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In this study the mixed oxides ZrO2-SiO2, were synthesized by the sol-gel method with a molar 
ratio of 95:5 (Si/metal) and characterized by X-ray diffraction, absorption-desorption of N2, Fourier 
transform infrared spectroscopy, thermal gravimetric analysis, temperature-programmed desorption of 
ammonia, and acidity test by titration. The synthesized materials, which are amorphous to X-rays, are 
composed of a mixture of micro- and mesopores. They show a higher acid strength than the separate 
oxides, indicating that the ZrO2 is highly dispersed in the silica matrix.
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1.	 Introduction
The continuous evolution of science and the general 

call for the protection of the environment have created an 
increased demand for new technologies and new materials. 
This becomes evident by the progress in the improvement 
of high performance metallic and polymeric materials, 
semiconductors, ceramics, nanotechnology, and catalysts1,2. 
In particular, those materials which exhibit catalytic activity 
have attracted attention due to their broad and growing 
applicability in many industrial processes3, from the 
petrochemical industry to the food sector4-7.

Numerous studies can be found in the literature8-13 
regarding the development of new materials with catalytic 
properties. Among the various solids with industrial 
applications, the mixed oxides are capable of combining 
the chemical and mechanical properties of their constituting 
oxides5. Once formed, the mixed oxides display acidic 
sites due to the excess negative or positive charge or due 
to defects in the lattice14,15. Owing to these properties, the 
acidic mixed oxides play an important role in applications 
such as the cyclization of citronellal to isopulegol16,17, 
isomerization of α-pinene and dehydration of 4-methyl-2-
pentanol18, Fischer-Tropsch process19, ammonia oxidation20, 
hydrogenation of alkenes21, synthesis of alcohols22, and 
biodiesel production23.

Among the most frequently employed methods for 
the synthesis of mixed oxides are the coprecipitation24, 
hydrothermal routes25, sonochemical processes26, the oxalate 
route27, and the sol-gel process28. From all these processes, 
the sol-gel process (SGP) has attracted attention due to 
its versatility in the development of new materials, owing 
to the simplicity and flexibility of the synthesis, which 
permits the preparation of highly pure and homogeneous 
products with controlled porosity29. Moreover, this process is 
environmentally friendly compared to the traditional routes 
for the preparation of ceramics and glasses30.

An important application for mixed oxides is the 
catalysis of the esterification reaction of the free fatty 

acids contained in oils and/or fats, as a preceding step in 
biodiesel production. At commercial scale, biodiesel is 
mainly produced with homogeneous alkaline catalysts, 
although this technology poses some disadvantages, for 
example, its requirement of high-quality feedstock with 
low content of free fatty acids and water, the difficulty of 
recovery and reutilization of the catalyst, and the generation 
of effluents, all of which contribute to increased production 
costs. Therefore, research activities have turned towards 
the development of heterogeneous catalysts that can be 
separated easily from the reaction medium, allow for more 
flexibility concerning feedstocks with higher contents 
of free fatty acids and water, and can be reused several 
times, besides avoiding the generation of larger amounts 
of effluents.

In this context, silica-supported zirconium oxide has 
emerged as catalyst because of its thermal and chemical 
stability, its higher resistance to deactivation compared to 
the isolated oxides, and its higher acidity27,31-33.

Based on the above considerations, the objective of this 
work was the synthesis and characterization of the mixed 
oxide ZrO2-SiO2 as well as the modification of its acid force 
and its hydrophilic character, followed by an preliminary 
assessment of the catalyst in the esterification of oleic 
acid with methanol, aiming at a future application in the 
production of biodiesel from high free fatty acid feedstocks.

2.	 Experimental

2.1.	 Synthesis of the solids

The ZrO2-SiO2 catalysts were prepared by the sol-gel 
method34, with a 95:5 molar ratio of Si/Metal. Initially, 
a pre-hydrolysis was performed by agitating a solution 
containing tetraethoxysilane (TEOS)/H2O/ethanol/HNO3 
at 80 °C, for 3 hours. Thereafter, appropriate amounts of a 
solution of the metal oxide precursor (ZrOCl2.8H2O) with 
ethanol were added, maintaining the agitation for two more *e-mail: roserpa@uesc.br
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hours, at room temperature. Then, H2O and concentrated 
HNO3 were added, and the resulting solution was kept at 
room temperature for another two hours. The gels were 
obtained by evaporation of the solvent and dried for 6 hours 
at 80 °C, macerated, washed for removal of the chlorides, 
dried at 100 °C for two hours, washed with ethanol in the 
soxhlet extractor, and calcined at 500 °C for three hours. 
This catalyst will be referred to as ZrO2-SiO2.

