Reproductive biology of the cockfish, *Callorhinchus callorynchus* (Chondrichthyes: Callorhinchidae), in coastal waters of the northern Argentinean Sea

Melisa A. Chierichetti¹, Lorena B. Scenna¹,², Edgardo E. Di Giácomo³, Paola M. Ondarza²,⁴, Daniel E. Figueroa¹ and Karina S. B. Miglioranza²,⁴

The cockfish, *Callorhinichus callorynchus*, is a widely distributed holocephalan in the south-western Atlantic and an important resource for Argentinean fisheries. The reproductive characteristics of this species were studied in northern Argentinean coastal waters, where specimens arrive seasonally (winter-spring). Sexual dimorphism in maximum precaudal length (PCL) and total body mass (TM) was found, being females (PCL=630 mm; TM=3330 g; n=167) larger and heavier than males (PCL=482 mm; TM=1630 g; n=19). Maturity size for females was 466.22 mm PCL, representing 74% PCL of the largest female sampled. The mean number of ovarian follicles was 8.37 (± 4.84). The highest values of ovarian follicles diameter, gonadosomatic and oviducalsomatic indices were found in spring. A high proportion of mature females (44%) had atretic ovarian follicles, suggesting that they were in the resting stage of their reproductive cycle. The low number of mature males recorded and the absence of mature females with spermatophore masses or egg cases indicate that the study area would not be a reproductive zone. The seasonal presence of *C. callorynchus* in this region could be related to trophic movements. These results, obtained in an area with high fishing pressure on chondrichthyans, will be useful for implementing conservation and management measures.

Keywords: Holocephalans, Maturity, Ovarian fecundity, Seasonality, South-western Atlantic.

¹Laboratorio de Ictiología, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL, Mar del Plata, Argentina. (MAC) mcherichetti@mdp.edu.ar, (LBS) lsccenna@mdp.edu.ar (corresponding author), (DEF) dfiguer@mdp.edu.ar

²Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires, Argentina.

³Grupo CONDROS, Laboratorio de Recursos Ictícos, Instituto de Biología Marina y Pesquera “Almirante Storni”, Universidad Nacional del Comahue, Güemes 1030, R8520CXX, San Antonio Oeste, Argentina. edgardodiagiacomo@gmail.com

⁴Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL, Mar del Plata, Argentina. (PMO) pmondar@mdp.edu.ar, (KSBM) kmiglior@mdp.edu.ar
Introduction

Members of the family Callorhinchidae (Subclass Holocephali) are oviparous marine chondrichthians, widely distributed in the Southern Hemisphere (Didier, 2004). This monogeneric family (genus Callorhinchus) includes three living species (Nelson, 2006). The cockfish Callorhinchus callorynchus (Linnaeus, 1758) occurs from 23° S, in the south-western Atlantic, to 18° S in the Southeast Pacific (Cousseau, Perrotta, 2013). It is captured year-round as part of commercial bottom trawl fisheries in Argentina, Chile and Peru (Dagit et al., 2007; Consejo Federal Pesquero, 2009). Along the Argentinean Sea (south-western Atlantic Shelf between 35° S and 55° S), this species is abundant from coastal waters to 200 m depth and an important resource for recreational and small artisanal fisheries (Consejo Federal Pesquero, 2009; Cedrola et al., 2011; Cousseau, Perrotta, 2013). Argentinean landings of C. callorynchus represent 97% of the total south-western Atlantic catches of this species (Bernasconi et al., 2015a).

In addition, there has been an increase in Argentinean landings from 1992 to 2011, with the highest one recorded in 2009 (2782 tons) (Sánchez et al., 2012; Navarro et al., 2014; Bernasconi et al., 2015a).

Chondrichthyan populations have low biological productivity and therefore they require careful management and monitoring (Walker, 2005a). Knowledge on life history characteristics (e.g. reproductive cycles, size at maturity, fecundity, nursery grounds and habitat) is necessary to develop stock assessment models and ecological risk assessment in order to implement effective sustainable management practices (Bonfil, 2005). Despite its fishery importance and the wide distribution of C. callorynchus off southern South America, its life-history characteristics were studied only in northern Patagonian waters off Argentina (41°-42° S 64°-65° W) (Di Giacomo, 1990, 1992; Di Giacomo, Perier, 1994, 1996; Di Giacomo et al., 1994; Bernasconi et al., 2015a, 2015b) and in coastal waters off Coquimbo (30°15'S 70°30'W), Chile (Alarcón et al., 2011). In addition, the Argentinean port with the highest landings of chondrichthians is located in the south-eastern Buenos Aires Province (Mar del Plata: 38°01’S 57°31’W), where the abundance of C. callorynchus was reduced by nearly 50% from 1994 to 1999 (Massa et al., 2004; Consejo Federal Pesquero, 2009).

