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arcs. The sample treated for 600 s has a greater roughness. 
Long treatment times generate more intense micro-arcs. 
The action of these micro-arcs increases the roughness 
of the samples by ejection of already-deposited material. 
Inspection of the standard deviation of the roughness of the 
sample treated for 600 s shows that the surface roughness 
is not uniform in the sample.

3.3. Morphology of the coating
The morphology of the samples treated by PEO may be 

observed in Figure 4. Inspection of Figure 4(a) shows that a 
new structure forms on the porous matrix. As the treatment 
time increases this structure grows and covers the porous 
matrix. At a treatment time of 300 s, the structure grows to 
form of clusters with tridimensional columns. It may also 

Figure 1. Current density as a function of treatment time.

Figure 2. SEM micrograph, of the section of the titanium samples treated by PEO for different periods of time: (a) 120 s with magnification 
of 200x, (b) 300 s with magnification of 500x (c) 600 s with magnification of 500x.
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be observed that the morphology of the layer is irregular, 
which explains the observed increase in roughness.

3.4. X-ray diffraction
The coatings produced by PEO, at a voltage of 480 V, 

on the titanium substrate are composed of HA, rutile and 
calcium phosphate (Ca2P2O7). The spectrum of the samples 
treated for 120 s, presented in Figure 5, has well-defined 

peaks due to rutile and HA. Calcium phosphate is also 
detected, but the peaks have low intensities.

As the treatment time is increased the rutile phase 
disappears and the coating is composed only of HA and 
calcium phosphate. The peaks due to HA and calcium 
phosphate of the sample treated for 300 s have increased 
intensities compared to these of the spectrum of the sample 
treated for 120 s. Figure 4(a) shows that on the porous matrix 
a new cluster-like structure grows and as time passes the 
matrix is completely covered. Probably, the matrix bound 
to the titanium substrate is composed of rutile and the phase 
that covers the matrix is composed of HA and calcium 
phosphate. This interpretation is based on the observation 
that as the treatment time is increased rutile is no longer 
observed in the X-ray spectra. The first layers formed are 
more susceptible to the presence of rutile, since rutile is 
formed by the oxidation of titanium from the substrate.

As the coatings grow and the supply of titanium for 
production of rutile is interrupted HA and calcium phosphate 
predominate. Hence the clusters formed in the porous matrix 
(Figure 4) are made of HA.

Note that there are no significant differences between 
the spectra of samples treated for 300 and 600 s, except 
for a slight reduction in the intensity of peaks due to HA. 
To obtain HA in the coating, therefore, a time of 300 s is 
sufficient.

Figure 4. SEM micrograph, with magnification of 1000x, of titanium treated by PEO for different periods of time: (a) 120 s, (b) is 300 
(c) 600 s.

Figure 3. Sample roughness of titanium treated by PEO in different 
time.
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No peak due to titanium metal is observed in the 
spectrum of the coating, which demonstrates the complete 
coverage of the samples surface.

3.5. Cell viability
The cytocompatibility of the HA coated-titanium 

samples after 120s, 300s and 600s of coating time was 
assessed by MTT assay, which is based on the ability of 
viable cells to reduce yellow 3-(4, 5-dimethythiazol-2-yl)-2, 
5-diphenyl tetrazolium bromide (MTT) by mitochondrial 
succinate dehydrogenase. Since osteoblasts are anchorage-
dependent cells and only metabolically active osteoblasts 
can attach to a substrate, the MTT results were interpreted 
as a measure of cellular adhesion and proliferation.

Figure 6 shows that samples treated by PEO, regardless 
of coating time, allowed cells to adhere to the sample surface 

after 24h of culture (p> 0.05). No statistical differences were 
found among the samples in comparison with tissue culture 
on untreated Ti, which were used as a control (p>0.05).

After 5 days of culture, it is observed in Figure 6 that 
all samples significantly stimulated cellular growth in 
relation to 24h of culture time (p<0.05). Among the HA 
coated samples, no statistically significant differences in 
cell densities were found (p>0.05); however, the amount of 
viable cells found in the samples coated for 600s was lower 
than those found in uncoated Ti samples (p<0.05).

It has been shown that coating of HA onto implantable 
surfaces enhances osteoblast affinity, improving cell 
adhesion and proliferation34,35. In the present study, however, 
these results were not confirmed. On the other hand, 
although cytocompatibility of the coated samples was not 

Figure 5. XRD patterns of coating produced by plasma electrolytic oxidation for different times, where H – Hydroxyapatite (Ca5(PO4)3 
(OH); C – Calcium Phosphate (Ca2P2O7) and R – Rutile (TiO2).

Figure 6. Cellular viability assay on specimens grown for growth times of 24 hours and 5 days. (The mean absorbance values and the 
standard deviation are given).



Antônio et al.1432 Materials Research

impaired for cell adhesion and proliferation, it was not 
significantly improved.

Similar results were reported by Yeung et al.36, who 
assessed the cytocompatibility of PEO coated TiO2 with 
human osteosarcoma cells (MG-63s) and found that PEO 
coated samples had fewer viable cells in comparison with 
plasma-sprayed HA samples and TCPS. The same authors 
believe that cellular behavior may be inhibited by the 
specific morphology or chemical composition of the PEO 
coating36.

For 5 days of cultivation, the sample treated for 600 s 
was the only that presented cellular growth significantly 
less than the untreated sample, which was used as a control 
to compare with the treated samples (p <0.01). The sample 
treated for 600 s presented detachment of the deposited 
material, due to smaller thickness than the sample treated for 
300 s. The standard deviation of the roughness shows that 
the surface was strongly affected by exposure of the sample 
to a long treatment time. The chemical composition and 
surface topography may have reduced the coating stability, 
which promoted less cell growth.

In general we can say that the treated samples are 
cytocompatible and stimulate significant cellular growth.

4. Conclusion
In this study, coatings composed of HA, rutile and 

calcium phosphate were produced from a solution containing 
a source of Ca and P. The main results are given below.

Using PEO it was possible to produce a porous coating 
composed of HA, rutile and calcium phosphate, possessing 
a high surface roughness; the latter property is useful for 
biomedical applications.

In one step, with a treatment time of 120 s, it was 
possible to obtain a coating containing HA. The HA phases 
depend on the treatment time, but samples treated for 120 s 
already present interesting characteristics for biomedical 
applications.

The coatings produced at all treatment times studied 
are cytocompatible.
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