Microstructure and Properties of Duplex Ni-P-TiO₂/Ni-P Nanocomposite Coatings

Weihui Zhang*, Di Cao, Yanxin Qiao, Zhen He, Yuxin Wang*, Xiang Li, Wei Gao

*School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2Department of Chemical & Materials Engineering, the University of Auckland, PB 92019, Auckland 1142, New Zealand

Received: November 22, 2018; Revised: February 15, 2019; Accepted: April 29, 2019

Duplex Ni-P-TiO₂/Ni-P coatings were electrodeposited onto brass substrates. High phosphorus Ni-P coatings were plated as the inner layer to improve the corrosion resistance, while low phosphorus sol-enhanced Ni-P-TiO₂ coatings were deposited on the top to strengthen the mechanical property. The microstructure, morphology, mechanical property and corrosion resistance of coatings were investigated systematically. The results show that duplex coatings exhibit both excellent mechanical property and good corrosion resistance. The hardness was further improved from ~545 HV₅₀ of duplex Ni-P/Ni-P coating to ~622 HV₅₀ of duplex Ni-P-12.5mL/L TiO₂/Ni-P coating, while the hardness of single Ni-P coating was only ~387 HV₅₀. The corrosion resistance of duplex coatings improved significantly by adding a suitable amount of TiO₂ sol. Duplex Ni-P-12.5mL/L TiO₂/Ni-P coating presented the highest corrosion resistance. However, adding excessive quantities of sol (more than 12.5mL/L) caused nanoparticle agglomeration and created a porous structure in the outer layer, deteriorating the properties of coatings.

Keywords: Duplex coatings, sol-enhanced electrodeposition, Ni-P coating, corrosion resistance.

1. Introduction

As one of the most widely used coatings in industry, Ni-P coatings have attracted great attention due to their unique properties, such as shining surface, high wear resistance and excellent corrosion resistance 1-3. In order to address more challenging applications, how to further increase the performance of Ni-P coatings has become a hot spot in current research.

It is well known that high P Ni-P coatings possess relative high corrosion resistance, while medium and low P containing coatings have relative high hardness 4,5. As the microstructure and properties of Ni-P coatings are mainly dependent on the phosphorus content, fabricating duplex Ni-P coating system is an effective way to obtain both good mechanical properties and high corrosion resistance 6. In the duplex Ni-P coating system, a high phosphorus Ni-P coating was usually deposited as the inner layer to protect the substrate matrix due to its excellent corrosion resistance. Different kinds of hard coatings such as Ni-B 7 and Ni-P 8 coatings were deposited as the outer layer in order to improve the mechanical properties.

In order to further improve the performance of outer layer coating, many research have been carried out by incorporating second phase nanoparticles 9-11 to synthesize duplex Ni-P nanocomposite coatings. However, it is hard to achieve a good suspension of nanoparticles in the coating matrix due to their small size and high surface energy, thus impeding the further development of coating performance. To avoid nanoparticles agglomeration, we recently developed a novel sol-enhanced plating method 12. This method which combines the sol-gel process with electrodeposition can lead to a highly distribution of oxide nanoparticles in the coating matrix, resulting in significantly improved mechanical properties. Based on this new technology, electroless double-layered Ni-P-XZrO₂/Ni-P coatings with different phosphorus (P) contents have been prepared on stainless steel 13 and AZ31 magnesium alloy 14, respectively. These duplex coatings may find a promising industry applications as they exhibit excellent mechanical property and high corrosion resistance.

Comparing with Ni-P electroless plating which has a relatively complicated process and usually requires a high operating temperature, Ni-P electroplating is easy to operate and the deposition rate can be accurately controlled by adjusting plating current. In this paper, duplex Ni-P-TiO₂/Ni-P coatings were deposited on the brass substrate by electroplating method. High phosphorus Ni-P coating was plated as the inner layer to ensure good corrosion resistance, while low phosphorus sol-enhanced Ni-P-TiO₂ coating was deposited as the outer layer to strengthen the mechanical property. Different contents of phosphorus in the inner and outer layers were simply achieved by changing the phosphoric acid content. The microstructure, morphology, mechanical property and electrochemical property of coatings were systematically investigated.

