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The crystal structure of the chalcogenide compounds CuCo2InTe4 and CuNi2InTe4, two new 
members of the I-II2-III-VI4 family, were characterized by Rietveld refinement using X-ray powder 
diffraction data. Both materials crystallize in the tetragonal space group I 4 2m (No. 121), Z = 2, with 
a stannite-type structure, with the binaries CoTe and NiTe as secondary phases.

Keywords: alloys, semiconductors, chemical synthesis, structural characterization, X-ray powder 
diffraction

* e-mail: gerzon@ula.ve

1. Introduction
Diluted magnetic semiconductors (DMS) are of great 

interest because of their peculiar magnetic and magnetooptical 
properties arising from the presence of magnetic ions in 
the lattice1. The DMS materials more frequently studied 
are alloys obtained from the tetrahedrally coordinated 
derivatives of the II-VI semiconductor family2. One of these 
derivative families are the quaternary semiconductors with 
formula I-II2-III-VI4 and I2-II-IV-VI4 which belong to the 
normal compound of fourth derivatives of the II-VI binary 
semiconductors with three types of cations3, and fulfil the 
rules of adamantane compound formation2,3. According to 
these rules, the cation substitution is performed in such a 
way that an average number of four valence electrons per 
atomic site and a value eight for the ratio valence electrons 
to anions is maintained2.

Due to the great variety of possible compositions 
(I= Cu, Ag, II= Zn, Cd, Mn, Fe, III= Al, Ga, In, IV= Si, 
Ge, Sn, VI= S, Se, Te), these quaternary diamond-like 
materials can be useful for applications such as tunable 
semiconductors4, photovoltaics5, spintronics6, non-linear 
optics7 and thermoelectrics8. In general, the quaternary 
compounds I-II2-III-VI4 can be formed by the addition of 
a II-VI binary compound to ternary chalcopyrite structures 
I-III-VI2

9,10. Structural studies carried out on some members 
of this family indicate that they crystallize in a sphalerite 
derivative structure (stannite) with tetragonal space group I4

2m (No. 121)11, or in a wurtzite derivative structure (wurtzite-

stannite) with orthorhombic space group Pmn21 (No. 31)12. 
This last structure can be considered as a superstructure to 
wurtzite, where a~2aw, b~√3bw, and c~cw

12.
The quaternaries CuFe2(Al,Ga,In)Se4

13,14, CuTa2InTe4
15, 

AgFe2GaTe4
16 and the stable forms at higher temperatures 

of CuZn2(Al,Ga,In)S4
17, crystalizes in stannite-type structure 

while AgCd2GaS4
18, AgCd2GaSe4

19, Ag1-XCuXCd2GaS4
20, 

AgCd2Ga1-XInXS4
21 and AgCd2-XMnXGaS4

22 have been reported 
with a wurtz-stannite structure.

In recent years, it has been of interest to carry out a 
systematic study of the crystal structure of quaternary 
diamond-like families13-16, 23-26. Hence, in this work we report 
the X-ray powder diffraction analysis and crystal structure of 
the quaternary compounds CuCo2InTe4 and CuNi2InTe4, two 
new members of the I-II2-III-VI4 family, which crystallize 
with a stannite structure.

2. Experimental procedures

2.1. Synthesis

Nominally CuCo2InTe4 and CuNi2InTe4 samples were 
synthesized using the melt-anneal method. Stoichiometric 
quantities of Cu, Co, Ni, In, Te elements with purity of at least 
99.99% (GoodFellow) were charged in an evacuated synthetic 
silica glass ampoule, which was previously subjected to pyrolysis 
in order to avoid reaction of the starting materials with silica 
glass. Then, the ampoule was sealed under vacuum (~10-4 Torr) 
and the fusion process was carried out inside a furnace (vertical 
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position) heated up to 1500 K at a rate of 20 K/h, with a stop 
of 48 h at 722.5 K (melting temperature of Te) in order to 
maximize the formation of binary species at low temperature 
and minimize the presence of unreacted Te at high temperatures. 
The ampoule was shaken using a mechanical system during 
the entire heating process in order to aid the complete mixing 
of all the elements. The maximum temperature (1500 K) was 
held for an additional 48 hours with the mechanical shaking 
system on. Then, the mechanical shaking system was turning 
off and the temperature was gradually lowered, at the same 
rate of 20 K/h, until 873 K. The ampoule was held at this 
temperature for a period of 30 days. Finally, the sample was 
cooled to room temperature at a rate of 10 K/h. The obtained 
ingots were bright gray in color and homogeneous to the eye.