In order to obtain methylated material, the synthesis was 
carried out as described above, except that a proportion of 
1:1 of methyltriethoxysilane MeSi(OEt)3/TEOS was added 
in the pre hydrolytic step. This catalyst will be referred to 
as ZrO2-SiO2-Me.

In order to obtain sulfated material in situ, the synthesis 
proceeded as described for catalyst ZrO2-SiO2, but with 
the addition of an amount of 4.1 mL sulfuric acid at the 
hydrolytic and condensation steps, instead of the nitric 
acid. This catalyst will be referred to as ZrO2-SiO2-SO4

2–-is.

2.2.	 Characterizations

The X-ray diffractional patterns with CuKα radiation 
was obtained using a Siemens D5000 diffractometer. The 
range examined was 2θ = 5 to 80°, and the speed was 4°. 
s-1. The adsorption-desorption isotherms of nitrogen were 
obtained at -196 °C with a Micromeritics ASAP 2010. The 
sample was previously treated for 17 hours at 250 °C under 
nitrogen flow. The pore diameters, as well as the pore size 
distribution, were calculated by using the BJH (Barrett, 
Joyner and Halenda) for microporous solids, based on 
the nitrogen adsorption isotherm. The specific area was 
calculated with the BET (Brunauer, Emmett and Teller) 
equation in the region with low pressure (p/po = 0.200), and 
the micropore area and micropore volume were determined 
using the software t-plot.

Infrared spectra have been registered in the range 
4000‑400 cm−1 using Shimadzu spectrometer, with a 
resolution of 4 cm−1. The samples were prepared as KBr 
pastilles, with a proportion of 1% of the solids. The TG-DTA 
analyses were conducted with a Shimadzu DTG - 60/60H. 
The samples of the solids were heated under nitrogen flow, 
from room temperatures up to 700-900 °C, at a rate of 40 °C 
min–1, using aluminium oxide cells.

The profiles of the thermal programmed desorption of 
ammonia (TPD-NH3) were obtained with a Micromeritics 
Chemsorb 2720. The samples were pre-treated for one 
hour at 300 °C, under helium flow of 25 mL.min–1 followed 
by cooling to room temperature in order to remove 
any physisorbed species on the surface of the sample. 
After this pre-treatment, the samples were submitted to 
a chemisorption step using ammonia in helium (9.9%, 
mol/mol) flow of 25 mL.min–1 at room temperature, for 
30 minutes. Thereafter, the system was purged with helium 
at room temperature for 30 minutes. In order to remove the 
physisorbed ammonia molecules, the material was treated 
for 30 minutes at 150 °C under helium flow (25 mL.min–1) 
and then cooled to room temperature. This step was followed 
by the thermal programmed desorption analysis, in which the 
sample was heated from room temperature to 1000 °C, at a 
rate of 10 °C min–1 and under helium flow (25 mL.min–1). 
The amount of desorbed ammonia was monitored with a 

thermal conductivity detector. The acidity of the catalyst was 
determined from the quantification of Brønsted acid sites by 
titration35. Finally, 100 mg of the material was brought into 
contact with 20 mL of 0.1 mol L–1 NaOH for three hours 
with light agitation. Then, samples of the basic solution 
were separated and titrated with 0.1 mol L–1 HCl in order to 
verify the amount of NaOH which reacted with the material. 
Acidity was determined in mmol H+ per gram of material.

The synthesized materials were assessed in an 
esterification reaction using oleic acid (model molecule) 
with methanol, in a Parr reactor with a working volume 
of 300 mL, using the following reaction conditions: the 
molar ratio of acid/alcohol was 6:1, the amount of catalyst 
corresponded to 3% of the mass of the oleic acid, and the 
temperature was 120 °C, for 3 hours. Preceding the reaction, 
the catalyst had been dried at 110 °C, for 3 hours.

3.	 Results and Discussion

3.1.	 Synthesis of the solids

The solids were synthesized by means of the sol-
gel process (SGP), a comparatively simple method for 
the synthesis of mixed oxides, which promotes high 
homogeneity of the metal on the surface of the matrix, better 
control of particle size, and higher purity36.

