

and then by means of the transformations 1( )N
bK K α +

α α= σ , 

0 0 /b bαε = ε σ , / bαε = ε σ  and / bαε = ε σ

 , Equation 1 can 
be rewritten as:

0 0( ) ( )N M
bK α ασ = ε + ε ε ε  	 (36)

Moreover, the stress and strain increments in the 
geometrical imperfection axes can be obtained from the 
following transformation equations: 

2 2
1 2cosa a a

nn senσ = σ ψ + σ ψ

2 2
1 2sin cosa a a

ttσ = σ ψ + σ ψ 	 (37)

2 1( ) cosa a a
nt senσ = σ - σ ψ ψ

and

2 2
1 2cosa a a

nn sen∆ε = ∆ε ψ + ∆ε ψ

2 2
1 2 cosa a a

tt sen∆ε = ∆ε ψ + ∆ε ψ 	 (38)

2 1( ) cosa a a
nt sen∆ε = ∆ε - ∆ε ψ ψ

The unknowns variables in the weaker zone b, namely, 

[ ]b b b b T
nn tt nt= ∆ε σ σ σX , are then numerically calculated 

from the stress and strain states in the homogeneous zone a. 

Given that the main governing equations of the M-K problem 
are defined by two equilibrium forces and one deformation 
compatibility condition, given by Equations  29‑31, an 
additional relationship is derived from the equivalent 
principle of plastic-work in the zone b, see Equation 8, so as 
to obtain a system of four nonlinear equations as proposed 
by Ganjiani and Assempour39:

1
2

1
b b b b b b
nn nn tt tt nt nt

b bF
σ ∆ε + σ ∆ε + σ ∆ε

= -
σ ∆ε

	 (39)

2 1
b
tt
a
tt

F
∆ε

= -
∆ε

	 (40)

3 1
b
nn
a
nn

F f
σ

= -
σ

	 (41)

4 1
b
nt
a
nt

F f
σ

= -
σ

	 (42)

The solution of the system of nonlinear equations 
F  =  [F

1
  F

2
 F

3
 F

4
]T is obtained with the help Newton’s 

method40, where the initial guess for the solution vector are 
set to the values obtained in the homogeneous zone a, that 

is, [ ]a a a a T
nn tt nt= ∆ε σ σ σ0X . Moreover, a backtracking 

algorithm is adopted to assure the convergence of the full 
Newton’s method which strongly depends on the initial 
guess39,40. The localized necking criterion is defined when the 
ratio between the effective plastic-strain increments in the 
two zones reaches the condition of an unstable flow, which is 

given by 10b a∆ε ∆ε ≥ 38. Then, the limit strains are defined 
as the corresponding accumulated principal strains in the 

homogeneous zone ( , ,
1 2,a a∗ ∗ε ε ) by the minimum values of 

the major principal strains, ,
1
a ∗ε , determined as a function of 

the geometrical imperfection orientation Ψ, which, in turn, 
is varied between 0 and 90 degrees. Finally, the complete 
FLC prediction is obtained by varying the strain-ratio in the 
homogeneous zone ρa between the uniaxial tensile stress-
state and the equibiaxial straining mode.

The effects of non-linear strain-paths are considered 
assuming bi-linear strain-paths in two stages. In this way, it is 
possible to analyze the influence of the strain-path upon the 
forming limits under uniaxial tension, plane-strain tension 
and equibiaxial stretching pre-straining stages followed 
by linear proportional strain-paths. The strain components 
as well the effective plastic strain and the imperfection 
angular orientation at the beginning of the second stage (2) 
are initialized with the values determined at the end of the 
first stage (1):

(1) , (2) ,, a b a ba b
ij ij ijε = ε + ε 	 (43)

(1) , (2) ,, a b a ba bε = ε + ε 	 (44)

(2) , (1) ,a b a bψ = ψ 	 (45)

where a given value of the principal strain component is 

prescribed to the homogeneous zone, (1)
1

aε , together with 
the corresponding strain-path, ρ(1)a.
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The equations described in this section were coded in 
Fortran 90 language and all the numerical simulations were 
performed in an Intel Xeon 5690 3.47 GHz dual-processor 
workstation with 24 cores and 36 Gb of RAM. 

