Luminescent and Magnetic Properties of $\text{Fe}_3\text{O}_4@\text{SiO}_2$:phen:$\text{Eu}^{3+}$

Raphael Lucas de Sousa Silva a, Alberthmeiry Teixeira de Figueiredo a*, Cristiano Morita Barrado a,
Marcelo Henrique Sousa b

aDepartamento de Química, Universidade Federal de Goiás, Catalão, GO, Brazil
bFaculdade de Ceilândia, Universidade de Brasília, Ceilândia, Brasília, DF, Brazil

Received: November 09, 2016; Revised: May 26, 2017; Accepted: July 03, 2017

Magnetite was doped with rare earth ions (europium) to produce core-shell materials with both magnetic and luminescent properties, i.e., a magnetic Fe_3O_4 oxide core and a SiO_2:phen:Eu^{3+} shell. The resulting material was analyzed by X-ray powder diffraction and transmission electron microscopy, and subjected to magnetic and luminescence emission measurements. All the synthesized materials exhibited superparamagnetic behavior and luminescence emission. The magnetic behavior of Fe_3O_4 and luminescence emission of SiO_2:phen:Eu^{3+} of the materials were compared to precursors.

Keywords: magnetite, Fe_3O_4, core@shell, luminescence, Eu^{3+}

1. Introduction

In recent years, the synthesis of magnetic iron oxide nanoparticles (particularly magnetite - Fe_3O_4) has been intensively explored with a view to biomedical applications such as targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia1-8.

Multifunctional materials are attractive because they may combine properties, which allow manipulation chemical functionalities, playing a key role in different applications. The use of multifunctional materials will, and in some cases already do, allow savings in number of parts, reducing the need for joining operations9. Moreover, materials that present both magnetic and luminescent properties have been developed10-14 and applied to biotechnological processes such as imaging, tracking, and separation of biological molecules or cells15-19. One way to obtain both properties in a single multifunctional material is by using the core-shell strategy, which involves coating Fe_3O_4 nanoparticles with an actively fluorescent material, resulting in a system with magnetic and luminescent properties16,20-22. Thus, since lanthanide ions (Ln^{3+}) have important applications in fluorescent materials, electro luminescent devices and fluorescent probes for biological systems, they can be used as sources of fluorescence in multifunctional magnetic materials16,18-22.

1,10-phenanthroline is due to that the excitation energy is absorbed by this molecule and then occurs an efficient energy transfer from its triplet state to the Eu^{3+} ions. This excitation process is more efficient that the direct excitation, since the lanthanide cations are characterized by very low absorption coefficients23.

In core-shell systems, silica is a common capping material, since it is chemically inert, biocompatible, optically transparent and does not affect reactions at the core surface. Furthermore, coating with silica protects magnetite core particles and the luminescent probes can be dispersed on it20,24.

It has been proven that the Fe_3O_4 will greatly decrease the luminescence of Eu^{3+} ion if they are directly blended with them. Therefore, the Eu^{3+} should be effectively isolated to avoid direct contact with Fe_3O_4 if the strong luminescence of the magnetic-fluorescent bifunctional is to be achieved13. Thus, Core/shell structure reduces the interaction of the earthrare ion with the magnetic material. This work involved the synthesis of a magnetic-luminescent core-shell nanocomposite (Fig. 1). The magnetite core was coated with a luminescent silica (SiO_2:Eu$^{3+}$) shell.

2. Materials and Methods

All the chemicals were of higher than 99.9% purity and were used as received. Magnetite nanoparticles were obtained by the coprecipitation of Fe^{3+} ($\text{FeCl}_3,6\text{H}_2\text{O}$) and Fe^{2+} ($\text{FeSO}_4,7\text{H}_2\text{O}$) salts (molar ratio of 2:1) in an alkaline medium (pH = 11), using an adapted version of a procedure described elsewhere25. The overall reaction can be written as equation 1:

$$\text{Fe}^{3+} + 2 \text{Fe}^{2+} + 8 \text{OH}^- \rightarrow \text{Fe}_3\text{O}_4 + 4 \text{H}_2\text{O} \quad (1)$$

* e-mail: alberth@ufg.br
To produce the core-shell nanocomposites, appropriate amounts of tetraethylorthosilicate, phenanthroline and europium(III) were dissolved in 20 mL of oxygen-free ethanol. Then, 1 g (0.0043 mol) of Fe$_3$O$_4$ was added and the system was mixed for 30 min. The precipitate was then washed several times in ethanol and dried at room temperature.

