The Modification of (Nd_{0.5}Ta_{0.5})^{4+} Complex-Ions on Structure and Electrical Properties of Bi_{0.5}Na_{0.5}TiO_{3}-BaTiO_{3} Ceramics

Runpu Dou\textsuperscript{a}, Ling Yang\textsuperscript{a*}, Jiwen Xu\textsuperscript{a,4}, Xiaowen Zhang\textsuperscript{a}, Hang Xie\textsuperscript{a}, Changlai Yuan\textsuperscript{a,4}, Changrong Zhou\textsuperscript{a,4}, Guohua Chen\textsuperscript{a,4}, Hua Wang\textsuperscript{a,4}

\textsuperscript{a}School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
\textsuperscript{4}Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

Received: November 09, 2018; Revised: January 03, 2019; Accepted: January 23, 2019

The (Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}Ti_{1-x}(Nd_{0.5}Ta_{0.5})_{x}O_{3} (0.01 \leq x \leq 0.05) lead-free ceramics (BNBT-xNT) used (Nd_{0.5}Ta_{0.5})^{4+} complex-ions to modify its structure and electrical properties. The BNBT-xNT ceramics exhibit the coexistence of tetragonal and rhombohedral phase. The (Nd_{0.5}Ta_{0.5})^{4+} complex-ions prohibit grain growth, and its average grain size decreases from 2.53 µm to 0.84 µm with increasing complex-ion content. The NT doping not only induces the transformation from ferroelectric phase to relaxor ferroelectric phase but also decreases the coercive field and remnant polarization. The permittivity curves are broadened at heavily doping content. The energy storage and strain properties are improved by complex-ions. The maximum energy storage density of 0.475 J/cm\textsuperscript{3} is obtained at x = 0.035 and 60 kV/cm, the energy storage efficiency achieves the maximum efficiency of 61.5% at x=0.05. As increasing complex-ion content, the typical butterfly-shaped strain curve develops into a sprout-shaped one, and the maximum strain of 0.199% is obtained at x=0.02.

Keywords: BNT-BT, (Nd_{0.5}Ta_{0.5})^{4+}, Relaxor ferroelectric, Energy storage, Strain.

1. Introduction

The growing level of environmental awareness makes the researchers try their best to find out lead-free material to take place of the poisonous lead-based ferroelectric ceramics with excellent electrical properties. Bi_{0.5}Na_{0.5}TiO_{3} (BNT) ceramics have ABO_{3} perovskite structure which is deemed to be one of the most potential lead-free candidates for lead-based ceramics due to its outstanding ferroelectric and piezoelectric properties at room temperature \textsuperscript{1}.

The structure of pure BNT ceramics can be modified, and its properties can also be improved by doping or solid solution. As is reported \textsuperscript{2,3}, the morphotropic phase boundary (MPB) structure was found out in Bi_{0.5}Na_{0.5}TiO_{3}-Bi_{0.5}K_{0.5}TiO_{3} (BNT-BKT) and Bi_{0.5}Na_{0.5}TiO_{3}-BaTiO_{3} (BNT-BT) systems, which can obtain better electrical properties \textsuperscript{4,5}. The Nd_{0.5}O_{3} doped 0.82Bi_{0.5}Na_{0.5}TiO_{3} - 0.18Bi_{0.5}K_{0.5}TiO_{3} ceramics obtained the excellent piezoelectric properties (d_{33}=134pC/N, K_{p}=0.27)\textsuperscript{6}. The value of piezoelectric constant increased to 170pC/N from 150pC/N by doping Ta\textsuperscript{5+} into 0.94Bi_{0.5}Na_{0.5}TiO_{3} - 0.06BaTiO_{3} ceramics according to Han’s study \textsuperscript{10}. What’s more, the complex-ions doped BNT-based ceramics also illustrated interesting microstructure, phase structure transition and excellent electrical properties. The average grain size of BNB-T-xPN ceramics decrease from 1.55 µm to 0.95 µm after doping the (Pr_{0.5}Nb_{0.5})^{4+} complex-ions \textsuperscript{11}. The (Al_{0.5}Sb_{0.5})^{4+} modified BNT-BKT ceramics shown a high energy storage density of 1.41 J/cm\textsuperscript{3} \textsuperscript{12}. The BNT-BT ceramics doped by (Fe_{0.5}Nb_{0.5})^{4+} shown a highest unipolar strain of 0.422% \textsuperscript{13}. For the BNBT6.5-xAS ceramics, a phase transition occurred from ferroelectric to relaxor phase with increasing (Al_{0.5}Sb_{0.5})^{4+} contents \textsuperscript{14}. Therefore, the local hetero structure constructed by complex-ions can induce its electrical properties improvement or transition.