4.	 Results and Discussion

4.1.	 Experimental analysis

4.1.1.	 Plastic properties

The uniaxial tensile tests were carried out at constant 
cross-head speeds of 1 and 10 mm/min. The average values 
determined from 3 tests at each angular orientation (α) of the 
0.2% off-set yield stress (σ

y
), the strain-hardening exponent 

(N), the ultimate tensile strength (σ
u
), the total elongation 

(∆l) and the Lankford values (r) are listed in Table  2, 
where the italic values indicate the corresponding standard 
deviation. The yield stress value increases monotonically 
between α = 0 and α = 90 degrees, that is, σ

90
 > σ

45
 > σ

0
. As 

expected, this stress anisotropy is preserved for the ultimate 
tensile strength values and is also consistent with the angular 
evolution of the plastic anisotropy coefficient or Lankford 
values, which decreases monotonically between α = 0 and 
α = 900 (r

0
 > r

45
 > r

90
). The average normal plastic anisotropy 

coefficient 0 45 90( 2 ) / 4r r r r= + +  = 2.24 indicates a very good 
formability level of the analyzed IF hot-dip galvanized steel 
sheet, mainly for deep-drawing operations.

Table  3 presents the average values of the material 
parameters fitted according to the work-hardening law 
defined by Equation  1. The parameters K, ε

0
 and N in 

Equation  1 were obtained using a least-squares method 
from the uniaxial tensile true stress-true plastic strain 
data at the rolling direction. The IF steel sheet strain-rate 
sensitivity parameter M was defined as an average value 
from the fitted average instantaneous strain-rate sensitivity 
curve, calculated using Equation 2, as a function of the true 
plastic-strain level, as shown in Figure  7. The predicted 
true stress-true plastic strain curves computed with the 

fitted parameters for the IF hot-dip galvanized steel sheet 
are in good agreement with the experimental data plotted 
as a function of the uniaxial tensile test cross-head rate, as 
shown in Figure 8.

4.1.2.	 Limit strains and surface roughness

Figure 9 shows the photograph of the blanks deformed in 
the Marciniak punch test, where it is possible to observe that 
the fractured sites are near to the specimen center. Figure 10 
presents the contour values of the major and minor principal 
strains obtained with the ASAME software from the regions 

Table 2. IF steel sheet plastic properties determined from uniaxial 
tensile testing. The italic values indicate the corresponding standard 
deviation.

α  
(deg)

σy 
(MPa)

σu 
(MPa) r N ∆1 (%)

0
170.33 296.67 2.65 0.233 42.43

7.37 1.16 0.17 0.003 0.98

45
174.67 301.67 2.11 0.231 42.10

2.31 2.08 0.130 0.001 1.30

90
198.33 303 2.08 0.212 39.93

5.26 7.94 0.08 0.041 5.14

Table  3. IF steel sheet work-hardening parameters fitted from 
uniaxial tensile data.

K(MPa) N M ε0 0ε (s–1)

576.53 0.309 0.0166 0.0164 3.31 × 10–4

Figure 7. Fitted and average strain-rate sensitivity parameter M of 
the hot-dip galvanized IF steel sheet plotted as a function of the 
uniaxial tensile true plastic-strain.

Figure 8. Experimental and fitted true-stress and true plastic-strain 
along the rolling direction as a function of the strain-rate.

Figure 9. Deformed blanks after the Marciniak punch tests. The 
initial blank width vary from 80 mm to 200 mm.
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of interest of each specimen width. The maxima and minima 
values of the major and minor principal strains (ε

1
,ε

2
) varied 

from (0.87,–0.65) and (0.48, 0.37) for the specimen widths 
equal to 80 and 200 mm, respectively. It should be noted that 
none of the probable specimen blank geometries, namely, 
the widths of 130 and 150 mm, provided the forming limits 

close to the plane-strain intercept (FLC
0
). These unexpected 

results can be ascribed to the irregular lubrication between 
the two-piece carrier-blank and the flat-bottomed punch, due 
to the use of a very thin Teflon sheet (0.1 mm thick), and 
to the insufficient friction condition between the two‑piece 
carrier-blank and the corresponding specimen blank.

