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Introduction:
Equal-channel angular pressing (ECAP) and High-pressure 

torsion are widely used to refine grain structure and improve 
the mechanical properties of various materials. ECAP and 
HPT are performed under high applied pressures and at low 
temperatures 1,2. In the ECAP process, a well-lubricated billet 
is pressed in a die comprising two channels intersecting at 
a constant angle. The material is then subjected to shear 
deformation 3,4. Since the cross section remains constant, 
repetitive pressing is possible to impose large cumulative 
strains. However, the imposed cumulative strain will depend 
on the material, temperature, speed and geometry of the die. 
Multiple ECAP processing makes it possible to rotate the 
billet around its central axis between the passes. Different 
routes are then created that has been classified into four routes: 
(I) Route A, no rotation around central axis (II) Route BA , 
rotating 90° in opposite directions, (II) Route Bc , rotating 
90° in the same direction and (IV) Route C, rotating 180° 5. 
In HPT the billets are subjected to a compressive force and 
concurrent torsional straining in which the deformation is 
continuous 6.

ECAP and HPT are considered useful to strengthen 
materials by inducing large plastic deformation in one 
deformation step. Various studies have been performed to 
show the importance of these methods in improving the 
properties of different materials. Significant improvement in 
tensile strength 7, fatigue resistance 8 , impact toughness 9 , 

wear resistance 10,11, corrosion behavior 12,13 superplasticity 14,15, 
formability 16, etc were observed using this method.

ECAP processing is usually carried out at room temperature 
and homogeneous grain refinement is expected throughout 
the sample. Some brittle materials are processed at high 
temperature and the mechanism of grain refinement may lead 
to heterogeneous grain structure with multi-modal grain size 
distribution 17. However, new methods are proposed to develop 
homogeneous grain size distribution in the materials 18,19. 
In addition, the material processed by ECAP may present 
mechanical anisotropy, where the stress‑strain behavior 
may vary with respect to the orientation of processing by 
ECAP 20-23. To analyze the deformation behavior and predict 
the mechanical anisotropy in the samples, finite element 
method (FEM) has been widely used by some researchers 24-28. 
In these simulations, isothermal condition was assumed while 
in an experiment a temperature rise of 73° was recorded 29. 
This temperature rise in the sample may affect the grain size 
and homogeneous grain refinement 30,31. Some analytical 
models are developed to predict the average temperature 
rise in ECAP 32. However, FEM may predict the temperature 
rise in various points of the billet 33-35. Similarly, FEM could 
be successfully used to predict the induced strain, damage 
and temperature rise in HPT 36.

This work aims to investigate the temperature rise due 
to deformation heating in ECAP and HPT processes using 
3D‑FEM. The roles of various parameters are investigated 
and the heating of die due to the work-piece deformation is 
included in the simulations.
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2. Finite element model
Three-dimensional simulations of ECAP and HPT were 

performed using the DEFORM 3D 10.2 software. General 
simulation conditions for ECAP and HPT are summarised 
in Table 1. Material properties are mostly selected from 
library of the software while the friction data are available 
elsewhere 37. 30000 and 8000 three-dimensional four node 
tetrahedron (linear tetrahedron) elements were used in the 
simulations of ECAP and HPT, respectively.
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In this transient thermal equation, ρCp is volumetric heat 
capacity, u is displacement vector, k is thermal conductivity, 
Q is external heating sources, and W is heating due to 
deformation which in turn is a function of stress variations 
inside the billet and contact friction. In rate form one can 
obtain:

deformationW εησ
⋅

= ⋅   Eq.2

frictionW FV⋅
=   Eq3

In these equations, η is the thermal efficiency (between 
0.8-0.9), σ  and ε⋅  are effective stress and strain rate, 
respectively. In addition, F is friction force and V is relative 
velocity between sample and die. For F:
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Where m is shear factor, t is shear strength, v is relative 
velocity between billet and die, and α is the value of relative 
sliding velocity below which sticking occurs.