The Ca_{0.61}Nd_{0.26}Ti_{1-x}(Cr_{0.5}Ta_{0.5})_{x}O_{3} microwave ceramics were modified by (Cr_{0.5}Ta_{0.5})^{4+} complex-ions, which show the good and stable comprehensive microwave dielectric properties \textsuperscript{15}. The Ionic radius of Ta\textsuperscript{5+} (0.640 Å) is close to that of Ti\textsuperscript{4+} (0.605 Å). However, the Nd\textsuperscript{3+} with larger ionic radius (0.983 Å) was used to induce lattice distortion. So the (Nd_{0.5}Ta_{0.5})^{4+} complex ions were designed to modify the structure of BNT-based ceramic and improve its electrical properties.

\textsuperscript{*}e-mail: lingyang@guet.edu.cn
In this work, the (Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}Ti_{1-x}(Nd_{x}Ta_{0.5})_{x}O_{3} ceramics (BNBT-\(x\)NT) were modified by (Nd_{x}Ta_{0.5})^{4+} complex-ions, and its microstructure, crystal structure, ferroelectric, energy storage properties, dielectric, field-induced strain response and impedance were studied.

2. Experiments

The BNBT-\(x\)NT (\(x=0.01, 0.02, 0.03, 0.035, 0.04, 0.05\)) ceramics were prepared by using Bi_{2}O_{3} (99.95%), Na_{2}CO_{3} (99.8%), BaCO_{3} (99%), TiO_{2} (99.9%), Nd_{2}O_{3} (99.95%) and Ta_{2}O_{5} (99.99%) dried powders as the starting raw materials. All oxide powders were weighed according to the stoichiometric formula. And according to our previous work 16, after ball milling in ethanol with ZrO_{2} balls for 12 hours, the powders were dried at 90 °C for 24 hours and then calcined at 880 °C for 2 hours. The powders added polyvinyl alcohol aqueous solution (7 wt%) as binder were granulated by 100-mesh sieve. The green bodies with a diameter of 13 mm and a thickness of 1.0 mm were pressed under 40 MPa. The sintered bodies were sintered in air at 1150 °C for 2 hours. The electrical test samples were polished to 0.5 mm in thickness and fabricated Ag electrodes on both sides at 580 °C for 30 minutes.

The crystal structure of BNBT-\(x\)NT samples was characterized by X-ray diffractometer (XRD, D8-Advance, Bruker). The surface morphology and grain size were analyzed by Field-Emission Scanning Electron Microscope (FESEM, qunata 450 FEG, FEI). The electric-field-induced polarization (\(P-E\)), bipolar strain (\(S-E\)) and current-electric field (\(I-E\)) were measured by ferroelectric test system (TF Analyzer-2000E, aixACCT). The energy storage properties were calculated by integrating the \(P-E\) loop. The dielectric constant and loss were measured by impedance analyzer (4294A, Agilent) with a heating rate of 2 °C/min from room temperature to 400 °C, and the impedance spectrum was also measured by impedance analyzer.

3. Results and Discussion

Figure 1 is the XRD patterns of BNBT-\(x\)NT ceramics with \(x=0.01-0.05\). The XRD patterns reveal all of the diffraction peaks of perovskite single phase structure without other impurity phases. Therefore, the Nd^{3+} and Ta^{5+} ions diffused into the lattice of matrix and formed solid solution. As previous report 17, the pure Bi_{0.5}Na_{0.5}TiO_{3} and BaTiO_{3} are rhombohedral and tetragonal structure, respectively. As shown in Figure 1 (b), the (111) peak at about 40° splits into the (003) and (021) peaks which proves the existence of rhombohedral phase structure. The (200)/(002) splitting peaks at 46°-47° as shown in Figure 1 (c) indicates tetragonal phase structure 18. The peaks shift to lower diffraction angles with the increasing amounts of NT complex-ions. The reason of peak shifting is that the ionic radius of Ti^{4+} (0.0605 nm) at B-site are smaller than Nd^{3+} (0.0983 nm) and Ta^{5+} (0.0640 nm) 19,20. Thus the lattice distortion induces the change of lattice constant, and the diffraction peak shifts to lower angle according to the Bragg law. According to the two splitting peak behaviors, it can be concluded that the rhombohedral and tetragonal phase structure coexist in the BNBT-\(x\)NT ceramics 21,22.