The aim of this paper was to study the reproductive characteristics of C. callorynchus in northern Argentinean coastal waters (36°70’-38°10’S). Particular emphasis was put on estimating the size at first maturation and ovarian fecundity, assessing temporal variations in reproductive activity and determining whether the south-eastern coast of Buenos Aires is a reproductive area for C. callorynchus. This information will be essential to analyze the status of the population of C. callorynchus in the south-western Atlantic and implementing conservation and management measures.

Materials and Methods

Study area and sampling. Specimens of C. callorynchus were obtained monthly from June 2011 to November 2014. They were captured by small-scale artisanal fishermen in Argentinean coastal waters (<50 m depths) at three localities from south-eastern Buenos Aires Province: Mar de Ajó (36°70’S 56°67’W), Santa Clara del Mar (37°50’S 57°30’W) and Mar del Plata (38°10’S 57°32’W) (Fig. 1). This is a zone where salinity varies between 32.6 and 34.6 (Martos et al., 2004), and temperature ranges from 8ºC-10ºC in winter and 11-14ºC in spring (Guerrero, Piola, 1997; Lucas et al., 2005).

Individuals were caught using hooks and lines or bottom gillnets and examined immediately after landing or frozen for subsequent analysis in the laboratory. Sex, precaudal length (PCL, in mm), total body mass (TM, in g), eviscerated body mass (EM, in g) and gonad mass (GM, in g) were recorded for each individual.

For males, inner clasper length (CL, in mm) was measured from the insertion of the pelvic fin to the distal end (Compagno, 1984). For females, maximum oviducal gland width (OGW, in mm) and uterus width (UW, in mm) were recorded. In the case of mature females, liver mass (LM, in g), oviducal gland mass (OGM, in g), and the number and diameter of the largest vitellogenic ovarian follicles (OFD, in mm) were also recorded.

For both sexes, maturity stage was assessed by visual examination of reproductive organs following guidelines by Stehmann (2002), with modifications. Males were assessed as immature when they had testes undeveloped, genital ducts thread-like, frontal tenaculum without denticles and flexible claspers shorter than pelvic fin length. Maturing males had developing testes, genital ducts beginning to coil, frontal tenaculum with small denticles and flexible claspers longer than pelvic fin. Mature males had enlarged and round testes, highly coiled genital ducts, distinct seminal vesicle present (in green colour), frontal tenaculum with numerous sharp denticles and rigid claspers. Females were considered to be immature when they had ovarian follicles undifferentiated, oviducal glands undeveloped and uteri uniformly thin. Maturing females included those individuals with ovarian follicles translucent of different sizes, developing oviducal glands and uteri enlarging caudally. Mature females had vitellogenic ovarian follicles (>5 mm diameter with yellow coloration), crescent-shaped enlarged oviducal glands and wide uteri over their entire length.

Data analyses. To study the temporal size variation, length-frequency distributions were compared between periods using the two-sample Kolmogorov-Smirnov test (Crawley, 2005). Samples of C. callorynchus were grouped bimonthly for temporal data analysis due to the small number of individuals present at some sampling times.
The PCL-TM and PCL-EM relationships were calculated in both sexes by the equation \(TM \text{ or } EM = a \text{ PCL}^b \), where \(a \) is the intercept and \(b \) is the slope which were estimated from logarithmically transformed data (Ricker, 1973; Froese, 2006). The value of \(b \) provides information on fish growth and it is used to determine whether weight increase is isometric (\(b=3 \)) or allometric (negative allometry: \(b < 3 \), or positive allometry: \(b > 3 \)). The null hypothesis of the isometric growth was tested with the t-test and 95% confidence limits of the parameter \(b \) were estimated (Zar, 2010; Ogle, 2016).

