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A key objective in processing of nanostructured powders via high energy ball milling is to minimize 
the synthesis time. This paper presents the application of imperialist competitive algorithm (ICA) for 
optimization of milling parameters in order to minimize the synthesis time of nanostructured powders 
in planetary mills. At first a direct relationship between the inverse of the milling time and the power 
of the planetary mill was established, which allows the validation of theoretical models proposed 
in the literature for the energy transfer in milling devices and the comparison of milling equipment 
efficiencies. Afterwards based on the obtained relation, eight design parameters in milling, namely, 
number of balls, ball diameter, vial radius, vial height, ball diameter distribution coefficient, plate 
spinning rate, vial spinning rate and distance between the center of the plate and the center of the vial 
were optimized. Using these optimized variables in milling process the energy transferred to the raw 
materials was maximized or in the equivalent expression the synthesis time of nanostructured powders 
was minimized. At the end a test case was solved to demonstrate the effectiveness and accuracy of 
the proposed design. Computational results showed that the proposed optimization algorithm is quite 
effective and powerful in optimizing the planetary mills.
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1. Introduction
Mechanical Alloying (MA) is a ball milling process 

where a powder mixture placed in a ball mill is subjected 
to high-energy collision from the balls. The process leads to 
repetitive plastic deformation, fracturing and cold welding of 
the powders. The prolonged milling of powder mixtures can 
lead to the formation of supersaturated solid solutions, (non-
equilibrium) intermetallic compounds, or to the formation of 
stable or unstable carbides, borides, nitrides, silicides, etc1,2.

It is generally accepted that changing the milling 
parameters can enhance the energy input into the powder per 
unit time3,4, so building a mathematical model correlating the 
milling parameters with the syntheses time of nanostructured 
powders can be useful. The aim of constructing a model 
is to be able to design the mechanical alloying process 
and to predict the formation of the desired products in the 
least possible time by adjusting the milling parameters 
appropriately.

In the past, several studies have dealt with the dynamics 
and efficiency of planetary mills and their dependence on 
milling parameters, irrespective of the specific phenomena 
occurring during the mechanochemical process5-11. 
Burgio et al.12 have derived a set of kinematic equations to 
compute the velocity and acceleration of a ball in a planetary 
mill, and thereby, estimate the energy transferred to the 
powder particles.

In this work the model of Burgio et al.12 was chosen 
because it describes the energy supplied by a planetary mill 
using only analytical expressions without any numerical 
calculation so that it was possible to more easily compare the 
quantitative forecasts of the model with our observational 
data.

The optimization problem can be described as to find an 
argument x whose relevant cost f(x) is optimum, and it has 
been extensively used in many different situations such as 
industrial planning, resource allocation, scheduling, pattern 
recognition. Different methods have been proposed to solve 
the optimization problem13. Evolutionary algorithms, such 
as genetic algorithm14,15, particle swarm optimization16,17, 
taboo search18-20, ant colony optimization21-23, bees 
algorithm24-26, simulated annealing27,28, biogeography based 
optimization29,30, firefly optimization31,32 and artificial bee 
colony33,34 are a set of algorithms that were suggested in 
the past decades for solving optimization problems in 
different branches of engineering. Imperialist Competitive 
Algorithm (ICA) is an algorithm introduced for the first 
time in 2007 by Atashpaz-Gargari and Lucas35 and used for 
optimizing inspired by the imperialistic competition and has 
a considerable relevance to several engineering applications.

ICA is a new and powerful optimization technique 
which has been never used in materials engineering. This 
study has provided new and powerful methodology in the 
optimization of planetary mills for minimizing the synthesis *e-mail: info@abdellahi.net
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time of nanostructured powders in planetary mills. Based 
on proposed method, a full computer code was developed 
for optimal design of planetary mill and one test case is 
solved by it to illustrate the effectiveness and accuracy of 
the proposed algorithm. Results showed that the proposed 
method is very accurate, quick and economic method for 
optimal design of vial and ball in planetary mills.