The simulations of HPT assumed sticking conditions 
between the work‑piece and the anvils on top and bottom 
surfaces and no slippage was allowed. Simulations considered 
rigid die and punch while thermal analysis was coupled 
with the deformation analysis. The mesh independency of 
the results was checked and finally a reasonable number of 

elements were selected in the simulations to attain relatively 
accurate and computationally efficient results.

3. Results and discussion
3.1. ECAP
3.1.1. Temperature contours in work-piece and die

For validation purpose, the temperature rise during 
ECAP for AA-1100 using a plunger speed of 18mm/s was 
modeled. The results showed reasonable agreement with the 
measured and calculated data for temperature rise in pure Al. 
In this work, a temperature rise of 39°C was observed while 
about 17.8°C temperature rise was calculated 38 and about 
29°C temperature rise was measured 29 using V=18mm/s. 
The difference between the simulated values with calculated 
and measured values can be related to difference in die 
parameters, experimental/numerical errors, simplifications, 
and estimating material properties.

Fig.1 shows the isosurfaces of temperature in the 
work‑piece after ECAP. As shown in this figure the highest 
temperature is attained in the vicinity of shear line and 
deformation zone of the work-piece. This work shows the 
temperature change not only in the work-piece, but also for 
the ECAP die. The temperature isosurfaces in the die show 
temperature rise where the channel is bent. It can be seen 
in Fig.1 and Fig.2 that temperature contours are extended 
towards the exit channel that originates from the work-piece 
displacement within the die. While the work‑piece moves 
in the exit channel, the generated heat is transferred to die 
via conduction and therefore the temperature isosurfaces in 
die are extended in the direction of inlet and exit channels. 
The difference in the temperature rise in different parts 
of the work‑piece has several reasons. First, during the 
deformation, heat transfers from the deformed part to the 
un-deformed part of the work-piece that makes the later 
to be deformed at higher temperature and causes more 
temperature rise in those parts 33. Second, die temperature 
increases by the deformed part, and then the undeformed 
part is deformed in a pre-heated die that causes less heat 
loss and more temperature rise 33.

Table 1: Simulation conditions for ECAP and HPT

ECAP                                                                                                         HPT
Work-piece material AA-6061-JC Work-piece material AA-6061-JC
Die material H13 Die material H13
Initial temperature 20°C Initial temperature 20°C
Work-piece height 60mm Work-piece height 1.2mm
Work-piece radius 5mm Work-piece radius 5mm

Ø 90° Axial pressure 1GPa
y 20° Angular velocity 0.1rad/s
Plunger velocity 0.5, 1, 2mm/s Friction factor 0.3, 0.45
Friction factor 0,0.19,0.3

Billet thermal conductivity (Both ECAP and HPT)                  180 W/m K
Billet volumetric heat capacity (Both ECAP and HPT)                  2.4 J/m³ K
Die thermal conductivity (Both ECAP and HPT)                  26 W/m K

Die volumetric heat capacity (Both ECAP and HPT)                  2.6 J/m³ K
Thermal contact conductance per unit area (Both ECAP and HPT)          5000W/m2K
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3.1.2. Maximum work-piece and die temperatures

Fig.3 shows the maximum work-piece temperature after 
ECAP. The maximum work-piece temperature is shown 
as a function of velocity and friction. It is shown that the 
dependency of maximum work‑piece temperature to velocity 
is more than its dependency to friction. While increasing 
the friction factor from 0 to 0.3 increases the maximum 
work-piece temperature only 8°C, increasing the plunger 
velocity from 0.5 to 2 increases the maximum work‑piece 
temperature 49° C in average.

Fig.4 shows the maximum die temperature after ECAP. 
The maximum die temperature is shown as a function of velocity 
and friction. The dependency of maximum die temperature 
to velocity is more than its dependency to friction alike 
maximum work-piece temperature. Nonetheless, the rate of 
variations are lower in die, e.g. increasing the friction factor 
from 0 to 0.3 increases the maximum die temperature 7°C 
and increasing the plunger velocity from 0.5 to 2 increases 
the maximum die temperature 18° C in average. This shows 
that the maximum work-piece temperature is more dependent 
to velocity variation than the maximum die temperature.