The onset of maturity was assessed from changes in reproductive organs of males (CL and GM) and females (OGW and UW) in relation to PCL. Also, the proportion of mature individuals in 20-mm PCL intervals was calculated. A logistic model was fitted to binomial maturity data (immature-maturing or mature) in order to estimate the length at which 50% of individuals (PCL\(_{50}\)) were sexually mature: \(P = 1 \left(1 + \exp(\alpha + (\beta \text{ PCL}))\right)^{-1} \), where \(P \) is the estimated proportion of mature individuals at a given length class, and \(\alpha \) and \(\beta \) are model parameters (Roa et al., 1999; Crawley, 2007).

Symmetry and functional parity of the ovaries were analyzed. For this purpose, differences in the mean GM, number of ovarian follicles and OFD between right and left ovaries of mature individuals were tested with Wilcoxon paired-sampled test (Zar, 2010). Ovarian fecundity was estimated as the total number of vitellogenic follicles in ovaries and it was plotted against female PCL. Subsequently, Pearson's correlation was used to evaluate possible changes associated with size increment. Furthermore, the number of atretic follicles in ovaries was recorded, considering flaccid follicles with granulated yolk invaded by narrow blood vessels as atretic (Lucifora et al., 2004).

In addition, gonadosomatic (GI=100 × GM/EM), hepatosomatic (HI=100 × LM/EM) and oviducalsomatic (OGI=100 × OGM/EM) indices (Di Giácimo, Perier, 1994; Capapé, 1999) were calculated for mature females. To assess temporal trends in female reproductive condition, the variations in GI, HI, OGI, OFD and number of vitellogenic ovarian follicles between periods were compared using one-way ANOVA or Kruskal-Wallis test when the assumptions of normality or homogeneity of variances were violated. When significant differences were detected, post hoc comparisons with Tukey’s honestly significant difference (HSD) or Dunn’s test were performed. All statistical analyses were performed using the R statistical software, version 3.0.1 (R Development Core Team, 2013).

Results

A total of 186 specimens of *C. callorynchus* (19 males and 167 females) were captured during June-July (17%), August-September (22%) and October-November (61%) in coastal waters of south-eastern Buenos Aires Province. Specimens of this species were not caught from December to May in the study area.
The majority of males (84%) and females (74%) ranged from 420 to 460 mm PCL and 460 to 560 mm PCL, respectively (Fig. 2). Results from the Kolmogorov-Smirnov tests indicated no variation in female length-frequency distributions between June-July and August-September (D=0.12, n=70, p=0.96), June-July and October-November (D=0.21, n=128, p=0.23) and August-September and October-November (D=0.12, n=136, p=0.84). Females presented the maximum PCL observed (Tab. 1) and they were also heavier than males at sizes <482 mm PCL (Fig. 3). Males and females had isometric and allometric growth, respectively (Tab. 1).

Fig. 2. Length-frequency distribution in 20-mm size classes of *Callorhinchus callorynchus* males (black columns; n=19) and females (white columns; n=167) sampled.

Fig. 3. Relationships for *Callorhinchus callorynchus* males (black circles; grey line; n=19) and females (white circles; black line; n=167) between precaudal length and **a.** total body mass and **b.** eviscerated body mass.

Tab. 1. Morphometric (in mm) and gravimetric (in g) data, and weight-length relationship parameters for males and females of *Callorhinchus callorynchus.* n, sample size; PCL, precaudal length (in mm); TM, total body mass (in g); EM, eviscerated body mass (in g); s.d., standard deviation; r², determination coefficient; C.I., confidence interval; b, slope.