2. Problem Definition
Figure 1 shows the schematic diagram of the planetary 

ball mill and the vial: indicating by Wp and Wv the absolute 
angular velocity of the plate of the mill and of one vial and 
by Rp and Rv the vectorial distances from the center of the 
mill to the center of the vial and from the center of the vial 
to its periphery ( vial radius), it can be shown the absolute 
velocity of one ball leaving the wall is given by:

2 2 2 1/2   [( )     (  -   / 2)  (1- 2 / )] b p p v v b v pV W R W R d W W= +  (1)

the velocity of the ball with db diameter, after the hits, equals 
that of the inner wall and can be expressed as follow:

2 2 2 1/2 [( )  ( -  / 2) 2  ( - / 2)]  
vS p p v b p v P v bV W R W R d W W R R d= + +  (2)

We have to consider now the mechanism of energy 
transfer. When the ball is thrown, it possesses the kinetic 
energy:

21 / 2 b bE   m V=  (3)

After a short succession of hits, during which decreasing 
fractions of kinetic energy are released, the balls residual 
energy becomes:

2  1 / 2 b SE m V=  (4)

and the total energy released by the ball during the series of 
collision events is given by:

3 -   - [ ( - / 2) / ]( -  / 2)b b S b v v b p p v p bE E E m W R d W W W R Rv d∆ = = +  (5)

With the assumption that the total energy transferred by 
the planetary mill per gram of reactant mixture and required 
to synthesis of nano-structure powders is a constant value, 
the Burgio model defines this amount of energy by the 
following expression:

( )
3( )[ ( - / 2) / ]( - / 2)

/ /b b b a b v v b p P v P v b
t

ch

N f K m W R d W W W R R d t
E g A J g

m
ϕ +

= =  (6)

Where Nb is the number of balls; φb is a parameter 
that accounts for the degree of filling of the vial; fb is the 
frequency with which the balls are launched against the 
opposite wall of the vial (s−1); Ka is a constant that accounts 
for the elasticity of collisions, and a value of 1 represents 
perfectly inelastic collisions; mch is the mass of the powder 
charge; and t is the synthesis time measured (s).

3. Imperialist Competitive Algorithm
Figure 2 indicates the flowchart of the ICA. Like other 

evolutionary algorithms, ICA algorithm begins with an 
initial population (countries in the world). A number of the 
best countries (in optimization terminology, countries with 
the least cost) are chosen to be the imperialist states and 
the other countries form the colonies of these imperialists. 
All the colonies of initial countries are divided among the 
aforementioned imperialists based on their power. The 
power of each country, the compeer of fitness value in the 
genetic algorithm, is inversely proportional to its cost. The 
imperialist states together with their colonies form some 
empires35.

Figure 1. The schematic diagram of the planetary ball mill and the vial.
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After dividing all colonies among imperialists, these 
colonies begin to move toward their relevant imperialist 
country. This movement is a simple model of assimilation 
policy which was pursued by some of the imperialist states. 
The total power of an empire depends on both the power of 
the imperialist country and the power of its colonies36. We 
will model this fact by defining the total power of an empire 
by the power of imperialist country plus a percentage of 
mean power of its colonies

3.1. Initial empires creation

Finding an optimal solution is the goal of optimization. 
We generate our countries which are the randomized 
solutions as population. An array of the problem variables 
is formed which is called Chromosome in genetic algorithm 
and country in this algorithm. In an Nvar-dimensional 
optimization problem a country is a 1 ⁄ Nvar array which is 
defined as follows37:

var1 2 3[ , , , ..., ]Ncountry P P P P=
 (7)

Where pis are the variables to be optimized. The 
variable values in the country are represented as floating 
point numbers. From the historical–cultural point of view, 
social–political characteristics of the country such as 

culture, language, and political structure are considered the 
components of that country. Figure 3 depicts the rendition 
of country using some of socio-political characteristics. The 
cost of a country is found by evaluating the cost function f 
at the variables (P1, P2, P3, ..., PNvar

)38. Then

var1 2 3cos ( ) ( , , , ..., )Nt f country f P P P P= =  (8)

To start the optimization process, N country is generated 
and N imp most powerful members of this population are 
chosen as imperialists. The residual N col countries are 
the colonies, each of which is a part of one of the above 
mentioned empires39.

To form the initial empires, the colonies are then 
divided among imperialists, based on their powers. That 
is the initial number of colonies of an empire should be 
directly proportionate to its power. To divide the colonies 
among imperialists proportionally, the normalized cost of an 
imperialist are defined by C

n
 = c

n
 – max{c

i
} where c

n
 is the 

cost of nth imperialist and C
n
 is its normalized cost. Finally, 

the normalized power for each imperialist is defined by13:

1

imp

n
n N

i
i

C
P

C
=

=

∑
 

(9)

Figure 2. The flowchart of the ICA approach.