2.2. X-ray powder diffraction

X-ray powder diffraction patterns were recorded using a 
PANalytical X’Pert Pro MPD powder X-ray diffractometer 
operating in Bragg-Brentano geometry using CuKα radiation with 
an average wavelength of 1.5418 Å. A tube power of 45 kV and 
40 mA was employed. A nickel filter was used in the diffracted 
beam optics and the data were collected with the X’Celerator 
one-dimensional silicon strip detector. A ¼° divergent slit, a 
½° antiscatter slit, and a 0.02 rad soller slit were set at both the 
incident and diffracted beams. The scan range was from 5 to 
145° 2θ with a step size of 0.008° and a scan speed of 0.0106°/s.

3. Results and Discussion

Figure 1 and 2 shows the resulting X-ray powder 
diffractogram for the quaternary compounds CuCo2InTe4 and 
CuNi2InTe4. An automatic search in the PDF-ICDD database27, 
using the software available with the diffractometer, indicated 
that the powder patterns contained important amounts of 
the binaries CoTe (PDF N° 70-2887) and NiTe (PDF N° 
89-2019), respectively.

Bragg positions of the diffraction lines from these 
binaries are also indicated in Figure 1 and Figure 2. The 
20 first peak positions of the main phase, en each case, 
was indexed using the program Dicvol0428, which gave 
a unique solution in tetragonal cells with a = 6.195(2) Å, 
c = 12.400(4) Å for CuCo2InTe4, and a = 6.160(2) Å, c = 
12.365(4) Å for CuCo2InTe4.

The systematic absences study (hkl: h + k + l = 2n) indicated 
an I-type cell. A revision of the diffraction lines of the main 
phase taking into account the sample composition, unit cell 
parameters as well as the body center cell suggested that this 
material is isostructural with CuFe2InSe4

13 and AgFe2GaTe4
16; 

the firsts of the I-II2-III-VI4 family with a stannite structure11, 
which crystallize in the tetragonal space group I42m (No. 
121). It should be mentioned that Rietveld refinement were 
performed in the I4  (No. 82) space group but did not produce 
a chemically sound structure, ruled out a kesterite structure.

Figure 1: Final Rietveld plot showing the observed, calculated 
and difference pattern for the CuCo2InTe4 compound. The Bragg 
reflections for both phases are indicated by vertical bars.

Figure 2: Final Rietveld plot showing the observed, calculated 
and difference pattern for the CuNi2InTe4 compound. The Bragg 
reflections for both phases are indicated by vertical bars.

The Rietveld refinement29 of the whole diffraction patterns 
was carried out using the Fullprof program30, with the unit cell 
parameters mentioned above. The atomic coordinates of the 
compound CuFe2InSe4

13 were used as initial model. Atomic 
positions of the CoTe31 and NiTe32 binaries were included 
as secondary phases in the refinements of CuCo2InTe4 and 
CuNi2InTe4, respectively.

The angular dependence of the peak full width at 
half maximum (FWHM) was described by the Caglioti’s 
formula33. Peak shapes were described by the parameterized 
Thompson-Cox-Hastings pseudo-Voigt profile function34. 
The background variation was described by a polynomial 
with six coefficients. The thermal motion of the atoms was 
described by one overall isotropic temperature factor. The 
results of the Rietveld refinement are summarized in Tables 
1 and 2. Figures 1 and 2 shows the observed calculated and 
difference profile for the final cycle of Rietveld refinement 
in both materials. Atomic coordinates, isotropic temperature 
factor, bond distances and angles are shown in Tables 3 
and 4. The final Rietveld refinement converged to the 
weight fraction percentages35 shows in Tables 1 and 2. 
Figure 3 shows the unit cell diagram for the CuCo2InTe4 

and CuNi2InTe4 phases.
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Table 1: Rietveld refinement results for CuCo2InTe4 and CoTe.

Molecular formula CuCo2InTe4 CoTe

Molecular weight (g/mol) 806.63 186.53

a (Å) 6.1997(1) 3.8939(1)

c (Å) 12.380(1) 5.3728(2)

V (Å3) 475.84(4) 70.55(1)

System tetragonal hexagonal

Space group I-42m (No. 121) P63/mmm (No. 194)

Z 2 2 Rexp (%) = 6.7

Dcalc (g/cm-3) 5.63 Rp (%) = 7.2

Weight fraction (%) 65.2 34.6 Rwp (%) = 9.5

RB (%) 8.5 7.9 S = 1.4
Rexp = 100 [(N-P+C) / Ʃw(yobs

2)]1/2   N-P+C is the number of degrees of freedom
Rwp = 100 [Ʃw|yobs - ycalc|

2 / Ʃw|yobs|
2]1/2  Rp = 100 Ʃ|yobs - ycalc| / Ʃ|yobs|

RB = 100 Ʃk|Ik -Ic k| / Ʃk |Ik|   S = [Rwp / Rexp]

Table 2: Rietveld refinement results for CuNi2InTe4 and NiTe.

