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The paper presents some results of the research connected with the development of new approach 
based on the Adaptive Network-based Fuzzy Inference Systems (ANFIS) of predicting the Vickers 
microhardness of the phase constituents occurring in five steel samples after continuous cooling. The 
independent variables in the model are chemical compositions, initial austenite grain size and cooling 
rate over the temperature range of the occurrence of phase transformations. To construct these models, 
114 different experimental data were gathered from the literature. The data used in the ANFIS model is 
arranged in a format of twelve input parameters that cover the chemical compositions, initial austenite 
grain size and cooling rate, and output parameter which is Vickers microhardness. In this model, the 
training and testing results in the ANFIS systems have shown strong potential for prediction of effects 
of chemical compositions and heat treatments on hardness of microalloyed steels.

Keywords: adaptive network -based fuzzy inference systems (ANFIS), microalloyed steel, 
continuous cooling, HSLA steel

1. Introduction
The addition of alloying elements has been found to 

overcome the deficiencies of plain carbon steels and has 
resulted in improved material properties of steel. The 
thermodynamic stability of phases is changed by the 
addition of alloying elements to pure iron, which leads to a 
wide variety of microstructures and mechanical properties 
obtained as a result of austenite decomposition. For HSLA 
steels, the base chemistry consists of carbon and manganese 
where the principle microalloying elements are niobium, 
vanadium and titanium.

Carbon is an efficient austenite stabilizer and, in general, 
retards the transformation kinetics by shifting the time-
temperature-transformation (TTT) curves to increasingly 
longer times as the carbon content is increased1. As a result, 
non-equilibrium transformation products such as bainite 
and martensite can be produced. The driving pressure for 
austenite decomposition at any temperature is reduced by 
increasing the carbon content due to a lowering of the Ae3 
temperature. In general, low carbon steels are included of 
carbon contents up to 0.25 wt. (%).

The addition of manganese to low carbon steel produces 
several important changes. Like carbon, manganese acts 
as an austenite stabilizer and effectively expands the 
temperature range where stable austenite can form. The 
Ae3 temperature is considerably lowered which can enhance 
ferrite grain refinement and by increasing the manganese 
content a transition from a polygonal ferrite-pearlite 
microstructure to a ferrite-bainite microstructure can be 
attained2.

Niobium and titanium have been found to significantly 
affect the austenite decomposition kinetics3-5. An example 

of the effect of niobium and titanium in solution on the 
transformation start temperature is shown in Figure 1, 
which indicates that both niobium and titanium have a 
strong effect on delaying the start of the proeutectoid ferrite 
transformation, and that niobium is more effective for this 
delay than titanium. In addition, niobium and titanium have 
different affinities for carbon and nitrogen in austenite as 
shown in Figure 2, so that precipitates of carbides, nitrides 
and carbonitrides are formed for both niobium and titanium.

Coarse grain boundary precipitates have been found 
to be potent nucleation sites for ferrite formation due to 
the large mismatch with austenite which provides a high 
energy interface suitable for nucleation4. In addition, the 
formation of these coarse precipitates locally reduces the 
niobium and carbon contents in solution resulting in the 
effect of solute drag to be decreased and further promoting 
ferrite nucleation.

Cooling rate is one of the key parameters, which can be 
adapted on a welding due to its strong effect on the kinetics 
of austenite decomposition and resulting microstructure6. 
A wide variety of transformation products i.e. polygonal 
ferrite, acicular ferrite, bainite and/or martensite, can be 
obtained in HSLA steels by changing the cooling conditions 
during the continuous cooling phase transformation.

Austenite decomposition is a thermally activated 
process where the formation of the new product phase 
requires time to initiate nucleation and to continue into the 
growth stage. As a result, by increasing the cooling rate the 
available time at any given temperature to start the nucleation 
and growth processes is diminished, and thus, shifts the 
transformation start to lower temperatures6-9. Increasing the 
cooling rate also produces a finer ferrite grain size; since 
there is a greater difference in free energies of the austenite 
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and growing ferrite which leads to the activation of more 
potential nucleation sites10. At very high cooling rates, the 
transformation rate decreases due to a reduction in the 
diffusivity of carbon.