Figure 3. The candidate solutions of the problem, called country, consists of a combination of some socio-political characteristics such 
as culture, language and religion.
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Then the initial number of colonies of the nth empire 
will be: N ⋅ C

n
 = round{P

n
 ⋅ N

c
}; where N ⋅ C

n is the initial 
number of colonies of the nth empire and N

c
 is the number of 

initial colonies. To divide the colonies, N ⋅ C
n of the colonies 

are randomly selected and given to the nth imperialist. These 
colonies along with the nth imperialist form the nth empire.

Figure 4 presents the initial population of empires. As 
shown in this figure, more powerful empires have more 
colonies than weaker ones. In Figure 4 imperialist 1 is the 
strongest and has greater number of colonies40.

3.2. Moving the colonies of an empire toward the 
imperialist(assimilation policy)

Each colony that moves toward the imperialist by x-units 
in the direction is the vector from colony to imperialist. This 
progress is indicated in Figure 5. x will be a random variable 
with uniform distribution36.

( )0, , 1x U d= β × β >  (10)

Where d is the distance between colony and imperialist. 
β causes the colony to get closer to the imperialist. To search 
more areas around the imperialist we consider a deviation in 
the direction of movement. In figure θ depicts this deviation 
which θ is a random number with uniform (or any proper) 
distribution40.

( , )Uθ = −g g  (11)

Where g is a parameter that adjusts the deviation from 
the original direction. Nonetheless, the values of band β 
and g are freewill, in most of our implementation a value 
of about 2 for β and about p/4 (Rad) for g, have resulted in 
good convergence of countries to the global minimum40.

3.3. Exchanging positions of the imperialist and 
a colony

 While moving toward the imperialist, a colony may 
reach to a position with higher cost than that of imperialist. 
In such a case, the imperialist moves to the position of 
that colony and vice versa. Then algorithm continues by 

the imperialist in a new position and then colonies start 
moving toward this position39. Figure 6a depicts the position 
exchange between a colony and the imperialist. In this figure 
the best colony of the empire is shown in a darker color. This 
colony has a lower cost than the imperialist. Figure 6b shows 
the empire after swapping the position of the imperialist 
and the colony38.

3.4. Computing total cost of an empire

Total power of an empire depends on the power of 
imperialist and its colonies. But the main power in an empire 
is the power of its imperialist. So we define the total cost 
of the nth empire by

( ) ( ){ } Cost imperialist n    · Mean Cost colonies of  empire nnTC = +ζ  (12)

where TC
n
 is the total cost of the nth empire and ζ is a number 

between 0 and 1. high value for ζ causes increase the role of 
the colonies in total power of an empire whereas low value 
for ζ causes the total power of the empire to be specified by 
only the imperialist power. Values between 0.05 and 0.1 for 
ζ in most of problems let to good solutions40.

3.5. Imperialistic competition

All empires are in competition with each other to take 
possession of colonies of other empires and control them. As 
a result, the power of the weaker empires gradually starts to 

Figure 4. Generating the initial empires: The more colonies an imperialist possess, the bigger is its relevant ( ) mark.

Figure 5. Moving colonies toward their relevant imperialist in a 
randomly deviated direction.
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diminish and the power of more powerful ones increases36. 
This model is shown in Figure 7. Here each empire which 
has more power has more chance to take possession of the 
weakest countries in the weakest empires. Victory in this 
competition is depending on the power of each empire. To 
achieve this goal, we find the possession probability of each 
empire based on its total power. The normalized total cost is

{ }    n n iNTC TC max TC= −  (13)

Where TC
n
 and NTC

n
 are respectively the total cost and 

the normalized total cost of nth empire. Now we could be able 
to calculate the possession probability of each empire by:

1

imp

n
pn N

i
i

NTC
P

NTC
=

=

∑
 

(14)

To divide the mentioned colonies among empires vector 
Pis formed as following:

var1 2 3, , , ...,P P P PNP P P P P =    (15)

Then the vector R with the same size as P whose 
elements are uniformly distributed random numbers is 
created41

( )1 2 3 1 2 3, , , ..., , , , ..., 0,1Nimp NimpR r r r r r r r r U = =   (16)

Then vector D is generated by subtracting R from P. 
Referring to vector D the mentioned colony (colonies) 
is handed to an empire whose relevant index in D is 
maximized.

When an empire loses all its colonies, it is assumed 
to be collapsed. In this model implementation where the 
powerless empires collapse in the imperialistic competition, 
the corresponding colonies will be divided among the other 
empires42.