*e-mail: ywan943@163.com
2. Experimental

2.1 Sample preparation

Duplex Ni-P-TiO₂/Ni-P coatings were electroplated onto the brass substrates (20×30×0.3mm³). Before electroplating, the specimens were ultrasonically cleaned for 1 min, alkali washed at 65 °C for 5 min in a solution containing 50 g/L NaOH and 10 g/L NaH₂PO₄·H₂O, then activated by a solution comprising 20 g/L citric acid and 60 g/L ammonium citrate for 1 min at room temperature (about 25 °C). Specimens were washed with distilled water between each step. The bath composition and plating parameters of basic Ni-P coating are given in Table 1. The duplex Ni-P-TiO₂/Ni-P coatings were obtained by controlling the contents of phosphoric acid and TiO₂ sol in the basic Ni-P electrolyte, and the flow diagram of sample preparation is shown in Fig. 1. TiO₂ sol was prepared as reported in the previous papers 15-18. For comparison purposes, a duplex Ni-P/Ni-P coating without adding sol was prepared with the identical plating parameters.

2.2 Sample characterization

The phase structure of the coatings was examined using an X-ray diffractometer (Bruker D2, Germany, V= 30 kV, I= 15 mA) with copper Kα radiation (λ= nm) under the scanning speed of 0.5°/min. Field-emission scanning electron microscopy (FE-SEM, ZEISS Merlin Compact, Germany) equipped with an energy dispersive spectroscopy (EDS) system was used to examine the cross-section microstructure of the coatings. Confocal laser scanning microscopy (LEXTOL S4000, Olympus, Japan) was used to analyze the surface morphology of the coatings.

A Vickers microhardness tester was used to investigate the microhardness of the coatings. During the tests, an indentation load of 50 g with the loading time of 15 s were used. All the wear tests were performed under the load of 7 N with a sliding speed of 20 mm/s. The radius of sliding ball was 9.58 mm and the total sliding distance was 12 m. The wear track width of coatings was observed by using optical microscope images.

The corrosion resistance of coatings was assessed by an electrochemical workstation (CS2350H). All the corrosion tests were performed at room temperature by using a classical three-electrode cell with a platinum (Pt) as the counter electrode, a Ag/AgCl electrode as the reference electrode and a coating specimen as the working electrode. The exposed area of specimens was set to 1 cm². Prior to measurements, the samples were subjected to open circuit conditions for 30 min until a steady-state potential was reached. The electrochemical impedance spectroscopy (EIS) measurements was measured in the frequency range from 1×10⁵ Hz to 1×10⁻² Hz with the applied AC amplitude of 10 mV.

Table 1. Bath composition and electroplating parameters for basic Ni-P coating.

<table>
<thead>
<tr>
<th>Bath constituents</th>
<th>Quantity</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiSO₄·6H₂O</td>
<td>250 g/L</td>
<td>PH: 3±0.5</td>
</tr>
<tr>
<td>NiCl₂·6H₂O</td>
<td>15 g/L</td>
<td>Agitation speed: 300 rpm</td>
</tr>
<tr>
<td>NaCl</td>
<td>15 g/L</td>
<td>Temperature: 70±2°C</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>30 g/L</td>
<td>Current density: 20 mA/cm²</td>
</tr>
<tr>
<td>NaH₂PO₄·6H₂O</td>
<td>20 g/L</td>
<td></td>
</tr>
<tr>
<td>85% H₃PO₄</td>
<td>10 g/L for High P Ni-P coating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 g/L for low P Ni-P coating</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0, 12.5 mL/L, 50 mL/L</td>
<td></td>
</tr>
</tbody>
</table>

Plating time: (1) 35 min for single high P Ni-P coating; (2) 35 min for high P Ni-P inner coating, 35 min for low P Ni-P coating or sol-enhanced Ni-P-X mL/L TiO₂ outer coating (X=12.5, 50).
The impedance data were analyzed on the basis of equivalent electrical circuit using the Zsimpwin software. The potentiodynamic polarization tests were conducted at a scanning rate of 1mV/s in 3.5 wt.% NaCl solution.