In addition to producing a finer ferrite grain size, an 
increase in the cooling rate can also form low temperature 
secondary products such as bainite and martensite due to 
the repression of the transformation start temperature. By 
controlling the final microstructure through cooling the 
desired–final mechanical properties of the steel can be 
achieved. In this way, controlled cooling on the weld heat 
affected zone (HAZ) is an important thermal treatment 
which can effectively control the final microstructure and 
mechanical properties of the steel.

The initial austenite microstructure plays an important 
role in the transformation behavior for weld HAZ cooling. 
The two microstructural features of austenite which are 
important for the transformation process include the 
austenite grain size and the degree of precipitation.

The heterogeneous nucleation of ferrite occurs 
prevalently on austenite grain boundaries. Therefore, a 
decrease of the austenite grain size leads to an increase 
in the grain boundary area per unit volume and thus a 
greater surface area for potential nucleation sites. As a 
result of increasing the number of potential nucleation 
sites, transformation starts at higher temperatures and 
produces higher temperature transformation products such 
as polygonal ferrite6,11. A finer ferrite grain size is produced 
since the number of ferrite formed increases due to more 
available potential nucleation sites where impingement 
of the growing ferrite grains will occur earlier due to the 
decrease of the austenite grain size.

It is observed that with a decrease in the austenite grain 
size, the transformation rate increases due to the increase in 
the ratio of nucleation rate to growth rate12-13. In addition, 
formation of polygonal ferrite is depressed with an increase 
in the austenite grain size and formation of non-polygonal 
microstructures is promoted6.

Several works have addressed utilizing of computer-
aided prediction of engineering properties including 
those done by the authors14-19. Adaptive Network-based 
Fuzzy Inference Systems (ANFIS) is the famous hybrid 
neuro-fuzzy network for modeling the complex systems20. 
ANFIS incorporates the human-like reasoning style of 
fuzzy systems through the use of fuzzy sets and a linguistic 
model consisting of a set of IF–THEN fuzzy rules. The 
main strength of ANFIS models is that they are universal 
approximators20 with the ability to solicit interpretable IF–
THEN rules. Nowadays, the artificial intelligence-based 
techniques like ANFIS21 have been successfully applied in 
the engineering applications. However, there is a lack of 
investigations on metallurgical aspects of materials.

In the present study, the effects of chemical compositions, 
austenitizing temperature, austenitic grain size and cooling 
rate on Vickers microhardness of low-carbon microalloyed 
steels has been modeled by ANFIS. Totally 114 Vickers 
microhardness data were collected from the literature, 
trained, tested and validated by ANFIS. The obtained 
results were compared by experimental ones to evaluate 
the software power for predicting the effects of mentioned 
parameters on microhardness of the studied steels.

2. Architecture of ANFIS
The architecture of an ANFIS model with two input 

variables is shown in Figure 3. Suppose that the rule base 

Figure 2. Solubility products of niobium, aluminium, vanadium 
and titanium nitrides and carbides4.
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Figure 1. The effect of niobium and titanium in solution on the 
transformation start temperature (Ae3)
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of ANFIS contains two fuzzy IF–THEN rules of Takagi and 
Sugeno’s type as follows:

Rule 1: IF × is A1 and y is B1, THEN f1 = p1x + q1y + r1.
Rule 2: IF × is A2 and y is B2, THEN f2 = p2x + q2y + r2.
In Figure 3 fuzzy reasoning is illustrated and also the 

corresponding equivalent ANFIS architecture is shown 
in Figure 4. The functions of each layer are explained as 
follows23-27:

Layer 1 – Every node i in this layer is a square node
with a node function:

( )1
ii AO x= µ

 (1)

(fuzzy sets: small, large, …) associated with this node 
function.

Layer 2 – Every node in this layer is a circle node 
labeled P, which multiplies the incoming signals and sends 
the product out. For instance,

( ) ( ) 1,2
i ii A BW y y i= µ × µ =

 (2)

Each node output represents the firing weight of a rule.
Layer 3 – Every node in this layer is a circle node labeled 

N. The ith node calculates the ratio of the ith rule’s firing 
weight to the sum of all rule’s firing weights:

W
i
 = W

i
 / (W

1
 / W

2
), i = 1,2 (3)

Layer 4 – Every node in this layer is a square node with 
a node function:

( )4
i i i i iO W P X q y r= + +  (4)

where iW  is the output of layer 3, and {pi, qi, ri} is the 
parameter set.