3.6. Revolution

A revolution is the terminology of ICA to describe 
a swift alteration in a part of countries’ socio-political 
characteristics. Revolution process has an essential character 
which can be useful in escaping the local optima. In ICA, the 
percentage of colonies in an empire which will experience 
revolution procedure is demonstrated by revolution rate.

3.7. Eliminating the powerless empires

Feeble empires will collapse in the imperialistic 
competition and their colonies will be divided among other 
empires. To model this process, we assume an empire has 
been collapsed and remove it when it loses all of its colonies.

3.8. Convergence

After a certain time all the empires except the strongest 
one will removed and all the colonies will be under control 
of this single empire43. In such a situation we stop the 
algorithm. In this ideal new world all the colonies will 
have the same positions and same costs and they will be 
controlled by an imperialist with the same position and cost 
as themselves. The main steps in algorithm are summarized 
in the pseudo code shown in Figure 8.

4. Imperialist competitive algorithm settings

4.1. Cost function

From section 2 it was concluded that the milling time 
is dependent on the following variables:

, , , , , , , , , , ,b ch b b b a b v b p v PE m N f K m R d W W R∆ ϕ

On the other hand12,44:

3

21 b b
b

v v

d N
R H

e 
ϕ = −  

p 
 (17)

Figure 6. a: Exchanging the positions of a colony and the 
imperialist; b) The entire empire after position exchange.

Figure 7. Imperialistic competition. The more powerful an empire 
has more probability to possess the weakest colony of the weakest 
empire.
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( )
2
p v

b
K W W

f
−

=
p

 (18)

3

6
b b

b
d

m
pr

=  (19)

Where Hv, rb are respectively the height of the vial and 
the density of balls. K is a proportionality constant and is 
approximately equal to unity44 and e is a parameter called 
ball diameter distribution coefficient depending on the balls 
diameter.

Using Equations 17-19, formula (6) can be rewritten as:

( )( )( )( )

12 1

3
3 31 ( - /2) / - /2

2

t mchA K Kb a
d NbbN W W d W R d W W W R R db p v v v b p P v P v bbR Hv v

= × ×
er     − − − +   p  

 (20)

or

cht B m f= × ×  (21)

Which B is constant depending on density of balls, 
elastic and inelastic collisions as well as the heat released by 
the reactions between the raw materials; m

ch 
is the mass of the 

powder charge which is determined by ball to powder weight 
ratio (BPR); and f is the cost function of the problem so that 
by minimizing the f, the synthesis time is also minimized.

 Therefore, in such a scenario, all parameters including 
N

b
, d

b
, R

v
, H

v
, e, W

p
, W

v
, R

p
 play a fundamental role and 

they have to be optimized in order to achieve the minimum 
synthesis time or best operational performance of milling 
process.

To use the ICA to solve this problem, at first a proper 
definition of a country should be expressed. As noted before, 
the country is a set of unknown parameters of the problem. 
In this problem a country includes eight parameters as 
following:

[ , , , , , , , ]b b v v p v pCountry N d R H W W R= e
 (22)

To start the algorithm a collection of random solutions 
(random countries) is generated. The costs of all countries 
are calculated and some of those with least cost values 
are selected to be the imperialists of the algorithm. The 
remaining countries are divided among these imperialists 
as explained in Section3. After forming the initial empires, 
the assimilation is used to evolve the poor countries in 
each of the empires. After assimilating all of the colonies 
by imperialists in each empire, revolution is accomplished 
in some of the countries. Consequently some countries 
move to some positions that were not attainable by the 
assimilation process. After assimilation and revolution, 
the cost of each colony is calculated in its new position. 
Some of the colonies in each empire might have achieved 
to better positions than the imperialist itself. Here the 
imperialist is substituted by the best colony in the empire 
(The colony with the least value of cost function). The 
total cost of empires is calculated as in Equation 8 and 
then imperialistic competition starts and a colony of poor 
empires are attracted by another one. The continuation 
of these processes converge the algorithm and it might 
achieve to the global minimum of the cost function.

Figure 8. Pseudo code of the Imperialistic Competitive Algorithm.
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4.2. ICA parameters

Table 1 shows the ICA parameters used in this study. It 
should be noted that different values for the ICA parameters 
were tested in this study, however lowest value for cost 
function f was generated by the values in Table 1.