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>19</td>
<td>167</td>
</tr>
<tr>
<td>PCL</td>
<td>374-482</td>
<td>375-630</td>
</tr>
<tr>
<td>(mean ± s.d.)</td>
<td>(434.47 ± 29.59)</td>
<td>(498.08 ± 51.22)</td>
</tr>
<tr>
<td>TM</td>
<td>665-1630</td>
<td>755-3330</td>
</tr>
<tr>
<td>(mean ± s.d.)</td>
<td>(1226.58 ± 264.16)</td>
<td>(1928.13 ± 520.24)</td>
</tr>
<tr>
<td>EM</td>
<td>600-1330</td>
<td>710-2820</td>
</tr>
<tr>
<td>(mean ± s.d.)</td>
<td>(1021.58 ± 202.43)</td>
<td>(1635.70 ± 442.15)</td>
</tr>
<tr>
<td>PCL-TM</td>
<td>TM = 5 x 10^{-06} * PCL³.¹⁹</td>
<td>TM = 9 x 10^{-03} * PCL⁻².³⁴</td>
</tr>
<tr>
<td>r²</td>
<td>0.85</td>
<td>0.73</td>
</tr>
<tr>
<td>p</td>
<td>0.54 (isometry)</td>
<td>2.31 x 10^{-08} (negative allometry)</td>
</tr>
<tr>
<td>95% C.I. of b</td>
<td>2.53-3.86</td>
<td>2.12-2.57</td>
</tr>
<tr>
<td>PCL-EM</td>
<td>EM = 1 x 10^{-04} * PCL².⁶⁵</td>
<td>EM = 3 x 10^{-04} * PCL⁻².⁴⁹</td>
</tr>
<tr>
<td>r²</td>
<td>0.75</td>
<td>0.83</td>
</tr>
<tr>
<td>p</td>
<td>0.36 (isometry)</td>
<td>3.03 x 10^{-08} (negative allometry)</td>
</tr>
<tr>
<td>95% C.I. of b</td>
<td>1.87-3.43</td>
<td>2.32-2.66</td>
</tr>
</tbody>
</table>

Males were found in all months in which specimens of *C. callorynchus* were captured in the study area. The clasper increased remarkably from the 420 mm PCL onwards, when individuals began to mature (Tab. 2; Fig. 4). The smallest mature male was 420 mm PCL (16.95 g GM; 77.82 mm CL) and the largest immature male was 425 mm PCL (1.65 g GM; 43.92 mm CL). All males >455 mm PCL (>29.17 g GM; >77.32 g CL) were mature (Tab. 2; Fig. 4). Size at 50% maturity could not be estimated for *C. callorynchus* males due to the small sample size.

Tab. 2. Range and sample size for the reproductive variables recorded for male and female of *Callorhinchus callorynchus* by maturing stage. n, sample size; PCL, precaudal length (in mm); GM, gonad mass (in g); CL, inner clasper length (in mm); OGW, maximum oviducal gland width (in mm); UW, uterus width (in mm).

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>19</td>
<td>167</td>
</tr>
<tr>
<td>PCL</td>
<td>374-425</td>
<td>375-630</td>
</tr>
<tr>
<td>GM</td>
<td>0.84-2.73</td>
<td>15.43-92.32</td>
</tr>
<tr>
<td>CL</td>
<td>12-50.51</td>
<td>67.40-80.32</td>
</tr>
<tr>
<td>Mature</td>
<td>9</td>
<td>420-482</td>
</tr>
<tr>
<td>OGW</td>
<td>8.44-18.24</td>
<td>8.72-19.58</td>
</tr>
<tr>
<td>UW</td>
<td>8.44-18.24</td>
<td>8.72-19.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
</tr>
<tr>
<td>PCL</td>
<td>375-490</td>
</tr>
<tr>
<td>GM</td>
<td>0.41-3.08</td>
</tr>
<tr>
<td>OGW</td>
<td>8.44-18.24</td>
</tr>
<tr>
<td>UW</td>
<td>8.44-18.24</td>
</tr>
</tbody>
</table>
Fig. 4. Relationships between precaudal length and a. gonad mass and b. casper length of immature (black circles), maturing (white rectangles), and mature (grey triangles) *Callorhinchus callorynchus* males.

Females were found in every month of capture of *C. callorynchus*. Mature females were predominant in each sampled period. Females with egg cases in their uteri or with spermatophore masses in the seminal receptacle were not found. Females showed a rapid increase in OGW and UW between 420 and 500 mm PCL (Figs. 5a,b). The smallest mature female measured 410 mm PCL (25.84 mm OGW; 18.12 mm UW) and the largest immature 490 mm PCL (16.68 mm OGW; 13.20 mm UW). All females >525 mm PCL (>24.62 mm OGW; 10.90 mm UW) were mature (Tab. 2; Figs. 5a,b). PCL₅₀ was estimated at 466.22 mm, which corresponded to 74% PCL of the largest female sampled (Fig. 5c).