Layer 5 – The signal node in this layer is a circle node 
labeled R that computes the overall output as the summation 
of all incoming signals, that is,

5 /i i i i i i i i iO W f W f W= ∑ = ∑ ∑  (5)

The basic learning rule of ANFIS is the back-
propagation gradient descent, which calculates error 
signals recursively from the output layer backward to the 
input nodes. This learning rule is exactly the same as the 

back-propagation learning rule used in the common feed-
forward neural networks28,29. Newly, ANFIS adopted a 
rapid learning method named as hybrid-learning method 
that utilizes the gradient descent and the least-squares 
method to find a feasible set of antecedent and consequent 
parameters28,29. Therefore, in this paper, the later method is 
used for constructing the proposed models.

3. Training and Verifying

3.1. Data collection

In the present investigation, the ANFIS has been 
trained, tested and validated for prediction microhardness 
of low-carbon microalloyed steels. For this purpose, the 
experimental data of five low-carbon microalloyed steels 
with different chemical compositions have been used30-34. 
The chemical compositions of these steels are summarized 
in Table 1. The input variables of the ANFIS modeling are 
the weight percent of alloying elements, the initial austenite 
grain size and the cooling rate. These parameters along with 
their ranges have been summarized in Table 2.

3.2. ANFIS model structure and parameters

The structure of proposed ANFIS networks consisted of 
twelve input variables including the carbon concentration 
(cC), the niobium concentration(cNb), the manganese 
concentration(cMn), the molybdenum concentration (cMo), 
the titanium concentration (cTi), the nitrogen concentration 
(cN), the phosphorous concentration (cP), the sulfur 
concentration (cS), the silicon concentration nt (cSi), the 
aluminum concentration (cAl), the initial austenite grain 
size (Dγ) and the cooling rate (CR). The value for output 
layer was the Vickers microhardness (HV).

Figure 3. The reasoning sheme of ANFIS22.

Figure 4. Schematic of ANFIS architecture21.
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The input space is decomposed by three fuzzy labels. 
In this paper, for comparison purposes, two types of 
membership functions (MFs) including the triangular 
(ANFIS-I) and Gaussian (ANFIS-II) were utilized to 
construct the suggested models. The ANFIS models were 
trained, from 114 collected data, by 80 data (70%) were 
randomly chosen for training set, 17 (15%) data for testing 
set and the other 17 (15%) data for validation set. Moreover, 
up to 1,000 epochs were specified for training process to 
assure the gaining of the minimum error tolerance.

Dne of the most difficult tasks in ANFIS studies is 
to find this optimal network architecture, which is based 
on the determination of numbers of optimal results. The 
assignment of initial weights and other related parameters 
may also influence the performance of the ANFIS to a great 
extent. However, there is no well defined rule or procedure to 
have an optimal network architecture and parameter settings 
where the trial and error method still remains valid. This 
process is very time consuming.

In this study, the Matlab ANFIS toolbox is used for 
ANFIS applications. To overcome optimization difficulty, 
a program has been developed in Matlab, which handles 
the trial-and-error process automatically35-38. The program 
tries various functions and when the highest RMSE (root 
mean squared error) of the testing set, as the training of the 
testing set, is achieved, it was reported35-38.

The IF–THEN rules in this study were achieved as 
follows. Suppose that the rule base of ANFIS contains two 
fuzzy IF–THEN rules of Takagi and Sugeno’s type:

Rule 1: IF cC is A1, cNb is B1, cMn is C1, cMo is D1, 
cTi is E1, cN is F1, cP is G1, cS is H1, cSi is I1, cAl is J1, Dγ 
is K1 and CR is L1

T H E N  f 1  =  n 1c C  +  o 1c N b  +  p 1c M n  + 
q1cMo + r1cTi + s1cN + t1cP+ u1cS + v1cSi + w1cAl + x1 
Dγ + y1CR + zb1.

Rule 2: IF cC is A2, cNb is B2, cMn is C2, cMo is D2, 
cTi is E2, cN is F2, cP is G2, cS is H2, cSi is I2, cAl is J2, Dγ 
is K2 and CR is L2

T H E N  f 2  =  n 2c C  +  o 2c N b  +  p 2c M n  + 
q2cMo + r2cTi + s2cN + t2cP+ u2cS + v2cSi + w2cAl + x2 
Dγ + y2CR + zb2.