5. Results and Discussion

5.1. Minimum value of cost function

Figure 9 shows all solutions (all countries) to optimize 
the milling parameters. As shown in this figure, for all 
solutions the d

b
, R

v
, H

v
 variables have low values whereas 

the W
p
, W

v
 variables have high values indicating that the size 

vial should be small whereas the energy should be large.
Figure 10 shows the convergence of the ICA to the 

optimal solution. As is clear ICA has achieved to the optimal 
values of [N

b
, d

b
, R

v
, H

v
, e, W

p
, W

v
, R

p
] in about 435 decades 

(iteration). A sharp decrease in the cost function can be 
observed in the first 10 decades. The variation of the cost 
function becomes very small when the iteration reaches 
more than 10 decades. The minimum cost function is found 
to be 0.0391 after 435 decades. In Table 2 the results of 
optimization is presented for the object of minimum cost 
function. As is clear from this table W

v
 = 1.32W

p
 meaning 

that the vial spinning rate should be higher than the plate 
spinning rate (in the opposite direction).On the other hand, 
e = 0.398 which means that the ball size distribution is close 
to 40%. The number of ball categories, s, is thus:

( )8.97 9
integer 0.4 9 3

0.4
bN

s
= ≈ 

⇒ = × =e ≈ 
 (23)

According to balls size and above interpretation one 
can wright:

( ) ( ) ( ) ( )
31 212

9 9 12 3 10 3 12 3 14
3

b

b

d mm
N mm mm mm mm
s

= 
= ⇒ × = × + × + ×
= 

  

 (24)

So we can say that the size of balls used in proposed 
design should be 10mm, 12mm and 14 mm for the maximum 
energy transfer to the raw materials.

5.2. Comparison to other optimization techniques

The ability of the ICA to optimize the synthesis time of 
nanostructured powders in planetary mills is compared to the 
two existing advanced optimization algorithms: Artificial 
Bee Colony (ABC) and Biogeography Based Optimization 
(BBO). As is clear, the best solution for ABC and BBO 
algorithms is 0.065 (Figure 11a) and 0.0.53 (Figure 11b), 
respectively. This means that the ICA algorithm is more 
powerful than other ones to minimize the cost function f or 
synthesis time of nanopowders in planetary mills. (Table 3)

5.3. Case Study

5.3.1. Materials and methods

To evaluate the efficiency of the algorithm and obtained 
parameters a case study was conducted. To this end, titanium 
dioxide (TiO2, Merck, 99%, 1-3µm), aluminum ( Al, Merck, 

99%, 10-50 µm), boron oxide (B2O3, Merck, 99.99% , 
5-100 µm) were mixed according to reaction 1:

10Al + 3TiO2 + 3B2O3 = 3TiB2 + 5Al2O3 (1)

 A planetary ball mill (Model PM 2400) with the 
stainless steel vials and balls was used for perform the 
experiments. The ball to powder weight ratio (BPR) was 
considered 15:1 and m

ch
 was determined based on the value 

of BPR as well as density of balls. The phase identification 
of the milled samples was examined by X-ray diffraction 
(XRD) with CuKα radiation at 30 kV and 25 mA. Mean 
grain size was calculated on the basis of Rietveld refinement 
method45 by using of X’Pert high score plus software 
(developed by PANalytical BV Company, Almelo, the 
Netherlands, and version 2.2b).

In the first experiment with the laboratory conditions 
(system 1) the milling parameters were adjusted based on the 

Figure 9. All solutions (all countries) to optimize the milling 
parameters.

Figure 10. Convergence of the ICA to the optimal solution.

Table 1. Parameters of ICA approach.

ICA parameters Value

Number of countries 100

Number of initial imperialists 5

Number Of decades(iteration) 500

Revolution rate 0.3

β 0.25

g 0.5
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values of Table 4. Figure 12a depicts the XRD patterns of the 
milled powders under the terms of System 1. As is clear there 
is no change in the reflections of the starting materials up to 
105 min of milling except the peak broadening which it is 
attributed to the crystallite size refinement. By increasing the 
milling time to 120 min, all peaks of initial powder mixture 
(Al, B2O3 and TiO2) were disappeared. On the other hand, 
Al2O3 and TiB2 were formed in the range 105-120 min of 
milling. Figure 12b shows the XRD patterns of the milled 
powders related to proposed design (system 2). Here the 
formation time of Al2O3 and TiB2 was reduced to 90 min 
of milling. This means that the milling energy in system 
1 is less than one in system 2 and therefore this system 
needs more milling times for the formation of products in 
comparison with system 2.