Figure 10. Major and minor principal strains contour plots determined from the ASAME software analysis as a function of the blank width.
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The limit strains determined for the hot-dip galvanized 
IF steel sheet according to ASTM E 2218-0232 and ISO 
12004 –2:200829standards are shown in Figure 11. Firstly, 
the limit strains values defined as peer ASTM E 2218-0232 
along with the ASAME DIC31 software present a very 
large scattering owing to its strong dependence upon the 
user’s criterion to select the necked and fractured areas 
at each specimen width. As pointed out, the conducted 
Marciniak punch tests do not provided points in the FLC 
near to either sides of the plane-strain intercept due to the 
uneven friction conditions. The software trend forming limit 
curves at necking and fracture conditions are also shown in 
Figure 11a, providing a forecast for the plane-strain intercept 
FLC

0
. Conversely, the limit strains defined according to ISO 

12004 –2:200829, see Figure 11b, clearly show the couple of 
strains determined for each specimen thanks to the rejection 
and fitting procedures to delimitate the border of the 
necking zone from either sides of the peak strain. It should 
be noted that the fracture limit strains were obtained from 
the reconstruction of the grid pattern performed with the 
ASAME software and as the peak strain using the ASTM E 
2218-0232 and ISO 12004 –2:200829 standards, respectively. 

The IF hot-dip galvanized steel sheet presents a very good 
formability level in the deep-drawing range thanks to its 
elevated plastic anisotropy coefficients.

Due to the lack of the experimental limit strains close to 
the plane-strain intercept, the empirical formula proposed 
by Keeler and Brazier41 is adopted here to forecast the 
engineering FLC

0
 value:

(23.3 14.13 ) (%)0.210
NFLC t= + 	 (46)

Where: t is the sheet thickness expressed in mm 
and  0 45 90( 2 ) / 4 0.227N N N N= + + =  i s  the  ave rage 
strain‑hardening exponent calculated from the uniaxial 
tensile data listed in Table 2. Henceforth, the corresponding 

true plane-strain intercept predicted value, 0.311PS
∗ε = , will be 

adopted together with the limit strains determined according 
to the ISO 12004 –2:200829 for comparison purposes with the 
theoretical predictions of the present M-K model.

Figure 12a correlates the resulting effective plastic‑strains 
calculated with Equation  4 and the measured average 
roughness (Ra) values as a function of the specimen width. 
The average initial roughness of the IF hot-dip galvanized 

Figure 11. Limit strains of the hot-dip galvanized IF steel sheet determined according to the (a) ASTM E 2218 – 0232 and (b) ISO 
12004–2:200829 standards.

Figure 12. (a) Effective plastic-strain calculated with Equation 4 and average surface roughness values plotted as a function of the initial 
blank width. (b) Experimental and linear fitted results of the surface roughness evolution according to Equation 3.
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steel sheet is R
0
  =  0.93 µm and changed to an average 

value of 3.55R =  µm due to the in-plane plastic straining. 
Figure 12b shows the plot of the R – R

0
 versus 0d ε  data 

and the linear fitting according to the Equation 3, from which 
the resulting C parameter is equal to 0.773 µm1/2.

4.2.	 Theoretical predictions

4.2.1.	 Validation of the M-K model

In order to validate the M-K model developed in the 
present work, see Section 3.2, we first present the theoretical 
predictions for linear and bi-linear strain-paths assuming 
material models as a function of the plastic anisotropy 
coefficient. Then, the predictions determined with Hill’s 
quadratic34 and Ferron’s35 yield criteria are compared to 
the experimental data obtained from linear and bi-linear 
strain-paths for an AISI-1012 steel sheet with a nominal 
thickness of 2.5 mm[42]. Table  4 lists the sheet material 
plastic properties adopted in all the theoretical predictions 
discussed in the present section. From Equation  25, the 
initial value of the geometrical imperfection f