3. Results and Discussion

3.1 Phase structure of coatings

The phase structures of single Ni-P coating and duplex Ni-P-TiO2/Ni-P nanocomposite coatings are shown in Fig. 2. It can be seen that Ni (111) and brass phases exist in the diffraction curve of single high P Ni-P coating. After depositing low P Ni-P coating on the high P Ni-P layer, some diffraction peaks derived from the brass substrate could not be detected, which can be attributed to the increase of coating thickness. All the duplex coatings exhibit the similar diffraction patterns, showing that the addition of TiO2 sol did not induce the variation of coating phase. No TiO2 diffraction peaks could be detected from all duplex Ni-P-TiO2/Ni-P nanocomposite coatings probably due to the low quantity of TiO2 and high intensity of other diffraction peaks.

3.2 Surface and cross-sectional morphologies of coatings

Fig. 3 presents the surface morphology of duplex Ni-P/Ni-P and duplex Ni-P-12.5mL/L TiO2/Ni-P coatings. All coatings show a typical morphology of spherical shape. Duplex Ni-P/Ni-P coating has a relatively large grain size with an average diameter of ~3.8µm as shown in Fig. 3(a). As shown by the black arrows in the Fig. 3(b), there are many nanoparticles distributed around the grain boundary areas. The sol-enhanced duplex Ni-P-12.5mL/L TiO2/Ni-P coating has a relatively smaller grain size with a mean size of ~2.1µm. The grain refinement of sol-enhanced duplex coating could be attributed to the highly dispersed TiO2 nanoparticles. These incorporated TiO2 nanoparticles distributed in the grain boundary areas can provide more nucleation sites and effectively hinder the grain growth, resulting in a smaller grain size.

The cross-sectional SEM images of coatings and a qualitative elemental distribution line scan are shown in Fig. 4. The single Ni-P coating has a total thickness of ~4 µm, indicating a deposition speed of ~ 7 µm/h. Duplex Ni-P/Ni-P coating has a total thickness of ~10 µm with ~4 µm inner layer and ~6 µm outer layer. The thickness of duplex Ni-P-TiO2/Ni-P coatings was increased gradually following with the increasing TiO2 addition. The thickness of Ni-P-12.5mL/L TiO2/Ni-P coating and Ni-P-50mL/L TiO2/Ni-P coating was gradually increased to ~11 µm and ~13.5 µm, respectively. The variation of coating thickness could be attributed to the incorporation of TiO2 which can provide more nucleation sites. All the coating exhibits a good adhesion to the substrate as no defects or cracks could be observed at the interfaces. The interfaces between two layers are very uniform and clean, as shown in Fig. 4(b)-4(d). The low P Ni-P-TiO2 outer layer of Ni-P-12.5mL/L TiO2/Ni-P coating exhibited a homogeneous structure with some tiny visible TiO2 nanoparticles agglomeration as depicted in Fig. 4(c).
When increasing the sol addition to 50 mL/L, more agglomeration areas and even small voids can be clearly observed in the outer layer matrix. EDS results indicated that phosphorus content of outer layer was not influenced by sol doping. The phosphorus contents of low P and high P layers were ~8wt.% and ~11wt.%, respectively, based on the quantitative analysis of coating.