Both ovaries were functional. Significant differences between the mass of left and right ovaries were observed (mean ± s.d.: 8.06 ± 6.49 and 6.89 ± 4.37, right and left respectively; Wilcoxon paired-sampled test: V=770, n=67, p=0.02). However, the number of follicles and OFD between ovaries did not differ (Wilcoxon paired-sampled test: V=772, n=67, p=0.66; V=852.50, n=67, p=0.11; respectively). The total number of vitellogenic ovarian follicles ranged from 1 (474 mm PCL) to 21 (535 mm PCL) (8.37 ± 4.84). OFD ranged from 7 mm (535 mm PCL) to 43 mm (470 mm PCL), with 84% of them measuring from 10 to 20 mm (14.08 ± 6.93). The total number of ovarian follicles was dependent on PCL (Pearson’s product-moment correlation: r=0.26, t=2.06, d.f.=60, p=0.04) (Fig. 6). Atretic ovarian follicles were observed in females with PCL ≥455 mm, but the number of atretic follicles was not significantly related to PCL (Pearson’s product-moment correlation: r=0.24, t=1.79, d.f.=52, p=0.07) (Fig. 6).
In females, mean HI was not significantly different among periods (ANOVA: F=0.97, n=98, d.f.=2, p=0.33) (Fig. 7a). However, GI (Kruskal-Wallis: H=9.72, n=100, p=0.01; Dunn’s test: p < 0.05) (Fig. 7b), OGI (ANOVA: F=3.68, n=84, d.f.=2, p=0.03; Tukey’s HSD: p < 0.05) (Fig. 7c) and OFD (Kruskal-Wallis: H=7.38, n=79, p=0.03; Dunn’s test: p < 0.05) (Fig. 7d) showed significant seasonal trends, with the highest values in October-November. No difference was found in number of ovarian follicles among periods (Kruskal-Wallis: H=5.39, n=79, p=0.07) (Fig. 7e).

Fig. 7. Bimonthly variation in a. hepatosomatic index, b. gonadosomatic index, c. oviducalsomatic index, d. diameter of ovarian follicles, and e. number of ovarian follicles in Callorhinchus callorynchus females. The box represents all observed values between the 25th and 75th quartiles, and contains the median (black circles) for each category. The box plot whiskers represent the minimum and maximum observations for each category in this study. Numbers in parentheses represent the sample size for each period and distributions with the same letter are not significantly different (p > 0.05).

Discussion

Callorhinchus callorynchus is present in coastal waters of south-eastern Buenos Aires Province (Argentinean Sea between 36°70’-38°10’S) from June to November (winter-spring). Pellegrino, Cousseau (2005) reported the capture season for this species in the same area from September to March (spring-summer). Physical (temperature, salinity, depth and bottom sediment characteristics) and biotic factors (e.g. reproductive activity) may influence habitat use in chondrichthyans at all spatial scales (Simpfendorfer, Heupel, 2004). Adult migrations and habitat use of *C. callorynchus* in northern Patagonian waters (41-42°S) were not affected by temperature and salinity (Di Giácomo, 1992). The distribution pattern of individuals could be determined by prey distribution and availability (Di Giácomo, 1992). The low number of mature males found and the absence of mature females with spermatoaphore masses or egg cases in coastal waters of south-eastern Buenos Aires Province, suggest that the seasonal presence of this species during winter and spring would not be associated to mating and/or egg laying activity. This distribution pattern could be related to trophic movements as almost all specimens examined had gut contents (Melisa Chierichetti 2015, personal observation). For these reasons, further research is required to analyze habitat use of *C. callorynchus* in the study area in relation to environmental variables and biotic factors, such as food availability.
Sexual dimorphism in maximum size and body mass was found for *C. callorynchus* in the study area, with females (PCL=630 mm; TM=3330 g; EM=2820 g) larger and heavier than males (PCL=482 mm; TM=1630 g; EM=1330 g). Sexual size dimorphism is also a common characteristic observed in other holocephalans, with females larger than males (Freer, Griffiths, 1993; Francis, 1997; Nibam, 2011; Bell, 2012). The same pattern was observed for *C. callorynchus* in northern Patagonian waters (PCL males=620 mm; PCL females=760 mm) and in Chilean waters (PCL males=620 mm; PCL females=700 mm) (Di Giácomo, 1992; Alarcón *et al.*, 2011; Bernasconi *et al.*, 2015b). The differences in maximum size among studies for males (present study: n=19; northern Patagonian waters: n=147; Chilean waters: n=193) and females (present study: n=167; northern Patagonia waters: n=1571; Chilean waters: n=209) may result from differences in sample sizes. Moreover, the bias in maximum size observed among studies may be explained by sampling depth variations. Samples of specimens in Chilean waters were taken in coastal waters (<30 m depths) as in the present study, but in northern Patagonian waters samples were taken at depths from 20 to 190 m where individuals of *C. callorynchus* were segregated by size, with larger individuals at depths >50 m (Di Giácomo, 1992; Alarcón *et al.*, 2011; Bernasconi *et al.*, 2015b). For this reason, the frequency size distribution of *C. callorynchus* at depths >50 m should be analyzed in waters of south-eastern Buenos Aires Province.