Table 1 describes the composition of the synthesized samples. The composition of the core consists solely of Fe$_3$O$_4$ while that of the shell comprises solely SiO$_2$:phen:Eu$^{3+}$. Sample Fe-Si-1 contains primary proportion of the core and shell compositions; the samples Fe-Si-2 and Fe-Si-3 were obtained by variation in the layer thickness or concentration of Eu$^{3+}$ ions. In all samples the molar ratio of phen and Eu$^{3+}$ was set to be 4:1 as used by Liu and co-authors26 to produce a high luminescent nanocomposite.

To determine their structural characteristics, the powders were characterized by X-ray powder diffraction (XRD) in a Shimadzu XRD 6100 diffractometer, using CuKa ($\lambda = 1.5406$ Å) radiation. The data were collected in fixed-time mode, from 10º to 80º in the 2θ range, using a divergence slit of 0.5º and a receiving slit of 0.3 mm and a step size of 0.02º. Microstructural and morphological analyses were performed by field emission scanning electron microscopy (FESEM, Zeiss Supra 35), using 2 to 4 kV under different levels of magnification. The powders were examined by transmission electron microscopy (TEM) in a JEOL 3010 ARP microscope operating at an accelerating voltage of 300 kV. The room temperature nanoparticle magnetization characterization was obtained using a vibrating sample magnetometer Lakeshore model 7300. The PL measurements were taken using a Jarrell–Ash MonoSpec 27 monochromator and a Ge photodetector coupled to a data acquisition system composed of a microcomputer-controlled SR530 lock-in amplifier. The 350.7 nm excitation wavelength of a krypton ion laser (Coherent Innova) was used, with the laser output kept at 200 mW.

All the measurements were taken at room temperature.

3. Results and Discussion

Fig. 2 shows the X-ray diffraction patterns of all the samples.

After indexing the peaks of the core (sample Fe$_3$O$_4$), the cubic structure of magnetite was identified and found to be in good agreement with JCPDS card no. 089-09627. The crystallite size of the core, determined by XRD from the broadening of the (311) diffraction peak using Scherrer’s formula, was found to be 8 nm. The crystal structure of the core did not change after coating with SiO$_2$. However, the incorporation of silica was identified by the broad peak between 20º and 30º.

Fig. 3 shows a typical TEM image of silica-coated magnetite obtained in sample Fe-Si-1.

In this figure, note the quasi-spherical ~8 nm sized crystalline structures coated with an amorphous phase of heterogeneous thickness. Also, the lattice fringes (2.9 Å) in

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fe$_3$O$_4$ (mol)</th>
<th>SiO$_2$ (mol)</th>
<th>phen (mol)</th>
<th>Eu$^{3+}$ (mol)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$O$_4$</td>
<td>0.0043</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Fe$_3$O$_4$</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@SiO$_2$:phen:Eu</td>
<td>0.0043</td>
<td>0.0013</td>
<td>0.0008</td>
<td>0.0002</td>
<td>Fe-Si-1</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@SiO$_2$:phen:Eu</td>
<td>0.0043</td>
<td>0.0026</td>
<td>0.0016</td>
<td>0.0004</td>
<td>Fe-Si-2</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@SiO$_2$:phen:Eu</td>
<td>0.0043</td>
<td>0.0013</td>
<td>0.0016</td>
<td>0.0004</td>
<td>Fe-Si-3</td>
</tr>
<tr>
<td>SiO$_2$:phen:Eu</td>
<td>-</td>
<td>0.0013</td>
<td>0.0008</td>
<td>0.0002</td>
<td>SiO$_2$:phen:Eu$^{3+}$</td>
</tr>
</tbody>
</table>
Fig. 3 agree well with the distance between the (220) lattice planes, also observed in the XRD patterns, confirming the magnetite structure of these crystallite cores. Thus, based on chemical cross-linking, XRD measurements and TEM characterization, it can be concluded that the synthesis method employed here resulted in a polynucleated core-shell system composed of a magnetic core of Fe₃O₄ embedded in a silica shell.