3.3 Mechanical property of coatings

3.3.1 Microhardness

Fig. 5 shows the microhardness of Ni-P coating and duplex Ni-P-TiO$_2$/Ni-P nanocomposite coatings. The microhardness of Ni-P/Ni-P coatings is ~545 HV$_{500}$.
which increased nearly 41% compared with ~387 HV$_{50}$ of single Ni-P coating. The improvement of coating hardness can be attributed to the variation of P contents in the coating and the increase of coating thickness.

Single Ni-P coating, the average friction coefficient of duplex Ni-P/Ni-P coating is ~0.35, which decreased by ~36%. This is due to the levelling effect caused by duplex coating. After adding TiO$_2$ sol, the friction coefficient of duplex coating was further reduced to ~0.27, which could be explained by the grain refinement caused by highly dispersed TiO$_2$ nanoparticles, as convinced in Fig. 3(b). However, when the TiO$_2$ sol addition is 50 mL/L, the friction coefficient increased to ~0.53, which could be attributed to the porous structure caused by the agglomeration of TiO$_2$ nanoparticles.

Fig. 7 shows the wear track images of Ni-P coating and duplex Ni-P-TiO$_2$/Ni-P nanocomposite coatings. The single Ni-P coating has the worst wear property with a wear track width of ~314µm. There are obvious plowing lines and some large wear debris on the worn surface. The main wear mechanism of Ni-P coating is adhesive wear, which is the most common wear mechanism for electroplated Ni-P, Ni-B and Ni-Co coatings. The corresponding wear track width of duplex Ni-P/Ni-P coating decreased to ~68 µm, probably due to the higher hardness and lower friction coefficient of coating.

When proper TiO$_2$ sol was added into the electrolyte, the microhardness of duplex coatings enhanced significantly. The microhardness of Ni-P-12.5 mL/L TiO$_2$/Ni-P coating reached to a relatively high value of ~622 HV$_{50}$. Correspondingly, when excessive TiO$_2$ sol was added, the microhardness of Ni-P-50 mL/L TiO$_2$/Ni-P coating was decreased to ~565 HV$_{50}$.

In general, the improvement of nanocomposite coatings hardness could be attributed to several factors including dispersion strengthening, grain refinement and lattice distortion, etc. As all the coatings present a similar amorphous structure, the improvement of duplex Ni-P-TiO$_2$/Ni-P nanocomposite coatings hardness could be mainly ascribed to the highly dispersion of TiO$_2$ nanoparticles. The highly dispersed TiO$_2$ nanoparticles, which well distributed in the grain boundary areas, can hinder the grain growth and lead to a grain refinement strengthening effect, as convinced by Fig. 3. Moreover, these uniform distributed TiO$_2$ nanoparticles can also lead to a significant effect of second phase dispersion strengthening. However, large amounts of sol addition resulted in excessive in-situ formed TiO$_2$ nanoparticles and caused a significant agglomeration in the electrolyte. The agglomerated TiO$_2$ nanoparticles were incorporated into the growing coating matrix and caused a loose and porous structure nearby as shown in Fig. 4(d), thereby impacting the dispersion strengthening effect and leading to a deterioration of the mechanical property.

3.3.2 Wear property

The average friction coefficients of Ni-P coating and duplex Ni-P-TiO$_2$/Ni-P nanocomposite coatings are shown in Fig. 6. Compared with ~0.55 (average friction coefficient) of duplex Ni-P/TiO$_2$/Ni-P coating, the average friction coefficient of duplex Ni-P/Ni-P coating is ~0.35, which decreased by ~36%. This is due to the levelling effect caused by duplex coating. After adding TiO$_2$ sol, the friction coefficient of duplex coating was further reduced to ~0.27, which could be explained by the grain refinement caused by highly dispersed TiO$_2$ nanoparticles, as convinced in Fig. 3(b). However, when the TiO$_2$ sol addition is 50 mL/L, the friction coefficient increased to ~0.53, which could be attributed to the porous structure caused by the agglomeration of TiO$_2$ nanoparticles.
The wear track width was ~306 µm and ~68 µm, respectively. The reason could be interpreted by the porous structure and increased friction coefficient. As shown in Fig. 4, larger agglomeration areas and even smaller voids can be clearly observed in the outer layer matrix. In addition, Ni-P-50 mL/L TiO₂/Ni-P coating has a higher friction coefficient (~0.53) than Ni-P/Ni-P coating (~0.35). A further investigation which mainly focuses on the wear performance of sol-enhanced Ni-P-TiO₂/Ni-P coatings will be conducted to clarify the related mechanisms.