0 
for the 

AISI-1012 steel sheet is equal to 0.995. Figure 13a presents 
linear strain-paths predictions determined as a function of 
the value of the plastic anisotropy coefficient at 450 with 
respect to the rolling direction. Three material models 
have been defined assuming r

45
 equal to 0.5, 1.0 and 2.5 

together with r
0
 = r

90
=1.0, respectively. The present material 

parameter combinations have already been investigated by 
Barata da Rocha et al.38 and were adopted here to verify 
the consistence of the present M-K model predictions. For 
the planar-anisotropic materials, the numerical simulations 
were performed with Hill’s quadratic yield criterion34 

while the von Mises yield criterion was adopted for the 
isotropic case. As expected, the same limit strains values 
are predicted under the uniaxial tensile strain-mode since 
all the adopted materials models have the same plastic 
anisotropy coefficient in the rolling direction and, thus, 

0 0/ (1 ) 0.5a r rρ = - + = - . Conversely, in the biaxial stretching 
domain the limit strains are strongly affected when the 
plastic anisotropy coefficient r

45 
is > 1.0 whereas the same 

FLC’s are obtained for the isotropic (r
45

 = 1.0) and r
45

 < 1.0 
cases. Moreover, it should be noted that these material 
parameters provide equal in-plane principal stress-ratio in 
the equibiaxial stretching stress-state condition, namely, 

2 1 1.0β = σ σ = . These differences are attributed to the 
geometrical imperfection orientation Ψ which minimizes 
the computed limit strains, as shown in Figure 13b in the 
plot of the corresponding critical major principal strains, 

,
1
a ∗ε , as a function of the orientation Ψ. The minimum limit 

strain for the r
45

 > 1,0 case is obtained for Ψ ≅ 45 degrees 
whereas ther

45
 < 1.0 material has minima coincident with 

isotropic reference case for Ψ = 0 and 90 degrees. As pointed 
out by Barata da Rocha et al.38, the original assumption of 
normality of the geometrical imperfection with respect 
to major in-plane principal stress19 is too restrictive since 
it would provide a unique limit strain in the equibiaxial 
stretching condition independently of the r

45
 value.

Figure  14 compares the theoretical predictions for 
an isotropic (von Mises) material determined from linear 
strain‑paths and bi-linear strain-paths after a pre-straining 
level of 15% under uniaxial tension (UT), plane-strain tension 
(PS) and equibiaxial straining (ES) conditions, respectively. 
In comparison to the linear strain-paths predicted values, it is 
possible to observe that the limit strains increase in the biaxial 
strain domain after the same amount of pre-strain under UT 
and PS conditions. In the deep-drawing range, that is, for 
negative minor principal strains, the resulting limit strains 
from the second deformation stage decreased after a UT 
pre-straining and are improved after a pre-straining under PS 
condition. Conversely, the influence of the ES pre-straining 
is more pronounced given that a remarkable decrease of the 
limit strains in biaxial strain range and an increase in the 

Table 4. AISI-1012 steel sheet material properties42.

K(MPa) N M ε0
d0 (µm)

238 0.35 0.01 0.01 25

R (µm) C (µm1/2) r
0

r
45

r
90

6.5 0.104 1.40 1.05 1.35

Figure 13. Influence of the plastic anisotropy coefficient r
45

-value: (a) on the predicted limit strains and (b) on the imperfection geometrical 
orientation of the M-K model.
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negative minor principal strain domain. Except for the PS 
case, the plane-strain intercept of the FLC moved towards 
the pre-straining mode direction, namely, shifted-up after 
the UT pre-straining and drastically decreased after the ES 
pre-straining stage. It should be pointed out that the above 

bi-linear strain-path calculations were performed without 
unloading between the first and second stages.