The TEOS was chosen as precursor for presenting low 
hydrolysis rates, which promotes high homogeneity for 
mixed oxides37. The solvent was ethanol, which prevents 
the separation of the liquid-liquid phases during the initial 
stage of hydrolysis, and consequently, the concentrations 
of water and silicate are maintained, which influence the 
reaction speed in the gelation step. Furthermore, ethanol 
facilitates the drying process due to its high vapor pressure. 
The drying process by slow evaporation of the ethanol as 
well as the thermal treatment with low heating rates led to 
the formation of a xerogel38,39.

The synthesis route was catalyzed by a nitric acid 
(HNO3) with a (HNO3:TEOS–1,2x10–4) molar ratio, in order 
to produce a linear polymeric system with few ramifications. 
The acid hydrolysis started with a pre-hydrolysis of the 
lesser hydrolysable precursor to ascertain the adequate 
control of the number of hydrolyzed sites of the TEOS. 
This procedure favors the condensation in linear polymer 
chains and high homogeneity of the oxides, because the 
silicon alkoxides have lower reactivity than those of the 
metal transition precursors39.

The evaporation of ethanol and water in environmental 
conditions during the hydrolization/condensation step for 
the synthesized materials promoted the increase of the mean 
diameter of the pores.

Modifying the surface of the catalyst by the substitution 
of 50% of the TEOS by MeSi(OEt)3 during the SGP (part 
2.1- represented by ZrO2-SiO2- Me) produced a material 
with lesser hydrophilic character due to the exchange of the 
acidic hydrogens of the silanol groups (Si-OH) by methyl 
groups (–CH3), as shown in Figure 1. Therefore, this material 
is expected to be more resistant to deactivation by the water 
produced during the esterification reaction.
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The sulfation of the ZrO2-SiO2 material was conducted 
with to increase the acid force for some relevant reactions.

The in situ sulfation of the material in the SGP process 
was studied, where the sulfuric acid was added in the 
sol-stage. Therefore, the formation of sulfate groups is 
expected which strongly bond to the lattice. This can be 
explained by the interaction of the aqueous complexes 
of Zr4+ with the sulfate ions, forming species of the 
type [Zr(OH)2(SO4

2-)x (H2O)y]n
n(2-2x), which can interact 

strongly with the silica in the solution and which exhibit a 
negative charge under the employed synthesis conditions. 
It can therefore be concluded that the method of sulfation in 
situ provided a better distribution of the sulfated zirconium 
between the surface and the lattice of the material40,41.

3.2.	 Characterization

The characterization was done in order to verify if the 
different synthesis conditions promoted the formation of 
mixed oxides with high dispersion of the zirconium oxide 
in the silica matrix and narrow pore distribution.

The analysis of the X-ray diffractional patterns for 
all of the materials in Figure  2 shows only wide peaks 
varying between 15° and 30°, which are attributed to SiO2 
in its amorphous state. This indicates that the synthesis 
methods used promoted a high dispersion of the ZrO2 in 
the amorphous silica matrix31,32,42,43.

As discussed in section 3.1, and suggested by the results 
of the X-ray diffraction, the pre-hydrolysis of the TEOS 
promoted the production of highly homogeneous materials.

The evaluation of the textural characterization of the 
solids was based on the adsorption-desorption isotherms of 
N2 at -196.15 °C and revealed different textures of the solids. 
Figures 3 and 4 show the isotherms of adsorption-desorption 
of N2 and the distribution curves of the pore volumes for 
synthesized materials.

The materials showed type IV isotherms with a 
combination of hysteresis types (H2 and H3), which indicate 
the presence of micropores as well as mesopores. The 
total pore volume, the micropore area and the micropore 
volume, calculated with t-plot, confirmed these observations 
(Table 1).

The distribution curves of pore diameter shown in 
Figure 4 as well as the data in Table 1 show that all the 
synthesized materials have an even monomodal pore-size 
distribution with mean pore diameters ranging from 3.3 
to 3.7 nm, which classifies them as mesoporous solids 
according to IUPAC28,44.