3.4 Corrosion resistance

3.4.1 Tafel plots

The corrosion resistance of the coatings was studied by electrochemical methods. Fig. 8 presents the potentiodynamic polarization curves of Ni-P and duplex Ni-P-TiO₂/Ni-P coatings in the 3.5 wt.% NaCl solution. The values of \(E_{\text{corr}} \), \(R_p \), and corrosion rate were obtained from the potentiodynamic polarization curves and summarized in Table 2.

According to Table 2, the value of \(E_{\text{corr}} \) and \(i_{\text{corr}} \) for high P Ni-P coating is -0.437V and 4.17µA/cm², respectively, exhibiting a typical value of Ni-P coating.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(E_{\text{corr}}) (V/SCE)</th>
<th>(R_p) (Ω cm²)</th>
<th>(i_{\text{corr}}) (µA/cm²)</th>
<th>Corrosion rate (mm/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-P</td>
<td>-0.437</td>
<td>13.05</td>
<td>4.17</td>
<td>0.043</td>
</tr>
<tr>
<td>Ni-P/Ni-P</td>
<td>-0.372</td>
<td>17.39</td>
<td>2.92</td>
<td>0.030</td>
</tr>
<tr>
<td>Ni-P-12.5mL/L TiO₂/Ni-P</td>
<td>-0.338</td>
<td>26.45</td>
<td>1.37</td>
<td>0.014</td>
</tr>
<tr>
<td>Ni-P-50mL/L TiO₂/Ni-P</td>
<td>-0.496</td>
<td>9.20</td>
<td>4.67</td>
<td>0.051</td>
</tr>
</tbody>
</table>
When another low-phosphorus Ni-P layer was electroplated onto the high P Ni-P coating surface, the corrosion resistance of duplex coating increased, evidenced by the increased E_{corr} of ~0.372 V and decreased i_{corr} of 2.92 µA/cm².

After adding TiO₂ sol, the value of E_{corr} and i_{corr} for duplex coatings varied significantly. The duplex Ni-P-12.5 mL/L TiO₂/Ni-P coating has the most positive E_{corr} of ~0.338 V and the lowest i_{corr} of 1.37 µA/cm², indicating an observably enhanced corrosion performance. Correspondingly, the duplex Ni-P-50 mL/L TiO₂/Ni-P coating shows the most negative E_{corr} of ~−0.496 V and the highest i_{corr} of 4.67 µA/cm², presenting a remarkably deteriorated corrosion performance which is even worse than single Ni-P coating.

For a single layer of Ni-P coating, corrosion usually develops vertically from the coating surface to the substrate matrix through the unavoidable pores of the coating. A micro circuit can form between the coating and underneath substrate. After adopting dual coating, the corrosion of duplex Ni-P/Ni-P coating usually develops horizontally. On the other hand, the outer layer of low phosphorus Ni-P coating has a relatively low corrosion potential, while the inner layer of high phosphorus Ni-P coating presents a relatively high corrosion potential. Due to the corrosion potential difference of two layers, the low phosphorus Ni-P coating layer will act as the sacrificial anode while the high phosphorus Ni-P coating layer will act as the cathode, explaining the corrosion resistance of duplex Ni-P/Ni-P coating is better than single Ni-P coating. After adding proper amount of TiO₂ sol, the corrosion resistance of duplex coatings becomes better. This can be explained as the incorporation of TiO₂ can reduce the crevices, gaps and micron holes in the coating matrix. However, when excessive TiO₂ sol were added, the corrosion resistance of duplex coating decreased. The reason can be mainly attributed to the porous structure of the coating caused by the TiO₂ nanoparticles agglomeration.