Females of *C. callorynchus* in this study presented negative allometric growth (b < 3), which means that individuals become more elongated with increasing length. However, PCL-TM relationships for both sexes of this species showed negative allometry in northern Patagonian waters and positive allometry (b > 3) in Chilean waters (Di Giácomo, 1992; Alarcón *et al.*, 2011). These differences result from the fact that within species the variance in weight-length relationships can be substantial, depending on the season, population, and annual or regional differences in environmental conditions (Froese, 2006). Besides, in northern Patagonian waters females were heavier than males at size >500 mm PCL, after reaching size at maturity (Di Giácomo, 1992). In contrast, in this study females were heavier than males at size <482 mm PCL, before reaching size at maturity.

The PCL₅₀ estimated for females in this study (466.22 mm; n=167) was similar to that recently obtained in northern Patagonian waters (474.80 mm; n=398) (Bernasconi *et al.*, 2015b) but smaller than those previously reported in that zone (490 mm; n=123) (Di Giácomo, Perier, 1994) and in Chilean waters (500 mm; n=40) (Alarcón *et al.*, 2011). These differences may be attributable to differences in the methods for assessing maturity and/or in sample size used in each study. Another possible explanation, taking into account that *C. callorynchus* has a widely distribution off southern South America, is that perhaps there are multiple discrete populations of this species with latitudinal variation in size at maturity, as was suggested for several chondrichthyan species around the world (Templeman, 1987; Parsons, 1993; Lucifora *et al.*, 1999; Chiaramoto, Petovello, 2000; Mabragaña, Cousseau, 2004; Colonello *et al.*, 2007; Ebert *et al.*, 2008; Barnett *et al.*, 2009). In turn, the PCL₅₀ estimated in the study area was lower than those values found in northern Patagonian waters, which may be associated with the fact that coastal waters of south-eastern Buenos Aires Province support the highest pressure on chondrichthyanas in Argentina (Massa *et al.*, 2004). In the present study, the PCL₅₀ occurred once *C. callorynchus* female reached 74% of the maximum observed PCL, maturing at a smaller proportion than *C. capensis* females in South Africa (88% of the maximum size) (Nibam, 2011). The delayed size at maturity in holocephalans, a general pattern in chondrichthyanas, indicates that they are particularly sensitive to fishing pressure (Walker, Hislop, 1998; Stevens *et al.*, 2000).

The existence of paired functional ovaries is a common feature among oviparous chondrichthyan species (Hamlett, Koob, 1999). In *C. callorynchus* both ovaries are functional but differences were found in mass between right and left ovaries of mature females, which was not due to differences either in the number or size of follicles. In mature chondrichthyanas, ovaries consist of small follicles, developing follices of various sizes, preovulatory follicles undergoing atresia, and corpora lutea, which are all embedded together in a dense stroma of connective tissue (Walker, 2005b). The mass difference between right and left ovaries in *C. callorynchus* may be related to differences in the amount of stromal tissue between ovaries, as it was suggested for other oviparous chondrichthyans, such as the smallnose fanskate *Sympterygia bonapartii* (Mabragaña *et al.*, 2002).