The surface morphologies and grain size distribution of BNBT-\(x\)NT ceramics with \(x=0.01-0.05\) is shown in Figure 2. The grain size of BNBT-\(x\)NT ceramics was measured by the calculation software “nano measurer”. The grains and grain boundaries observed from SEM images are clear. The shape of grains from top view shows circular-like structure. However, the ceramic samples show a small number of pores. These pores can affect breakdown electric field because these defects are preferentially broken down. When \(x=0.01\), the grain size illustrates a wide range from 1.0 μm to 6.0 μm. As the complex-ion content increase, the range of grain size gradually becomes smaller, and the same phenomenon can be observed in Nb/In co-doped Bi_{0.5}La_{0.05}Na_{0.49}Li_{0.01}TiO_{3-δ} ceramics 23. And the average grain size of BNBT-\(x\)NT ceramics decrease slightly from 2.53 μm at \(x=0.01\) to 0.84 μm at \(x=0.05\), which implies the (Nd_{x}Ta_{0.5})^{4+} complex-ions are grain growth inhibitor for BNBT ceramics. The grain growth of 0.94BNBT-0.06BT ceramics was not evidently affected by Ta-doping 24. However, the grain size of Nd doped BNT ceramics shown an obvious decrease 20. And the grain size of Nd doped 0.82BNBT-0.18BT ceramics decreases slightly 9. The reason is that the segregation of some Nd^{3+} ions at grain boundaries, which prevents grain boundary movement during sintering and inhibits grain growth 9. Therefore, the grain growth behavior of BNBT-\(x\)NT ceramics in this work can attribute to the same reasons. Owinging to the breakdown electric field of BNBT-0.01NT ceramic is under 70 kV/cm, so the \(P-E\) hysteresis loops of the BNBT-\(x\)NT ceramics were tested at 60 kV/cm and 1 Hz as shown in Figure 3(a). And the Figure 3(b) is the evolution of the coercive field (\(E_c\)), remnant polarization (\(P_r\)), maximum polarization (\(P_{max}\)) and \(\Delta P (P_{max} - P_{r})\) for BNBT-\(x\)NT ceramics. It can be seen that the \(P_{max}\) and \(P_r\) simultaneously decrease with increasing NT complex-ion content, and the change of the \(E_c\) is not obvious. When \(x=0.01\), the \(E_c\), \(P_r\) and \(P_{max}\) observed from the \(P-E\) loop are 29.4 kV/cm, 26.9 μC/cm\(^2\) and 34.4 μC/cm\(^2\), respectively. And then the \(P_r\) and \(E_c\) suddenly decrease to 8.4 μC/cm\(^2\) and 14.7 kV/cm at \(x=0.02\). After that the \(P_r\), \(P_{max}\) and \(E_c\) gradually decrease along with the increase of complex-ion content. Lastly, the BNBT-\(x\)NT ceramics obtain the minimum \(P_r\) of 1.97 μC/cm\(^2\) and \(E_c\) of 10.61 kV/cm at \(x=0.05\). The ferroelectric behavior transformation lies in that the NT complex-ions disturb the long-range ferroelectric order and the relaxor characteristics increased 19.
The Modification of (Nd$_{0.5}$Ta$_{0.5}$)$_{4+}$ Complex-Ions on Structure and Electrical Properties of Bi$_{0.5}$Na$_{0.5}$TiO$_3$-BaTiO$_3$ Ceramics

Figure 1. XRD patterns of BNBT-$x$NT ceramics at (a) 20°-80°, (b) 39.5°-40.5° and (c) 46°-47°

Figure 2. Surface morphologies and grain size distribution of BNBT-$x$NT ceramics
The following formula can be used to calculate the energy storage density \( W \) and energy storage efficiency \( \eta \) \(^{25} \):

\[
W = \int_{P_r}^{P_{\text{max}}} EdP
\]

\[
\eta = \frac{W_1}{W_1 + W_2} \times 100\%
\]

Where \( W_1 \) is the electrical energy storage density, \( E \) refers to the applied external electric filed, \( P_r \) and \( P_{\text{max}} \) are the remnant and maximum polarization. \( W_2 \) is the energy absorption density and \( \eta \) is energy storage efficiency.