3.4.2 EIS

It is well known that the EIS is a powerful electrochemical technique for characterizing the corrosion behavior of coatings. The Nyquist plots for the Ni-P and duplex Ni-P-TiO₂/Ni-P coatings immersed in 3.5 wt.% NaCl solutions. Single capacitive impedance loops with different diameters were observed on the Nyquist plots of Ni-P, Ni-P/Ni-P and Ni-P-12.5 mL/L TiO₂/Ni-P coatings in the investigated frequency regions. In addition to the semicircle, another curve can be observed on the Nyquist plots for duplex Ni-P-50 mL/L TiO₂/Ni-P coating, as shown in Fig. 9. It is indicated that when excessive quantities of TiO₂ sol (50 mL/L) was added to the plating solution, the electrochemical impedance is not only caused by the charge transfer process but also by the diffusion process.

In the impedance measurement, the diameter of the semi-circle is related to the polarization resistance of the surface. Ni-P coating has the smallest diameter. The diameter of capacitive loop in Nyquist plot was increased when depositing another Ni-P layer as the outer layer. After incorporating TiO₂ into the Ni-P outer layer, the diameter of capacitive loop increased at first, then decreased, which is consistent with the trend of the tafel plot variation.

The Bode plots are shown in Fig. 10. Based on the Bode plots, it can be inferred that the Nyquist semicircles should have two time constants. For the Fig. 10(b), the value of |Z| for Ni-P/Ni-P and Ni-P-12.5 mL/L TiO₂/Ni-P coatings at a fixed frequency of 0.01 Hz, which usually corresponds to the polarization resistance of the duplex coatings is much larger than the single Ni-P coating. This can be confirmed that the corrosion resistance of Ni-P coating in the NaCl solution is lower than that of duplex Ni-P/Ni-P and Ni-P-12.5 mL/L TiO₂/Ni-P coatings. The value of |Z| for Ni-P-50 mL/L TiO₂/Ni-P coatings at a fixed frequency of 0.01 Hz is obviously lower than the other three coatings, demonstrating the worst corrosion resistance.

Different models have been proposed for interpreting impedance spectra on Ni-P based coatings. The impedance results of Ni-P, Ni-P/Ni-P and Ni-P-12.5 mL/L TiO₂/Ni-P coatings can be analyzed based on the equivalent circuit depicted in Fig. 11(a), while the result of Ni-P-50 mL/L TiO₂/Ni-P coating can be interpreted by the equivalent circuit shown in Fig. 11(b).

In the proposed model as shown in Fig. 11(a), R_s represents the solution resistance, R_{ct} refers to the charge transfer resistance, R_p symbolizes the pore resistance, and CPE represents the constant phase element. Correspondingly, the suggested model as shown in Fig. 11(b), R_s represents the solution resistance, R_{ct} refers to the charge transfer resistance, CPE$_s$ symbolizes a constant phase element and W refers to a Warburg diffusion impedance.
Table 3 lists the fitting parameters based on the equivalent circuits in Fig. 11. For the studied coatings, the polarization resistance R_p can be computed as $R_p=-R_{1}+R_{ct}$. The R_p of Ni-P coating was higher than that of the duplex Ni-P/Ni-P coating, indicating the better corrosion resistance of the duplex coating, which is consistent with previous results. Notably, adding the appropriate amount of TiO$_2$ sol to the plating solution increased the value of R_p to $4.20\times10^4 \Omega \text{cm}^2$. It can be concluded that the presence of TiO$_2$ reduced the number of defects in the coating contribution for the increased pore resistance (R_1). Furthermore, the presence of oxide particles (TiO$_2$) in the duplex Ni-P/Ni-P matrix may have a corrosion inhibiting effect, stabilizing the corrosion products and rendering them more protective. However, when excessive amount of TiO$_2$ sol (50mL/L) was added to the plating solution, the R_p of duplex Ni-P-50mL/L TiO$_2$/Ni-P coatings decreased to $0.56\times10^4 \Omega \text{cm}^2$, leading to a decline in corrosion resistance. The decreased resistance values account for the increased corrosion activity and accumulation of poorly protective corrosion products, introducing a diffusional behavior. On the other hand, the presence of surface defects caused by the TiO$_2$ nanoparticles agglomeration, such as micro cracks or nano-porosities contributed to the significant decrease in the resistance values.