The corresponding equivalent ANFIS architecture is 
shown in Figure 5. The functions of each layer are described 
as follows:

Layer 1 – Every node i in this layer is a square node 
with a node function:

( )1 1,2
ii AO cC i= µ =  (6)

( )1 1,2
ii BO cNb i= µ =  (7)

( )1 1,2
ii CO cMn i= µ =

 (8)

( )1 1,2
ii DO cMo i= µ =  (9)

( )1 1,2
ii EO cTi i= µ =  (10)

( )1 1,2
ii FO cN i= µ =

 (11)

( )1 1,2
ii GO cP i= µ =

 (12)

( )1 1,2
ii HO cS i= µ =

 (13)

( )1 1,2
ii IO cSi i= µ =

 (14)

Table 1. Chemical composition of the microalloyed steels.

Ref. Steel
Chemical composition (wt. (%))

C Mn Nb Mo Ti N P S Si Al

26 X80 0.060 1.650 0.034 0.240 0.012 0.005 0.000 0.000 0.000 0.000

27 HSLA65 0.062 1.240 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.040

27 HSLA 90 0.050 1.650 0.071 0.196 0.021 0.000 0.010 0.004 0.025 0.027

28 Nb steel 0.060 1.200 0.062 0.000 0.000 0.008 0.000 0.007 0.290 0.035

29 Nb-Mo steel 0.050 1.880 0.049 0.490 0.000 0.004 0.005 0.007 0.040 0.050

30 DP600 0.060 1.860 0.000 0.155 0.011 0.007 0.015 0.004 0.077 0.043

Table 2. The parameters and their range used in the neural network.

Parameter Range

Input
C (wt. (%)) 0.050-0.062

Mn (wt. (%)) 1.200-1.880

Nb (wt. (%)) 0.000-0.071

Mo (wt. (%)) 0.008-0.490

Ti (wt. (%)) 0.000-0.021

N (wt. (%)) 0.000-0.007

P (wt. (%)) 0.000-0.015

S (wt. (%)) 0.000-0.007

Si (wt. (%)) 0.000-0.077

Al (wt. (%)) 0.000-0.050

Dγ (μm) 5-130

CR (°C) 0.3-153

Output
Hardness (HV) 130-300
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( )1 1,2
ii JO cAl i= µ =

 (15)

( )1 1,2
ii KO D i= µ γ =

 (16)

( )1 1,2
ii LO CR i= µ =

 (17)

where cC, cNb, cMn, cMo, cTi, cN, cP, cS, cSi, cAl, Dγ and 
CR are inputs to node i, and Ai, Bi, Ci, Di, Ei, Fi,Gi, Hi. Ii, Ji, 
Ki and Li are the linguistic label (fuzzy sets: small, large, …) 
associated with this node function.

Layer 2 – Every node in this layer is a circle node 
labeled Π which multiplies the incoming signals and sends 
the product out. For instance,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) (D ) ( ), 1,2

i i i i

i i i i i

i i i

i A B C D

E F G H I

J K L

W cC cNb cMn cMo

cTi cN cP cS cSi

cAl CR i

= µ × µ × µ × µ ×

× µ × µ × µ × µ × µ ×

× µ × µ γ × µ =
 

(18)

Each node output represents the firing weight of a rule.
Layer 3 – Every node in this layer is a circle node labeled 

N. The ith node calculates the ratio of the ith rule’s firing 
weight to the sum of all rule’s firing weights:

Figure 5. Schematic of ANFIS architecture utilized in this work.
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( )1 2/ / ,     1,2i iW W W W i= =  (19)

Layer 4 – Every node in this layer is a square node with 
a node function:

4 i i i i i i
i i

i i i i i i i

n cC o cNb p cMn q cMo r cTi s cN
O w

t cP u cS v cSi w cAl x D y CR zb
+ + + + + + 

=  + + + + + γ + + 
 

(20)

where iW  is the output of layer 3, and {n
i
, o

i
, p

i
, q

i
, r

i
, s

i
, t

i
, 

u
i
, v

i
, w

i
, x

i
, y

i
, z

i
} is the parameter set.