Table 5 shows the mean grain size of milled powders 
for both systems. In the different conditions of milling, the 
mean grain size of milled powders in system 2 is smaller 

than those in system 1. This difference is due to the more 
milling energy during milling in system 2.

 In addition to the above, it should be noted that in 
many highly exothermic powder mixtures, ball milling can 
generate mechanically induced self-sustaining reactions 
(MSRs). The MSR is ignited when the powder reaches a well 
defined critical state45. Once started, the reaction propagates 
through the powder charge as a combustion process. 
Considering that the reaction (1) occurs in MSR mode46, the 
heat released from reaction (1) should be investigated in both 
systems. Figure 13 shows the nanostructured powders peaks 

Table 2. Milling parameters optimized values in planetary mill.

Symbol Milling parameters Optimized values

Nb Number of balls 8.97~ 9

db Balls diameter (m) 0.012

Rv Vial radius (m) 0.047

Hv Vial height (m) 0.082

e Ball size distribution coefficient 0.398

Wp Velocity of the plate (rad.s–1) 58.75

Wv Velocity of vial(rad.s–1) 77.99

Rp distance between the center of the plate and the center of the vial (m) 0.136

Table 3. Comparison of the abilities of the ICA, ABC and BBO 
algorithms.

Algorithm ICA ABC BBO

Best cost function 0.039 0.063 0.053

Table 4. Milling parameters non-optimized values in planetary mill.

Milling 
parameters

Laboratory values

Nb 13

db 0.003m 
(4 balls)

0.008m 
(4 balls)

0.012m 
(3 balls)

0.014m 
(2 balls)

Rv 0.035 m

Hv 0.072 m

Wp 58.63 rad.s–1

Wv 73.29 rad.s–1

Rp 0.114 m

Figure 11. Convergence of the a) ABC and b) BBO algorithms to the optimal solution.
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for system (1) and (2), immediately after ignition (90 min 
and 120 min for system 2 and system 1, respectively). As 
is clear from this figure, the intensity peaks in system 2 are 
more than those in system 1. This can be explained based on 
the Table 5 values, so that immediately after the formation 
of the products (immediately after ignition), the crystallite 
size has been increased in both systems. In other words, heat 
released from reaction 1 in system 2 caused by ignition, is 
more than one in system 1 leading to the formation of larger 
grains of products (immediately after ignition) in system 
2 and hence more peaks intensity as shown in Figure 13. 
For further explanation, one can say that the more milling 
energy in system 2 leads to the reaction (1) occurs faster 
and therefore less heat is transferred to the environment in 
comparison with system 1.

Table 5. Mean grain size of both systems in various milling times.

Milling time 
(min)

Mean grain size (nm)

System 2 System 1

TiO2 B2O3 Al TiO2 B2O3 Al

30 51 44 68 56 57 74

60 45 37 53 51 46 60

90 Al2O3 TiB2
44 37 46

54 49

105 - - 36 30 31

120 - - Al2O3 TiB2

47 42

Figure 12. XRD patterns of Al, B2O3 and TiO2 milled powders in a) system 1; b) system 2.

Figure 13. comparison of the heat released resulted from MSR 
mode in both systems.
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6. Conclusion
Planetary mill design can be a complex task, and 

advanced optimization tools are useful to identify the best 
planetary mill for a specific duty. In this paper, a solution 
method of the planetary mill design optimization problem 
was proposed based on the utilization of an imperialist 
competitive algorithm. Based on proposed method, a 
full computer code was developed and one test case was 
solved by it. Based on all of the solutions obtained by 
ICA algorithm in order to minimizing the synthesis time 
of nanostructured powders, the vial size should be small 
whereas the energy transferred to the raw materials should 
be large. Result showed that by applying the optimized 

parameters in planetary mill the formation time of Al2O3 

and TiB2 was reduced to 90 min of milling. This means 
that the milling energy in laboratory system is less than 
one in optimal system and therefore this system needs more 
milling times for the formation of products in comparison 
with optimal system. The ability of the ICA to optimize the 
synthesis time of nanostructured powders in planetary mills 
was compared to the two existing advanced optimization 
algorithms. Results showed that the ICA algorithm is more 
powerful than other ones to minimize the cost function f. 
The algorithm proposed here can help the manufacturer 
and engineers to optimize all types of mills in engineering 
applications.
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