Figures 15 and 16 compare the predicted FLCs with 
the experimental results determined for an AISI-1012 steel 
sheet42 from linear and bi-linear strain paths, respectively. 
The parameters adopted in Ferron’s plasticity yield criterion 
were m = n = 2, p = q = 1 with k = 0.15. The parameters 
a and  b which describe the in-plane sheet metal plastic 
anisotropy in Ferron’s criterion, see Equation  11, were 
determined from the plastic anisotropic coefficients 
r

0
 and r

90
. The linear strain-path predictions obtained with 

both Hill’s and Ferron’s yield criteria are in good agreement 
with the experimental data near the plane-strain intercept of 
the AISI-1012 FLC whereas either anisotropic yield criteria 
underpredict the limits strains for larger values of the in-
plane negative minor principal strain, as shown in Figure 15. 
In the biaxial stretching domain, a better approximation 
is achieved with Ferron’s anisotropic yield criterion 
predictions. This is attributed to the flattening of Ferron’s 
yield surface near to plane-strain tension/compression and 
pure shear stresses states, thanks to a positive k-value in 
Equation 11, providing a smaller ratio between the major 
principal plane-strain yield stress, σPS1, and the equibiaxial 
yield stress, σ

b
, namely, the material parameter P = σPS1/σb

 
introduced by Barlat8, in comparison with Hill’s quadratic 
plane-stress yield locus. Figure 16a compares the theoretical 
predictions with the experimental AISI-1012 limit strains 
obtained after 10% of pre-strain in uniaxial tension. As for 
the linear strain-path, either yield criteria provided a good 
forecast near to the shifted plane-strain intercept. However, 
the corresponding theoretical predictions overestimate 
and underestimate the experimental data for the levels 
of the minor principal strain –0.20 ≤ ε2 ≤ –0.10 and 
–0.40 ≤ ε2 ≤ –0.30, respectively. Figure 16b shows that either 
yield criteria predictions underestimate the experimental 
limit strains after 8% of pre-strain in equibiaxial tension. 
Recently, Nurcheshmeh and Green43 developed a M-K 
model based upon a mixed isotropic‑nonlinear kinematic 
hardening along with Hill’s quadratic yield description 
obtaining improved predictions for the cited AISI-1012 steel 
sheet limit strains under bi‑linear strain-paths.

Figure  14. Theoretical predictions determined for an isotropic 
material from bi-linear strain-paths as a function of pre-strain mode: 
UT  - Uniaxial Tension, PS  - Plane-Strain and ES  - Equibiaxial 
Straining.

Figure  15. Comparison between the experimental linear strain-
path forming limits of a low carbon steel sheet42 and theoretical 
predictions obtained by the M-K model with Hill’s quadratic34 and 
Ferron’s35 anisotropic yield criteria.

Figure 16. Comparison between the experimental bi-linear strain-path forming limits of a low carbon steel sheet42 and theoretical predictions 
obtained by the M-K model with Hill’s quadratic34 and Ferron’s35 anisotropic yield criteria: (a) 10% of pre-strain in uniaxial tension and 
(b) 8% of pre-strain in equibiaxial straining.
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quadratic and Ferron’s criteria, parameters a and b in 
Equation  11, were determined from the uniaxial tensile 
data assuming firstly B = 3A and, then, by exchanging the 
r

0
 and r

90
 experimental values. Also, the work-hardening 

law was transformed according to the Equation  36 by 
setting α = π/2 in Equation  35 since the effective stress 
measure in Ferron’s orthotropic yield criterion is identified 
by the equibiaxial yield stress (σ

1
 = σ

2
 = σ

b
). Both yield 

criteria descriptions provided a very good agreement with 
the experimental limit strains located in the drawing range 
and a good match with the empirical FLC

0
. This can be 

attributed to the description of the geometrical imperfection 
parameter of the M-K model based upon the experimental 
evolution of the surface roughness as a function of the 
mean initial grain size and the effective plastic-strain. On 
the other hand, only Ferron’s orthotropic plasticity yield 
criterion provided a good prediction of the experimental 
limit strains in the biaxial stretching range. This is accredited 
to the yield surface shape in the region of interest, namely, 
the existence of a flattening in Ferron’s yield locus between 
the equibiaxial and plane-strain tension stress-states, which, 
in turn, provide a decrease in the stress-ratio P = σ