The magnetization curves of Fe₃O₄, Fe-Si-1, Fe-Si-2, and Fe-Si-3 powder samples measured at room temperature are shown in Fig. 4.

Magnetization of the Fe₃O₄ core increased as the applied magnetic field was increased, tending to saturation at high magnetic fields. The saturation magnetization - calculated at the maximum magnetic field - was 48.9 emu/g. This is lower than bulk values but typical for nanosized magnetite, as was found by TEM measurements, and is probably due to cationic redistribution/defects and/or surface effects that affect the magnetization characteristics of nanosized grains. Moreover, this sample displayed features of superparamagnetism, such as negligible remanence and coercivity, which were observed in the hysteresis loops. The inset of Fig. 4 shows magnetization only for the synthesized samples.

The magnetization of the core-shell samples decreased in proportion to the thickness of the silica coating, which is a diamagnetic material. However, all the coated samples showed the same magnetic behavior as the core. If the magnetization of samples Fe-Si-1, Fe-Si-2, and Fe-Si-3 were normalized by the saturation magnetization of the core, the estimated magnetic mass of these samples would be 18, 11, and 19%, respectively.

The photoluminescence (PL) property of the samples was investigated, as indicated by the spectra shown in Fig. 5. All the samples exhibit characteristic ⁵D₀→⁷Fⱼ (J=0-4) Eu³⁺ emissions, i.e., they are luminescent materials. The hypersensitive ⁵D₀→⁷F₂ emission is predominant, indicating that the Eu³⁺ ions occupy sites of low symmetry without inversion centers. On weak emissions of the higher ⁵Dⱼ levels are visible, indicating efficient depopulation of the T₁ state through the antenna effect. The photoluminescence emission intensity of the core-shell samples was compared based on the intensity of ⁵D₀→⁷F₂. Samples Fe-Si-1, Fe-Si-2, and Fe-Si-3 were found to present 18, 3, and 3% of PL.

![Figure 3. TEM image of Fe-Si-1.](image)

![Figure 4. VSM data of samples Fe₃O₄, Fe-Si-1, Fe-Si-2, and Fe-Si-3.](image)
emission, respectively, relative to the PL emission intensity of SiO$_2$:phen:Eu$^{3+}$ host.

The low intensity of Fe-Si-2 and Fe-Si-3 samples was attributed to the high concentration of Eu$^{3+}$ ions. When many identical luminescent centers are present a "concentration quenching" may occur. Thus, the excitation energy is lost to the killer sites non-radiatively due to the increase in the number of luminescence centers32. The Fe-Si-2 and Fe-Si-3 samples are twice the amount of europium than sample Fe-Si-1.

4. Conclusions

Core-shell materials with magnetic and luminescent properties were synthesized in this study. The materials are composed of a crystalline magnetic core of Fe$_3$O$_4$ and a luminescent shell of amorphous SiO$_2$. All the samples exhibit magnetization typical of nanosized magnetite and luminescent emission typical of europium(III) ions.

The performance of the Fe-Si-1 core-shell sample is promising. This sample has a crystalline magnetite structure, nanosized, superparamagnetic behavior and luminescent property. Samples Fe-Si-2 and Fe-Si-3 are superparamagnetic and luminescent, but sample Fe-Si-1 shows the best performance.

5. Acknowledgment

The authors thank the Brazilian research financing institutions CAPES and CNPq for their funding of this work.

6. References

6. Andrade AL, Fabris JD, Domingues RZ, Pereira MC. Current Status of Magnetite-Based Core@Shell Structures for Diagnosis and Therapy in Oncology Short running title: Biomedical Applications of Magnetite@Shell Structures. *Current Pharmaceutical Design*. 2015;21(37):5417-5433.