Layer 5 – The signal node in this layer is a circle node 
labeled R that computes the overall output as the summation 
of all incoming signals, i.e.,

5 /i i i i i i i i iO w f w f w= ∑ = ∑ ∑  (21)

4. Results and Discussion

4.1. The effects of austenitizing temperature and 
cooling rate

The austenite decomposition is heavily influenced 
by the initial austenite grain size and cooling rate. For 
a given cooling rate, an increase in austenite grain size 
results in lower transformation start temperatures resulting 
in a decrease in polygonal ferrite fraction. Further, for a 
given austenite grain size, accelerated cooling lowers the 
transformation start temperature with an associated decrease 

Figure 6. The correlation of the measured and predicted Vickers 
microhardness values in a) training, b) validation and c) testing 
sets for ANFIS-I model.

Figure 7. The correlation of the measured and predicted Vickers 
microhardness values in a) training, b) validation and c) testing 
sets for ANFIS-II model.
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in the polygonal ferrite fraction in addition to refining the 
resulting ferrite grains. Accelerated cooling in combination 
with smaller austenite grain sizes further refines the ferrite 
grains. The effect of processing variables indicates that the 
hardness increases with austenite grain size and cooling rate 
as a result of the decrease in transformation start temperature 
where low temperature transformation products are formed, 
i.e. bainite and martensite, which are harder phases.

Predicting the microstructural evolution under 
continuous cooling conditions as found on the welding is 
a challenging task since in addition to cooling conditions, 
the austenite decomposition is affected by chemistry, 
austenite grain size and retained strain. There is a clear 
shift of the transformation kinetics to lower transformation 
temperatures with an increase in the initial austenite grain 
size. A larger initial austenite grain size provides less 

boundary surface area per unit volume, thus reducing the 
number of available nucleation sites for ferrite and as a result 
transformation occurs at lower temperatures. In addition, 
the carbon diffusion distance is greater for a larger initial 
austenite grain size requiring additional time for diffusion, 
thereby lowering the transformation temperature. The shift 
to lower transformation start temperatures for an increase in 
the initial austenite grain size, is associated with the delay 
of transformation start for larger austenite grains since, 
comparatively they provide fewer nucleation sites. Similar 
trends were observed for transformation finish temperatures. 
The increase in cooling rate and/or initial austenite grain 
size gave rise to a significant increase in the hardness of the 
steel. For example, for HSLA 90[27] an increase in the cooling 
rate from 1 to 179 °C/s increased the hardness by 90 HV for 
an austenite grain size of 53 μm and for an increase in the 

Table 3. Testing and validation data sets for comparison of experimental results with testing and validation results predicted from 
ANFIS-I model.

The set 
name

Chemical composition  
(wt. (%))

Austenite 
Grain size

Cooling 
rate

Vickers 
microhardness

C Nb Mn Mo Ti N P S Si Al dγ (μm) CR (°C) Exp. Pred.

Validation 0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 5 3 260 241.4

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 5 60 212 198.4

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 60 226 226.8

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 15 60 198 198.4

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 30 240 263.5

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 19 125 174 180.3

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 10 187 178.1

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 55 204 201.1

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 130 5 198 194.2

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 130 15 206 199.2

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 63 238 234.2

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 1 196 207.8

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 127 284 290.1

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 16 23 173 179.2

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 16 67 216 212.9

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 20 1 185 186.5

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 62 100 278 289.3

Testing 0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 60 225 225

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 100 203 204.7

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 100 204 190.7

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 24 30 243 240.5

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 10 263 285.2

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 18 192 182.9

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 110 212 217.9

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 192 218 204.3

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 14 172 230 209.8

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 1 190 184.6

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 172 261 240.7

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 12 212 218.9

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 16 1 150 160.6

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 24 5 171 166.8

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 8 1 167 185.3

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 20 100 241 255.6

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 62 5 200 205.1
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austenite grain size from 14 to 53 μm, the hardness increased 
by 58 HV for a cooling rate of 127 °C/s.

The observed increase in hardness obtained by 
increasing the cooling rate is related to a decrease in the 
transformation temperatures for which non-polygonal 
products, i.e. harder phases are formed. In addition, 
decreasing the austenite grain size also results in an increase 
in hardness; this is due to the refinement of ferrite grains 
with a decrease in the austenite grain size.