PS1
/σ

b
 in 

comparison to the Hill’s quadratic yield surface. Thus, for 
a given strain-path ρ = ε2/ε1 or else a stress-ratio β = σ2/σ1, 
the strain localization in the imperfection zone of the M-K 
model is favored as the parameter P decreases. This yield 
surface shape effect is better explained in Figure 18, where 
the limit strains predictions of the adopted anisotropic 
yield criteria are plotted in the biaxial stretching range with 
the computed history strain-paths in both homogeneous 
(circle‑dot lines) and imperfection (dashed lines) zones 
of the M-K localization model. First, one can observe 
the strain-path changes towards a plane-strain state in the 
imperfection zone and, then, the earlier plastic localization 
with Ferron’s yield criterion.

4.2.2.	 Predicted FLC

Figure  17 compares the experimental limit strains 
determined for the IF hot-dip galvanized steel sheet with 
the theoretical predictions of the M-K model based upon 
the Hill’s quadratic34 and Ferron’s35 yield criteria. From 
Equation  25 with the initial average roughness value of 
0.93 mµ, the initial value of the geometrical imperfection 
of the M-K model f

0 
is equal to 0.997. The parameters 

adopted in Ferron’s orthotropic plasticity yield criterion 
were m = n = p = q = 2 and k = 0.2. It should be recalled 
that the experimental limit strains are defined according to 
the ISO 12004 –2:200829 as well as that the plane‑strain 
intercept value has been predicted according to Equation 46. 
Given that the Marciniak punch tests were performed with 
the specimen blank length perpendicular to the rolling 
direction, the material anisotropic parameters of Hill’s 

Figure 17. Comparison between the experimental linear strain-path 
forming limits of a hot-dip galvanized interstitial-free steel sheet 
and theoretical predictions obtained by the M-K model with Hill’s 
quadrati34 and Ferron’s35 anisotropic yield criteria.

Figure 18. Theoretical predictions of the forming limits and the corresponding strain-paths in the biaxial stretching range determined for 
the hot-dip galvanized interstitial-free steel sheet: (a) Hill’s quadratic34 and (b) Ferron’s35 anisotropic yield criteria.
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the assumption of isotropic work-hardening forecasted 
only the experimental trends of the low carbon steel FLCs 
determined from bi-linear strain-paths after uniaxial 
and biaxial tension pre-straining. The M-K geometrical 
imperfection parameter was defined more properly from the 
experimental correlation of the surface roughness changes 
described as a function of the accumulated effective plastic 
strain and the mean grain size of the investigated hot-dip 
galvanized interstitial-free steel sheet. In the deep-drawing 
range, both Hill’s quadratic and Ferron’s yield criteria 
provided a good agreement with the limit strains of the 
hot-dip galvanized interstitial-free steel sheet. Only Ferron’s 
description forecasted the experimental data in the biaxial 
stretching domain owing to the effect of the yield surface 
flattening near to the plane-strain tension stress-state.
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5.	 Conclusions
In the present work, experimental and theoretical 

analyses of the limit strains of a hot-dip galvanized 
interstitial-free steel sheet were performed with the help of 
the Marciniak punch test technique and based on the M-K 
localization model, respectively.

The investigated hot-dip galvanized interstitial-free 
steel sheet presented a very good formability level, which 
is suitable for exposed parts in which an extra deep-drawing 
quality is often required. However, the adopted experimental 
procedure to conduct the FLC tests revealed to be too 
susceptible to the lubrication conditions between the flat-
bottomed punch and the carrier-blank. Besides, the limit 
strains defined as per ISO 12004-2:2008 has proven to be 
more consistent vis-à-vis the ASTM E 2218 – 02 standard 
procedures. The proposed M-K model based upon both 
Hill’s quadratic and Ferron’s anisotropic yield criteria was 
first validated by means of comparisons with available data 
of a low carbon steel (AISI 1012) for linear and bi-linear 
strain-paths. Under linear strain-paths, reasonable agreement 
was obtained from Ferron’s orthotropic yield criterion 
predictions. Conversely, either adopted yield criteria under 
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