Figure 4 exhibits the energy storage density and efficiency of BNBT-xNT ceramics which are calculated from the \( P-E \) loops at 60 kV/cm and 1 Hz. The improvement of energy storage properties is attributed to the transition of ferroelectric behavior. For \( x=0.01 \), the energy storage density is 0.126 J/cm\(^3\) and efficiency is 8.3\% (\( P_{\text{max}}=34.4 \mu C/cm^2, P_r=26.9 \mu C/cm^2, \Delta P=7.5 \mu C/cm^2, E_c=29.4 \text{ kV/cm} \)). Then as shown in Figure 3, the \( P-E \) loop becomes slim and the \( \Delta P \) sharply increases when \( x=0.02 \), so the ferroelectric properties decrease. Thus, according to the formula (1) and (2), the energy storage density and efficiency have an obvious improvement to 0.418 J/cm\(^3\) and 35.6\%.

Figure 5 shows the bipolar field-induced strains of BNBT-xNT ceramics tested at 60 kV/cm and 1 Hz. When \( x=0.01 \), there are only two current peaks which correspond to \( +E_c \) and \( -E_c \) for the \( P-E \) curve. The reason for appearance of two current peaks is the domain switching of typical ferroelectric at the \( E_c \) value of the external electric field \(^{26} \). Thus, the current peaks, large \( P_r \) and \( E_c \) indicate that the ferroelectric phase is dominant for BNBT-xNT at \( x=0.01 \) \(^{27} \). However, four peaks \( I_1 \) and \( I_2 \) appear for each \( I-E \) loops when \( x>0.01 \) and indicates the phase transition of BNBT-xNT ceramics. The current peak of \( I_1 \) represents the relaxor-ferroelectric transition, while the current peak of \( I_2 \) corresponds to the ferroelectric-relaxor transition \(^{28} \). Therefore, BNBT-xNT ceramics are dominated by relaxor ferroelectric phase when \( x>0.01 \). With the increase of complex-ion content, all the four current peaks become weak, and the \( P_{\text{max}} \) declines. The reason is that the high concentration complex-ions lead to the rising proportions of relaxor ferroelectric phase than that of the ferroelectric phase \(^{29} \).

Figure 6 reveals the bipolar field-induced strains of BNBT-xNT ceramics tested at 60 kV/cm. It can be seen that the positive strain shows a little increase from 0.191\% to 0.199\% when the NT content increased to 0.02. Further increasing NT content, the positive strain shows an obvious decrease from 0.177\% to 0.061\%. Meanwhile, the negative strain (\( S_{\text{neg}}=0.186\% \)) only appears at \( x=0.01 \) and exhibits butterfly characterization, which is mainly related to the dominant ferroelectric phase for the structure \(^{30} \). But the
The Modification of (Nd$_{0.5}$Ta$_{0.5}$)$^{4+}$ Complex-Ions on Structure and Electrical Properties of Bi$_{0.5}$Na$_{0.5}$TiO$_3$–BaTiO$_3$ Ceramics

A butterfly-shaped curve is apparently asymmetric under the effect of internal bias electric field resulting from the formation of defect dipoles during sintering, while the defect dipoles come from the NT doping. The internal bias field and external electric field interact together during bipolar strain test. The actual electric field in samples is the result of their interaction. The internal bias field plays different role to strengthen or weaken external electric field according to their direction. As the doping content increase, it can be seen that the typical butterfly-shaped strain curve develops into a sprout-shaped one and the $S_{\text{max}}$ disappears, which indicates the BNBT-$x$NT ceramics with ferroelectric phase transform to the relaxor ferroelectric phase.