Molecular formula CuNi2InTe4 NiTe

Molecular weight (g/mol) 806.15 186.29

a (Å) 6.1669(1) 3.9411(2)

c (Å) 12.370(1) 5.3177(3)

V (Å3) 470.44(4) 71.53(1)

System tetragonal hexagonal

Space group I-42m (No. 121) P63/mmm (No. 194)

Z 2 2 Rexp (%) = 6.5

Dcalc (g/cm-3) 5.69 Rp (%) = 7.2

Weight fraction (%) 58.3 41.7 Rwp (%) = 9.6

RB (%) 8.7 8.0 S = 1.5
Rexp = 100 [(N-P+C) / Ʃw(yobs

2)]1/2   N-P+C is the number of degrees of freedom
Rwp = 100 [Ʃw|yobs - ycalc|

2 / Ʃw|yobs|
2]1/2  Rp = 100 Ʃ|yobs - ycalc| / Ʃ|yobs|

RB = 100 Ʃk|Ik -Ic k| / Ʃk |Ik|   S = [Rwp / Rexp]

Table 3: Atomic coordinates, isotropic temperature factor, bond distances (Å) and angles (°) for CuCo2InTe4.

Atom Ox. Wyck. x y z Foc B (Å2)

Cu +1 2a 0 0 0 1 0.31(5)

Co +2 4d 0 ½ ¼ 1 0.31(5)

In +3 2b 0 0 ½ 1 0.31(5)

Te -2 8i 0.264(1) 0.264(1) 0.124(1) 1 0.31(5)

Cu - Tei 2.576(9) Co - Te 2.693(9) In - Te 2.777(9)

Te - Cu - Teii 106.9(2) x4 Te - Co - Teiv 109.6(2) x4 Tei - In - Teiv 107.8(2) x4

Te - Cu - Teiii 110.6(2) x2 Te - Co - Tev 109.2(2) x2 Teiv - In - Tevi 112.7(2) x2
Symmetry codes: (i) -0.5+x, -0.5+y, 0.5+z; (ii) -y, x, -z; (iii) -x, -y, z; (iv) -0.5+y, 0.5-x, 0.5-z; (v) -x, 1-y, z; (vi) 0.5-y, -0.5+x, 0.5-z.

Quaternary CuCo2InTe4 and CuNi2InTe4 are normal 
adamantane-structure compound and can be described as 
derivative of the sphalerite with a stannite-type structure2. 
As expected for adamantane structure compounds, each 
anion is coordinated by four cations (two Co or Ni, one 
Cu and one In) located at the corners of a slightly distorted 
tetrahedron. Cu, Co (Ni) and In cations are similarly 

coordinated by four anions. The interatomic distances 
are shorter than the sum of the respective ionic radii for 
structures tetrahedrally bonded36. The Cu-Te, Co-Te, Ni-Te 
and In–Te bond distances are in good agreement with those 
observed in other adamantane structure compounds found 
in the ICSD database37; such as CuTa2InTe4

15, CuInTe2
38, 

AgIn5Te8
39, Cu3NbTe4

40 and AgInTe2
41.
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Table 4: Atomic coordinates, isotropic temperature factor, bond distances (Å) and angles (°) for CuNi2InTe4.

Atom Ox. Wyck. x Y z Foc B (Å2)

Cu +1 2a 0 0 0 1 0.23(5)

Ni +2 4d 0 ½ ¼ 1 0.23(5)

In +3 2b 0 0 ½ 1 0.23(5)

Te -2 8i 0.264(1) 0.264(1) 0.125(1) 1 0.23(5)

Cu - Tei 2.574(9) Ni - Te 2.676(9) In - Te 2.773(9)

Te - Cu - Teii 106.2(2) x4 Te - Ni - Teiv 109.5(2) x4 Tei - In - Teiv 108.1(2) x4

Te - Cu - Teiii 111.2(2) x2 Te - Ni - Tev 109.4(2) x2 Teiv - In - Tevi 112.2(2) x2
Symmetry codes: (i) -0.5+x, -0.5+y, 0.5+z; (ii) -y, x, -z; (iii) -x, -y, z; (iv) -0.5+y, 0.5-x, 0.5-z; (v) -x, 1-y, z; (vi) 0.5-y, -0.5+x, 0.5-z.
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Figure 3: Unit cell diagram for the CuCo2InTe4 and CuNi2InTe4 phases.

4. Conclusions

The crystal structure of the quaternary compounds 
CuCo2InTe4 and CuNi2InTe4 was determined using X-ray 
powder diffraction. CuCo2InTe4 and CuNi2InTe4 crystallize in 
the tetragonal space group I42m with a stannite-type structure.
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