Table 3. Equivalent circuit parameters for EIS results of different coatings

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_s (Ωcm^2)</th>
<th>$Y_{0\text{CPE1}}$ ($\times10^4 \Omega \text{cm}^2 \text{s}^{-n}$)</th>
<th>n_1</th>
<th>R_1 (Ωcm^2)</th>
<th>W ($10^6 \Omega \text{cm}^2 \text{s}^{-1/2}$)</th>
<th>$Y_{0\text{CPE2}}$ ($\times10^4 \Omega \text{cm}^2 \text{s}^{-n}$)</th>
<th>n_2</th>
<th>R_{ct} ($\times10^3 \Omega \text{cm}^2$)</th>
<th>R ($\times10^3 \Omega \text{cm}^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.01</td>
<td>2.01</td>
<td>0.62</td>
<td>37.54</td>
<td>--</td>
<td>1.51</td>
<td>0.99</td>
<td>20.7</td>
<td>2.07</td>
</tr>
<tr>
<td>B</td>
<td>25.82</td>
<td>2.67</td>
<td>0.91</td>
<td>23000</td>
<td>--</td>
<td>48.9</td>
<td>0.77</td>
<td>7.70</td>
<td>3.07</td>
</tr>
<tr>
<td>C</td>
<td>16.54</td>
<td>2.46</td>
<td>0.93</td>
<td>34200</td>
<td>--</td>
<td>63.6</td>
<td>0.91</td>
<td>7.80</td>
<td>4.20</td>
</tr>
<tr>
<td>D</td>
<td>12.84</td>
<td>5.30</td>
<td>0.85</td>
<td>--</td>
<td>1.09</td>
<td>--</td>
<td>--</td>
<td>5.64</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Note: Sample A is the single Ni-P coating, Sample B is the duplex Ni-P/Ni-P coating, Sample C is the Ni-P-12.5 mL/L TiO2/Ni-P coating, Sample D is the Ni-P-50 mL/L TiO2/Ni-P coating.
4. Conclusions

Double-layered Ni-P-TiO2-Ni-P coatings with different P contents have been successfully fabricated on the brass substrate by using a simple electrodeposition process. The high phosphorus inner layer provides high corrosion resistance while the sol-enhanced composite outer layer provides excellent mechanical properties. The structural, morphological, mechanical and electrochemical properties of the duplex Ni-P-TiO2-Ni-P coating were analyzed. The results showed that the hardness and the corrosion resistance of the duplex coatings were greatly improved by adding a suitable amount of TiO2 sol. Ni-P-12.5mL/L TiO2-Ni-P coating exhibited a significantly enhanced mechanical property and improved corrosion resistance compared with other coatings. Further research will be focused on the development of its future applications in industry.

5. Acknowledgements

This research was supported by National Natural Science Foundation of China (51601073), Jiangsu Distinguished Professor Project (1064901601), Start research fund of Jiangsu University of Science and Technology (1624821607-5), Project of Jiangsu Provincial Six Talent Peaks (2018 XCL-028) and Jiangsu Postgraduate Research Innovation Project.

6. References