4.2. ANFIS modeling

In this study, the error arose during the training, 
Validation and testing in ANFIS-I and ANFIS-II models can 
be expressed as absolute fraction of variance (R2) which is 
calculated by Equation 2:

( )
( )

2
2

21– i ii

ii

t o

o
R

 
 =
 

−



∑
∑  

(22)

where t is the target value and o is the output value.
All of the results obtained from experimental studies and 

predicted by using the training, testing and validation results 
of ANFIS-I and ANFIS-II models are given in Figures 6a-c 
and 7a-c, respectively. The linear least square fit line, its 
equation and R2 values were shown in these figures for the 
training, testing and validation data. Also, inputs values 
and experimental results with testing and validation results 
obtained from ANFIS-I and ANFIS-II models were given 
in Tables 3 and 4, respectively. As it is visible in Figures 6 
and 7, the values obtained from the training, testing and 
validation sets in ANFIS-I and ANFIS-II models are very 

Table 4. Testing and validation data sets for comparison of experimental results with testing and validation results predicted from 
ANFIS-II model.

The set 
name

Chemical composition  
(wt. (%))

Austenite 
Grain size

Cooling 
rate

Vickers 
Microhardness

C Nb Mn Mo Ti N P S Si Al dγ (μm) CR (°C) Exp. Pred.

Validation 0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 3 300 293.6

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 10 290 284.3

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 60 225 226.4

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 60 210 227.4

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 5 181 176.7

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 10 187 182.3

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 110 212 201.8

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 49 192 218 215.1

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 130 198 227 235.1

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 14 1 163 174.3

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 14 172 230 234.2

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 1 190 188.3

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 12 212 214.2

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 127 284 276.7

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 16 5 171 157.5

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 24 48 205 205.1

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 24 157 260 255.9

Testing 0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 42 100 203 200.6

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 3 295 275.7

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 10 293 268.8

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 5 3 240 246.4

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 5 30 208 218

0.06 1.65 0.034 0.24 0.012 0.005 0 0 0 0 80 100 195 203.8

0.062 1.24 0.063 0.008 0.002 0.007 0.007 0.004 0.051 0.04 19 2.5 138 137.8

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 14 20 182 195.7

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 6.7 194 197.2

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 17 199 211

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 32 120 243 251.7

0.05 1.65 0.071 0.196 0.021 0 0.01 0.004 0.025 0.027 53 5 208 202.9

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 16 23 173 179.6

0.06 1.86 0 0.155 0.011 0.007 0.015 0.004 0.077 0.043 32 155 270 260.2

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 8 15 200 194.7

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 8 40 225 220.4

0.05 1.88 0.049 0.49 0 0.004 0.005 0.007 0.04 0.05 62 15 227 217.1
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close to the experimental results. The results of testing and 
validation phases in Figures 6 and 7 show that the ANFIS-I 
and ANFIS-II models are capable of generalizing between 
input and output variables with reasonably good predictions.

The performance of the ANFIS-I and ANFIS-II models 
is shown in Figures 6 and 7. The best value of R2 is 96.56% 
for training set in the ANFIS-I model. The minimum values 
of R2 are 97.23% for training set in the ANFIS-II model. All 
of R2 values show that the proposed ANFIS-I and ANFIS-II 
models are suitable and can predict Vickers microhardness 
of microalloyed steels values very close to the experimental 
values.

5. Conclusion
1.  The effect of processing variables shows that the 

hardness of steels increases with the increase of 
austenite grain size and cooling rate attributed to the 

increase in non-polygonal structures which show 
a higher hardness. This effect can be rationalized 
with transformation temperature, e.g. a decreasing 
transformation start temperature leads to higher 
hardness values; and

2.  The ANFIS approach appears to be a very powerful 
tool in materials engineering. The results presented 
show that the prediction of the microhardness 
properties of the considered steel is in a good 
agreement with the experimental data. The ANFIS 
was trained, Tested and validated on the data 
obtained from the literature. The accuracy of values 
evaluated by the ANFIS model is much higher than 
that obtained from calculations using the classical, 
experimental models. This means that the well-trained 
network under laboratory conditions is able to predict 
the correct values of the output parameters of the 
industrial process.
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