**Figure 5.** $P-E$ and $I-E$ loops of BNBT-$x$NT ceramics

**Figure 6.** $S-E$ loops of BNBT-$x$NT ceramics
The temperature dependence of relative permittivity ($\varepsilon_r$) and loss ($\tan\delta$) of BNBT-xNT ceramics at frequencies of 1 kHz, 10 kHz and 100 kHz are exhibited in Figure 7. As it is shown, there are two dielectric anomaly peaks ($T_p$ and $T_m$) for each permittivity curve owing to the thermal evolution of the symmetric ferroelectric polar nanoregions (PNRs) of $R3c$ and $P4bm$ structure. The $T_p$ dielectric anomaly peak shows a strong frequency dispersion behavior, while the $T_m$ dielectric anomaly peak illustrates weak frequency dispersion. And at the same temperature, the dielectric constant decreases as the frequency increasing. On the other hand, with increasing complex-ion content, the frequency dependence of dielectric permittivity is weakened. The dielectric peaks of $T_m$ indicate the phase transition temperature of BNBT-xNT ceramics from “anti-ferroelectric-like” to paraelectric phase. For the heavily doped BNBT-xNT ceramics, the dielectric peaks of $T_m$ become broader and slightly shift to the lower temperature. These broad dielectric behavior and dependent frequency are characteristic of relaxor ferroelectric. In addition, the value of dielectric loss ($\tan\delta$) increases with the rising of frequency at the same temperature. Meanwhile, at the same frequency, the dielectric loss gradually decreases at the temperature range of $T_p$ to $T_m$. It is probably related to the tiny distortion in crystalline structure after depolarization.

To describe the dielectric dispersion and diffuseness of phase transition, the following modified Curie-Weiss law was used in many researches.

$$\ln\left(\frac{1}{\varepsilon} - \frac{1}{\varepsilon_m}\right) + \ln C = \gamma \ln(T - T_m) \quad (3)$$

The letter $C$ is the Curie constant, $\varepsilon_m$ and $\varepsilon$ are the maximum dielectric constant and the dielectric constant, and $\gamma$ is the degree of diffuseness. The range of $\gamma$ value is from 1 to 2, which corresponds to a normal ferroelectric to an ideal relaxor ferroelectric. Figure 8 reveals the plot of $\ln(1/\varepsilon - 1/\varepsilon_m)$ versus $\ln(T - T_m)$, which can obtain the $\gamma$ value by data fitting. The $\gamma$ values of BNBT-xNT ceramics at $x>0.01$ are extremely close to 2. Its value is between 1.87
and 2.08, confirming that the phase transition has a diffuse characteristic, consistent with the $P-E$ results shown in Figure 5. The similar relaxor behavior was observed in $0.8(\text{Bi}_{0.5}\text{Na}_{0.5})\text{TiO}_3-0.2(\text{Bi}_{0.5}\text{K}_{0.5})(\text{Hf}_{x}\text{Ti}_{1-x})\text{O}_3$ ceramics with $\gamma$ value between 1.89 and 2.40.

Figure 9 shows the Cole-Cole plots of impedance with different temperature from 200 °C to 540 °C for $x=0.035$. Firstly, the impedance curves are nearly parallel to the ordinate at lower temperature. And then the curves bend towards abscissa and form semicircles as the increasing temperature. The BNBT-0.035NT ceramic presents an excellent insulating capacity below the temperature of 300 °C. Afterwards, the radii of the semicircles become smaller and smaller. The radii of semicircles in Cole-Cole plot represent the resistive behavior of ceramic. So it indicates that the conductivity increases and the impedance decreases with heating.

The increase of conductivity of BNBT-0.035NT ceramic is attributed to the thermal activated carriers.

4. Conclusions

The $(\text{Nd}_{0.5}\text{Ta}_{0.5})^{4+}$ complex-ions were used to modify the structure and electrical properties of the $(\text{Bi}_{0.5}\text{Na}_{0.5})_{0.94}\text{Ba}_{0.06}\text{Ti}_{1-x}\text{Nd}_{x}\text{Ta}_{x}\text{O}_3$ lead-free ceramics. The BNBT-xNT ceramics are single-phase perovskite structure without impurity phases, and show the coexistence of tetragonal and rhombohedral phase. The average grain size decreases from 2.53 µm to 0.84 µm with increasing complex-ion content. The NT complex-ions decrease the remnant polarization and coercive field. Meanwhile, the relaxor ferroelectric phase of heavily doped BNT-BT ceramics were verified by the evolution of current peak, the disappearing negative strain and diffuseness coefficient. The doping of complex-ions decreases the dielectric constant and broadens the permittivity curves. The maximum energy storage density of 0.475 J/cm$^3$ is obtained at $x=0.035$ and 60 kV/cm, and the optimal value of strain is 0.199% obtained at $x=0.02$. These results reveal that the structure and electrical properties of BNT-BT ceramics can be modified by complex-ions introducing.