The mean ovarian fecundity for *C. callorynchus* off the south-eastern Buenos Aires Province (8.37 ± 4.84) was higher than that of *C. capensis* off South Africa (mean=5.30 ± 3.78) (Nibam, 2011). The total number of ovarian follicles was dependent on female body size in *C. callorynchus*, as was observed in other holocephalans (Barnett *et al.*, 2009; Nibam, 2011; Bell, 2012) and oviparous elasmobranchs (Ebert, 2005; Quiroz *et al.*, 2009; Perier *et al.*, 2011; Scenna, Díaz de Asturloa, 2014), which suggest that reproductive potential increases with size. However, it is important to consider that the method of simply enumerating mature follicles to estimate fecundity, under the assumption that all oocytes will be ovulated and become viable egg cases, may be inadequate for oviparous species that reproduce continuously, as enlarged follicles are always present and ovulation may occur at any time (Barnett *et al.*, 2009; Bell, 2012). At the same time, this assumption is not met for *C. callorynchus* because atretic ovarian follicles are commonly observed from the beginning of the female maturation. Atretic follicles form by degeneration of preovulatory follicles and resorption of yolk from the oocytes, atresia can occur at any follicle size (Walker, 2005b). Consequently, the ovarian fecundity of *C. callorynchus* may be lower than the one estimated in this study.
Mature females of *C. callorynchus* in the south-eastern Buenos Aires Province were collected mainly in October-November (spring) coinciding with high values in GI, OGI, and OFD. In northern Patagonian waters, reproductive activity of *C. callorynchus* extends nearly throughout the year, mating and egg laying occur in spring and early summer when females with egg cases in their uteri were found at depths ranging from 20 to 40 m, followed by a short period (one month) of gonadal recovery (Di Giácomo, Perier, 1994). The onset and rate of egg laying is apparently temperature-dependent in oviparous chondrichthyan species (Holden, 1975; Boisvert et al., 2015). Optimal temperature for egg productivity in *C. milii* from Australian waters is 16°C and temperatures below 14°C would be an environmental trigger to signal the end of the reproductive season, when females would leave the warm coastal waters for deeper waters (Boisvert et al., 2015). Water temperature off the south-eastern Buenos Aires Province during winter and spring are generally <14°C (Guerrero, Piola, 1997; Lucas et al., 2005). Therefore, it may not be an optimal temperature for egg production in *C. callorynchus*. On the other hand, neonates were not caught and immature individuals were scarce throughout the sampling period, suggesting that the study area is not a nursery ground for *C. callorynchus*. However, further research with additional sampling using other fishing gear would be necessary to assess this latter hypothesis, as juveniles may not be catchable by the used fishing gear. Finally, a high proportion of mature females of *C. callorynchus* (44%) caught in the present work had atretic ovarian follicles. Bell (2012) defined resting females of holocephalans as those with *corpora lutea* or atretic follicles in their ovaries. Probably, most mature *C. callorynchus* female that seasonally migrate to coastal waters off south-eastern Buenos Aires Province are in the resting stage of their reproductive cycle.

The relationship between parental stock and recruitment success must be of prime consideration in the development of an efficient strategy for the exploitation of chondrichthyan stocks (Hoenig, Gruber, 1990). Consequently, it would be essential to carry out sampling of *C. callorynchus* at depths >50 m to fully understand the reproductive characteristics of the species in northern Argentinean coastal waters (36°70’.038°10’S). Although the coastal waters off south-eastern Buenos Aires Province would not be a reproductive area for *C. callorynchus*, a high number of mature females (possibly in the resting stage) arrive seasonally to this zone, where they are subject to fishing mortality. For this reason, this species should be monitored from a fisheries management and species conservation perspective.

Acknowledgments

We wish to thank artisanal fishermen (Martín, Julio, José and Hector) for sample collection. We are also grateful to David Sabadin for map design, Martina Menegazzi for English grammar suggestions, Santiago Barbini and two anonymous referees for their valuable suggestions that greatly improved the manuscript. Lorena B. Scenna was supported by a fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas.

References

Colonello JH, García ML, Lasta CA. Reproductive biology of *Rioraja agassizi* from the coastal southwestern Atlantic ecosystem between northern Uruguay (34°S) and northern Argentina (42°S). Environ Biol Fishes. 2007; 80(2-3):277-84.

Di Giácomo EE, Parma AM, Orensanz JM. Food consumption by the cockfish, Callorhynchus callorhynchus (Holocephali: Callorhynchidae), from Patagonia (Argentina). Env Biol Fish. 1994; 40(2):199-211.

Reproduction of *Callorhinchus callorynchus*

Submitted June 22, 2016

Accepted March 17, 2017 by Juan Miguel Mancera