Partial substitution of hydroxyl groups by methyl-CH3 
groups in the ZrO2-SiO2 material induces an increase in pore 
diameter (Table 1). This may be due the decrease of the 
interaction of the hydrogen bonds between the water and 
the OH-groups on the inner walls of the pores, promoting a 
reduction of the internal tension during the drying process45. 
The insertion of sulfate groups to the ZrO2SiO2-SO4

2—is 
materials resulted in a decrease of the specific area and 
increase of the mean pore diameter (Table 1). The presence 
of sulfate ions in the micropores partially blocks the pores, 
makes them inaccessible to N2 molecules, and consequently 
influences the size of the area. The increase in pore diameter 
can be linked to the presence of sulfate ions on the micropore 
walls, causing tension and rupture, followed by increased 
micropore volume and diameter42.

The spectra in the infrared region shown in Figure 5 
indicate the presence of a band at 1630 cm–1 that corresponds 
to scissor bending vibration of the H-O-H bond of the 
physisorbed molecular water27,42,46,47.

The samples showed bands centered at 1078 cm–1 with 
a shoulder at ~ 1220 cm–1 due to the asymmetric Si-O-Si 
stretching vibrations of transverse-optical (TO3) mode and 
the longitudinal-optic (LO3) part stretching vibrations, 
respectively47. Bands observed around 800 cm–1 and 460 
cm–1 are due to TO symmetric stretching and bending 
vibrations of Si-O-Si bonds, respectively47,48.

Bands with frequency mode from 910 cm–1 to 975 cm–1 
can be assigned to Si-O- groups in SiO2 gel or to stretching 

Figure 1. Diagram of the modification of the silicon surface.

Figure 2. X-ray diffractional patterns of the samples ZrO2-SiO2, 
ZrO2-SiO2-Me, and ZrO2-SiO2- SO4

2-is.
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vibration modes of the Si-O-Zr groups in ZrO2-SiO2 binary 
oxides31,40,46. Typically, bands placed at higher frequencies 
are assigned to Si-O-Zr groups47. These features confirm 
the results of the DRX, suggesting the production of X-ray 
amorphous or poor crystalline materials and incorporation 
of ZrO2 into silicate matrix.

The analysis of the thermogravimetric curves of the 
materials in Figure 6 shows the almost constant decrease 
of mass in the range of 100 to 200 °C, which is due to the 
elimination of water, impurities, alkoxides, and unreacted 
solvents. Above 700 °C, the loss of mass is associated with 
the dehydroxilation of the surface27.

The usually characteristic band of Si-C at 1276 cm–1 for 
the ZrO2-SiO2-Me catalyst in the FTIR analysis (Figure 5) 
could not be verified due to the small amount of MeSi(OEt)3 

used for synthesis. The thermal analysis (Figure 6b) revealed 

the existence of a wide peak reaching from 596 to 793 °C, 
which is considered to result from alcoxides that have 
not reacted, and from the breaking of the Si-C-bonds, an 
evidence for the insertion of the methyl group. Based on this 
information, the calcination temperature of these materials 
was determined, because at temperatures above 500 °C the 
methylated groups decompose, compromising the reaction37. 
Besides, it is noteworthy that the loss of water attributed to 
the methylated catalyst (ZrO2-SiO2-Me) is smaller when 
compared with other materials, and corresponds with the 
lesser hydrophilic character expected for this sample.

The thermal programmed ammonia desorption (TPD-
NH3) shown in Figure 7 for the ZrO2-SiO2 and ZrO2-SiO2-
SO4

2–-is catalysts reflects the strength and distribution of 
the acid sites at the desorption temperature of ammonia.

Figure 3. N2 adsorption-desorption isotherms for the catalysts: (a) ZrO2-SiO2, )(b) ZrO2-SiO2-Me, and (c) ZrO2-SiO2- SO4
2--is.

Table 1. Specific area, micropore area, mean pore diameter, volume of micropore and total pore volume of the synthesized materials.

Material Specific area 
BET

(m2g–1)

Micropore area 
(m2g–1)

Specific area 
BET

(m2g–1)

Mean pore 
diameter BJH

(nm)

Micropore 
volume t-plot 

(cm3g–1)

Total pore 
volume
(cm3g–1)

ZrO2-SiO2 1742 1079 1742 3.3 0.77 1.40

ZrO2-SiO2-Me 1181 610 1181 3.7 0.39 0.96

ZrO2SiO2-SO4
2--is 1639 992 1639 3.5 0.84 1.46
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The materials without sulfation (Figure 7a) showed three 
defined peaks at 132, 328, and 506 °C that are related to 
weak, intermediate and strong acid sites, respectively. The 
occurrence of these sites can be attributed to the defects 
on the surface due to the insertion of zirconia in the silica 
matrix and the formation of bonds of the Si-O-Zr-O-Zr as 
well as the, Zr-O e Zr=O bands49.