5. Acknowledgements

This work is supported by the National Nature Science Foundation of China (61741105, 11664006), Guangxi Nature Science Foundation (2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (161001-Z, 171009-Z).

6. References


3. Yang Z, Liu B, Wei L, Hou Y. Structure and electrical properties of $(1-x)\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3-x\text{Bi}_{0.5}\text{K}_{0.5}\text{TiO}_3$ ceramics near morphotropic phase boundary. Materials Research Bulletin. 2008;43(1):81-89.


7. Pham KN, Hussain A, Ahn CW, Ill KW, Jeong SJ, Lee JS. Giant strain in Nb-doped $\text{Bi}_{0.5}(\text{Na}_{0.82}\text{K}_{0.18})_{0.5}\text{TiO}_3$ lead-free electromechanical ceramics. Materials Letters. 2010;64(20):2219-2222.

8. Fu P, Xu Z, Zhang H, Chu R, Li W, Zhao M. Structure and electrical properties of $\text{Er}_2\text{O}_3$ doped $(0.82\text{Bi}_{0.5}\text{Na}_{0.5})\text{TiO}_3-0.18\text{Bi}_{0.5}\text{K}_{0.5}\text{TiO}_3$ lead-free piezoelectric ceramics. Materials & Design. 2012;40:373-377.

10. Han WH, Koh JH. Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi$_{1/2}$Na$_{1/2}$TiO$_3$-0.06BaTiO$_3$ lead free ceramics. *Ceramics International*. 2018;44(5):5352-5358.


12. Zhao Y, Xu J, Yang L, Zhou C, Lu X, Yuan C, et al. High energy storage property and breakdown strength of Bi$_{1/2}$(Na$_{0.82}$K$_{0.18}$)$_{1-x}$TiO$_3$ ceramics modified by (Al$_{0.5}$Nb$_{0.5}$)$^{4+}$ complex ion. *Journal of Alloys and Compounds*. 2016;666:209-216.


15. Xiong Z, Tang B, Fang Z, Yang C, Zhang S. Effects of (Cr$_{x}$Ta$_{1-x}$) on structure and microwave dielectric properties of Ca$_{0.5}$Nd$_{0.5}$TiO$_3$ ceramics. *Ceramics International*. 2018;44(7):7771-7779.


17. Shi J, Yang W. Piezoelectric and dielectric properties of CeO$_2$-doped (Bi$_{1/2}$Na$_{1/2}$)$_{0.93}$Ba$_{0.07}$TiO$_3$ lead-free ceramics. *Journal of Alloys and Compounds*. 2009;472(1-2):267-270.


32. Fan P, Zhang Y, Xie B, Zhu Y, Ma W, Wang C, et al. Large electric-field-induced strain in B-site complex-ion (Fe$_{x}$Nb$_{3-x}$)$^{4+}$-doped Bi$_{1-2y}$(Na$_{1/2}$K$_{1/2}$)$_{1+y}$TiO$_3$-lead-free piezocermics. *Ceramics International*. 2018;44(3):3211-3217.


The Modification of (Nd0.5Ta0.5)4+ Complex-Ions on Structure and Electrical Properties of Bi0.5Na0.5TiO3-BaTiO3 Ceramics


41. Ullah A, Ahn CW, Malik RA, Kim IW. Dielectric and impedance spectroscopy of lead-free 0.99[(Bi0.5Na0.4K0.1)(Ti0.980Nb0.020)O3]-0.01(Ba0.7Sr0.3)TiO3 ceramics. Physica B: Condensed Matter. 2014;444:27-33.

42. Li L, Hao J, Xu Z, Li W, Chu R, Li G. Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics. Ceramics International. 2016;42(13):14886-14893.