Fig.1: Temperature isosurfaces after ECAP when punch stops

Fig.2: Temperature contours on (a) die, (b) billet when punch stops
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3.1.3. Effect of velocity and friction on temperature 
distribution

Fig.5. shows the temperature distribution in the centre 
line of the work-piece (points P1 to P20 shown in Fig.1) for 
frictionless condition. As mentioned in the previous section, 
the dependency of maximum work-piece temperature to 
velocity is more than its dependency to friction. Fig.5 shows 
that not only the maximum work-piece temperature, but 
also the temperature distribution is dependent to velocity. 
Increasing the plunger velocity increases the difference 
between maximum and minimum temperatures. Additionally, 

the maximum work-piece temperature is attained at the 
deformation zone.

Fig.6 shows the temperature distribution in the centre 
line of the work-piece as a function of friction. Increasing 
the plunger velocity increases the maximum work‑piece 
temperature and the difference between maximum and 
minimum temperatures in all conditions. It is also interesting 
to note to the temperature history in different points as 
shown elsewhere 39. In figure 7, one can see that temperature 
varies sharply in the beginning of the deformation while it 
is directly dependent to the punch speed.

Fig.3: Maximum work‑piece temperature as a function of velocity and friction (immediately after end of the process)

Fig.4: Maximum die temperature as a function of velocity and friction (immediately after end of the process)

Fig.5: Temperature distribution in the centre line of the work-piece in frictionless condition (immediately after end of the process)
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Fig.6: Temperature distribution in the centre line of the work-piece as a function of friction (a) V=0.5mm/s, (b) V=1mm/s, (c) V=2mm/s 
at the end of the process

Figure 7: Temperature history versus normalized displacement in different material points for m=0.19

3.2. HPT
3.2.1. Temperature distribution in HPT

Fig.8 shows the work-piece temperature after two HPT 
turns. As shown in this figure the variation of temperature 
is narrow due to the small size of the work-piece. Not only 
the work-piece size, but also the good heat conduction of 
aluminium makes the temperature distribution uniform. 

The temperature rise during HPT in the earlier report of 
Pereira et al. 40 was reported about 15°C with a normal 
pressure of 940Mpa, a rotation speed of 0.1 rad/s for a 
titanium sample after two turns. However, in this work 
the temperature rise was about 7°C. Although the main 
simulation conditions are identical, variation in billet size, 
friction and processed material are the major reasons for 
this difference.
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The temperature distribution in the centreline of the 
work-piece is shown in fig. 9. Two friction factors are 
considered in the simulations. As shown in this figure the 
temperature rise in HPT is less than ECAP due to the small 
size of the HPT work-piece compared to ECAP. Nonetheless, 
increasing the friction factor increases the generated heat 
during this process. Although the temperature distribution 
appears uniform, the maximum temperature is attained 
around r=4mm.

4. Conclusions:
This work investigates the temperature rise due to the 

deformation heating in ECAP and HPT using finite element 
method. The results show that while the work‑piece moves in 

the exit channel in ECAP, the generated heat is transferred to 
die via conduction and therefore the temperature isosurfaces 
in die are extended in the direction of inlet and exit channels.

It is shown that the dependency of maximum ECAP 
work‑piece temperature to velocity is more than its dependency 
to friction. Increasing the plunger velocity increases the 
difference between maximum and minimum temperatures. 
Additionally, the maximum work-piece temperature is 
attained at the deformation zone.

The temperature rise in HPT is less than ECAP due to 
the small size of the HPT work-piece compared to ECAP. 
Not only the work-piece size, but also the good heat conduction 
of aluminium makes the temperature distribution roughly 
uniform in HPT.

Fig.8: Temperature distribution after HPT

Fig.9: Temperature distribution in radial direction for HPT processed work-piece as a function of friction at the end of the process
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