The presence of the desorption peaks at 310 °C with 
a shoulder at 182 °C and 618 °C (Figure  7b) suggest, 
respectively, the existence of weak/intermediate and strong/
superacid sites in the sulfated material.

The increase of acidity in the sulfated material was 
observed based on the analysis of TPD-NH3 (Figure 7) and 
confirmed by the acidity test by titration of NaOH (Table 2), 
and revealed the presence of acid/superacid sites for the 
sulfated materials.

The acidity of the materials produced by the titration 
with NaOH, which only identifies Brønsted acid sites, is 
consistent with the results of the TDP-NH3 (Figure 7), where 
the sulfation favored the formation of Lewis acid sites and 

Figure 4. Distribution curves for the pore diameter of the catalysts: (a) ZrO2-SiO2, (b) ZrO2-SiO2-Me, and (c) ZrO2SiO2-SO4
2--is.

Table 2. Acidity by titration of materials.

Catalysts Concentration of H+ (mmol/g)

ZrO2-SiO2 476
ZrO2-SiO2-Me 184

ZrO2-SiO2-SO4
2--is 380

Figure 5. Spectra in the infrared region for the samples: 1) ZrO2-
SiO2, 2) ZrO2-SiO2-Me, 3) ZrO2-SiO2- SO4

2-is.
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Figure 6. TGA of samples: (a) ZrO2-SiO2 (b) ZrO2-SiO2-Me and (c) ZrO2-SiO2-SO4
2--is.

Figure 7. Graph of the thermal programmed desorption curve of ammonia for the catalysts a) ZrO2-SiO2; b) ZrO2-SiO2-SO4
2--is.

led to a decrease of Brønsted acid sites as shown in Table 2. 
As the Lewis acid sites are stronger than the Brønsted 
acid sites, the in situ sulfated mixed oxide shows a higher 
concentration of strong acid sites than the standard material 
(ZrO2-SiO2). It is suggested that the increase in Lewis acid 
sites after sulfation is associated with the formation of Zr-
SO4

49. After the methylation of the mixed oxide ZrO2-SiO2, a 
distinct decrease of Brønstedt acidity was observed, which is 
probably due to the substitution of silanol groups by methyl 
groups at the surface.

The solids ZrO2-SiO2, ZrO2-SiO2-Me e ZrO2-SiO2-SO4
2–

-is were tested for their catalytic activity in an esterification 
reaction of oleic acid with methanol, which resulted in 
ester conversions of 40.8, 49.8 and 49.4%, respectively. 
As expected, the modified materials ZrO2-SiO2-Me and 
ZrO2-SiO2-SO4

2--is showed the best catalytic activity. The 
catalyst ZrO2-SiO2-Me displays a hydrophobic surface 
which minimizes blocking of active sites of the material, 
This is due to the anchoring of water molecules from the 
esterification reaction46,50. For the catalyst ZrO2-SiO2-



706 Ferreira e Santos et al. Materials Research

SO4
2-  -  is, the conversion percentage in the esterification 

reaction is due to the acidity caused by the incorporation 
of sulfate into its structure.

The materials were promising in relation to their 
catalytic activity in the esterification reaction. In a next step, 
these solids will be evaluated with regard to their stability 
to leaching of the active species to the reaction medium and 
to the possibility of their reuse in the reaction. Following 
this, the reaction conditions will be optimized to improve 
ester yields.

4.	 Conclusions
X-ray amorphous, meso- to microporous mixed oxides 

were produced by the sol-gel method, with highly dispersed 
zirconium on the silica matrix, as verified by the techniques 
DRX e FTIR. In the mixed oxide ZrO2SiO2 – Me, the surface 
polarity was modified through the substitution of silanol 
groups by methyl groups, as evidenced by the TGA/DTA 
technique. The mixed oxide ZrO2-SiO2-SO4

2- - is showed 

a higher distribution of acidic sites after sulfatation in situ, 
as confirmed by the TPD-NH3 technique.

The preliminary tests of the catalytic activity showed 
that the modifications of the mixed oxide ZrO2SiO2 
contributed considerably to the increase of the conversion 
of the esterification reaction of oleic acid with methanol. 
The synthesized materials can therefore be considered 
promising catalysts for esterification reactions in the context 
of biodiesel production.
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