
WILLE (1962) INTRODUCED A METHOD FOR THE COLLECTION OF BEES IN THE JUNGLES OF THE PACIFIC LOWLAND IN COSTA RICA, BY USING AN ATTRACTIVE HONEY WATER BASED SOLUTION AT A 1:1
proportion. Other studies have also used this method for surveying bees in a variety of habitats (Salmah et al. 1990, Roubik 1996, Liow et al. 2001, Singapore & Eltz 2004). In here, we proposed a new bait-based method adapted from Wille (1962) for collecting social wasps.

Material and Methods

General description of the alternative method. The proposed method uses a 10 L dorsal spray bag, which contains the attractive solution composed of a water based solution of crystal sugar (sucrose – 200 g/l) and salt (sodium chloride – 25 g/l). Different proportions of salt and sugar were also preliminary tested as attractive solutions, but no differences were obtained in the diversity and abundance of attracted wasps. Therefore, the chosen proportion further used is an average of all tested proportions.

The attractive solution was sprayed in a transect of 200 m, using the spray bag at 10 points every 20 m. At each point, an average of 500 ml of solution was applied. The application was done following a zigzag pattern from left to right, generally applied on green vegetation, with solar incidence in an area of 3 m². It is important to note that after each day of collection, the spray bag must be cleaned using water and sodium hypochlorite to prevent fungi proliferation, which may compromise performance and efficiency in later collections.

After the application of the attractive solution, each point was individually observed for five minutes and wasps which visited these points were collected with an entomological net. Four applications were made during the day, usually between the periods from 10:00h to 16:00h. To check the efficiency of this method, monthly collections were made in the period of September 2005 to December 2006.

Studied area and comparisons among methods. We used a fragment of semideciduous seasonal forest in northwestern State of São Paulo, in the Paulo de Faria city 19°58' S 49°31' O / 19°55' S 49°30' O (Fig 1). The new proposed method was compared to other methods for insect collection, such as i) Malaise trap (Silveira 2002), installed inside the forest, 100 m in parallel with the transect in which the attractive solution was sprayed on. The trap remained fixed until the end of the experiments; ii) a meat-based bait using pieces of fresh meat, usually a 15 cm bovine muscle beef deposited in a single point near the transect. The meat-based bait was observed for five minutes at the intervals between the

![Fig 1 Satellite image (adapted from GoogleEarth 2006) indicating the studied area. The ellipse indicates the forest fragment and the star corresponds to the collecting area.](image-url)
applications of the attractive solution. The wasps visiting the bait were collected with an entomological net; iii) bottle traps. The method was based on twelve bottles hanged by a 3 m long steel thread. Each bottle had a 13 x 12 cm hole at the middle and was yellow colored on the inside and black on the outside with oil based paints. After the bottles were installed, they were filled with a 70% ethanol solution containing detergent.

All methods for comparison were performed in the interior of the fragment, and the passive methods were monthly collected from September 2005 to December 2006.

The species richness was estimated using the EstimateS 7 software (Colwell, 2004) by the ICE estimator (Incidence-based Coverage Estimator), which calculates the correction factor using the incidence of rare species (those found in up to 10 samples, Lee & Chao 1994), and the ACE estimator (Abundance-based Coverage Estimator), a correction factor using the abundance of species up to 10 individuals in the samples (Chao et al. 1993).

Results and Discussion

We collected seven species of social wasps with the attractive solution, two species with the meat bait and Malaise trap and three with bottle traps (Table 1). The new method collected not only social wasps, but also other groups of Hymenoptera, as solitary wasps and bees. It collected the greatest number of species and also in greater abundance, except in relation to solitary wasps that had the greater number of species and abundance in the Malaise trap (Fig 2). Eight species of bees were collected with the attractive liquid: Apis mellifera L. (6), Ephantidium sp. (2), Euglossa sp. (5), Pseudaugochlora sp. (13), Tetragona clavipes F. (8), Tetragonisca angustula L. (2), Trigona spinipes (F.) (5) and Xylocopa sp. (2). The bottle traps and the meat-based baits collected none, while the Malaise trap collected only A. mellifera (2). Other nine families of solitary wasps were attracted by the attractive solution (Table 2).

The period between 11:00h and 16:00h represented a suitable period for the employment of the attractive solution (Fig 3), collecting the largest number of wasps. If tested in other biomes, this method could presumably attract other groups of insects, as during the sampling period of this study we also observed a reasonable number of Diptera at the collection points (data not shown).

According to the diversity estimators, the collections with this method were suitable to estimate the species of the area, as the observed number of species overlapped with the calculated values of the incidence-based coverage estimator and the abundance-based coverage estimator starting from the eleventh sample (Fig 4). This method is probably more advantageous in surveying wasps because it has a lower cost if compared with methods using honey as an attractant (Wille 1962, Salmah et al. 1990, Liow et al. 2001, Eltz 2004).

Even though other methods may use comparable baits to collect social wasps (Santos 1996), polyethylene terephthalate

Table 1 Abundance of social wasps collected by using different sampling methods.

<table>
<thead>
<tr>
<th>Species</th>
<th>Attractive solution</th>
<th>Meat bait</th>
<th>Bottle traps</th>
<th>Malaise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agelaia vicina (de Saussure)</td>
<td>446</td>
<td>337</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>A. pallipes (Olivier)</td>
<td>80</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Polybia jurinei (de Saussure)</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Polistes versicolor (Olivier)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polybia ignobilis (Haliday)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mischocyttarus rotundicollis (Cameron)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. cerberus (Richards)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Abundance of solitary wasp families collected using different sampling methods.

<table>
<thead>
<tr>
<th>Families</th>
<th>Attractive liquid</th>
<th>Meat bait</th>
<th>Malaise</th>
<th>Bottle traps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichneumonidae</td>
<td>93</td>
<td>0</td>
<td>168</td>
<td>9</td>
</tr>
<tr>
<td>Braconidae</td>
<td>5</td>
<td>0</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Eumeninae</td>
<td>61</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Sphecidae</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chalcididae</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scoliidae</td>
<td>12</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Mutillidae</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pompilidae</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tenthredinida</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
(PET) bottles were used instead of active collections. The proposed method is advantageous in comparison with other methods as the spray of the attractant solution will increase the area of collection, and as a consequence it will decrease the time wasps take to find the baits. Another advantage is that different areas can be surveyed at the same time without the need of extra traps.

As a conclusion, the proposed alternative method proved to be effective in surveying social wasps in a semideciduous seasonal forest, compared to other methods simultaneously used in the same area. The alternative method collected the greatest number of species and also in greater abundance (Table 1) if compared with others methods, despite the low number of species collected. The reduced diversity of species presented in here is probably due to the fact that the studied area is located in one of the most degraded areas of the São Paulo State.

Acknowledgments

Special thank to James M Carpenter (The American Museum of Natural History) for reviewing this manuscript. The authors acknowledge the financial support by FAPESP (grant 07/08633-1) and CNPq (grants 300312/2004-0 and 479790/2004-3). Specimens were collected under permits from IBAMA (10739-1).

References

Received 24/IX/08. Accepted 1/IV/09.