Acceptability by Girolando heifers and nutritional value of erect prickly pear stored for different periods

Evannielly Thuanly dos Santos Silva(1), Airon Aparecido Silva de Melo(1), Marcelo de Andrade Ferreira(2), Júlio César Vieira de Oliveira(3), Djalma Cordeiro dos Santos(3), Randerson Cavalcante Silva(4) and Jonas Gomes Inácio(2)

(1)Universidade Federal Rural de Pernambuco (UFRPE), Unidade Acadêmica de Garanhuns, CEP 55292-270 Garanhuns, PE, Brazil. E-mail: evanniellysilva@hotmail.com, aironuag@hotmail.com (2)UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil. E-mail: marcelo.aferreira@ufrpe.br, jonasefc@yahoo.com.br (3)Instituto Agronômico de Pernambuco, Estação Experimental de Arcoverde, CEP 56500-000 Arcoverde, PE, Brazil. E-mail: juliozootec7@gmail.com, djalma.cordeiro@ipa.br (4)Instituto Federal de Educação, Ciência e Tecnologia de Alagoas, Campus Piranhas, Avenida Sergipe, s/n, Xingó, CEP 57460-000 Piranhas, AL, Brazil. E-mail: randerson.cavalcante@hotmail.com

Abstract – The objective of this work was to evaluate the nutritional value of erect prickly pear (EPP) (*Opuntia stricta*), stored for different periods, and its acceptability by Girolando heifers. Five heifers were distributed in a 5x5 Latin square. The treatments were as follows: EPP without storage time; stored EPP for three post-harvest periods – 7, 14, and 21 days; and coineal nopal cactus (CNC) (*Nopalea cochenillifera*) without storage time, as a control treatment. The diets offered to the animals were composed of cacti of the different treatments, as well as sugarcane silage and soybean meal, and were evaluated for their chemical composition, intake, and nutrient digestibility. The ingestive behavior of the heifers was evaluated. The cactus EPP did not differ from the CNC for organic matter, crude protein, neutral detergent fiber corrected for ash and protein, nonfibrous carbohydrates, total carbohydrates, ether extract, and mineral matter; however, EPP stored for different periods differed from CNC for dry matter and indigestible neutral detergent fiber. Heifer weights varied 1.35 kg with the low inclusion of concentrate in the diet. The cactus erect prickly pear maintains constant both its nutritional value and its acceptability to Girolando heifers, after storage for different periods up to 21 days.

Index terms: *Nopalea cochenillifera*, *Opuntia stricta*, Brazilian Semiarid Region, coineal nopal cactus, forage cactus, post-harvest.

Introduction

The milk production system in the Brazilian Semiarid Region, notably in the Northeastern, is predominantly reliant on family farming. In a survey conducted in the main milk production center of Pernambuco state, Oliveira (2013) reported that 83.33% of the land were owned by families. The areas had up to 37.2 ha, and...
showed a low volume of milk produced per day, and an incipient level of technology. In the evaluated systems, 90% of the rural properties used the Indian-fig cactus (*Opuntia ficus-indica* Mill.), cultivar Gigante, as a forage resource. However, the insect prickly pear cochineal (*Dactylopius opuntiae*) expanded slowly through the cactus fields, decimating or compromising the productivity of thousands of hectares of spineless cactus.

Therefore, the Instituto Agronômico de Pernambuco (IPA) and the Universidade Federal Rural de Pernambuco (UFRPE) have been selecting clones of forage cactus resistant to prickly pear cochineal. The genotypes *O. stricta* Haw., *N. cochenillifera* Salm-Dyck, *O. undulata* Griffiths, and *N. cochenillifera* 'IPA-Sertânia' were identified as resistant to the prickly pear cochineal (Santos et al., 2006; Vasconcelos et al., 2009). Among these plant species, *O. stricta* is the less-demanding cactus for nutrients and more tolerant to water stress conditions, besides showing a higher-dry matter production per unit area than the other genotypes. Depending on the structure of the cultivation, *O. stricta* is harvested manually and transported by animal traction to its place of use. In general, this operation is performed daily, increasing the production costs, which represents approximately 40% of the total cropping costs (Santos et al., 2006). The harvesting of large volumes and the storage for long periods could contribute to decrease such costs (Santos et al., 1992, 1998). Because there are few reports on the storage of cactus – mainly the erect prickly pear, which has recently been imported from Mexico –, more studies are needed on this cactus post-harvest management for long-term use, without altering its nutritional value. This could reduce the production costs, mainly those related to labor, and increase the efficiency of the production system.

The objective of this work was to evaluate the nutritional value of the erect prickly pear stored for different times, and its acceptability to Girolando heifers.

Materials and Methods

The experiment was conducted at the experimental station of the Instituto Agronômico de Pernambuco, in the municipality of Arcoverde, PE, Brazil (08°25'08"S, 37°03'14"W, at 663 m altitude).

Five Girolando heifers (5/8 Holstein-Gir), with a 284 kg mean initial body weight, were used. The heifers were distributed in a 5x5 Latin square. The adaptation of the animals to the facilities and the management took place during 15 days. During the first ten days, the animals adapted to the diets. The other five days were used for data collection and sampling. The experimental period was 75 days divided into five periods of 15 days. Forage cactus pH was determined during the five days of data collection, using a portable pH meter (Nova Instruments, Piracicaba, SP, Brazil).

The heifers were confined in individual stalls equipped with drinking fountains and feeders. We formulated the diets to provide a weight gain of 1.2 kg per day (NRC, 2001). The diets consisted of 50% erect prickly pears, or 50% cochineal nopal cactus, 30% sugarcane silage, and 20% concentrate (94% soybean meal, 2% common salt, 4% mineral blend) (Table 1). The feed was provided ad libitum in the form of total mixture, divided into two meals per day – at 08:00 and 16:00 h, allowing up to 10% leftovers of the total dry matter supplied. Food leftovers were daily weighed prior to the morning meal, to estimate the food intake and adjust the supply.

The treatments were: erect prickly pear without storage time; erect prickly pear stored for three post-harvest periods (7, 14, and 21 days); and cochineal nopal cactus, without storage, as a control treatment. We cut the racket-shaped leaves of erect prickly pear with over four years without previous cuts, on the secondary cladode, and stored them in a covered masonry shed, provided with natural ventilation, on top of wood platforms stacked up to 80 kg.

Heifers were weighed on the first day of adaptation, and at the end of each experimental period, in the morning, before feeding.

During the collection period (from the 11th to the 15th day), in two shifts, we collected the following samples of ingredients: cactus from the different treatments; sugarcane silage; soybean meal; and leftovers. The feces of the heifers were directly collected from a rectal ampulla once a day, at 6, 8, 10, 12, and 14 h, from the 11th to the 15th day of each experimental period. All samples were stored at -18°C for further drying and chemical analyses.

At the end of the experiment, food samples, leftovers, and feces were thawed, pre-dried in a forced-air ventilation oven (at 60°C, until the obtention of constant dry matter), and ground with a Willey knife-type mill.
Nutritional value of erect prickly pear stored for different periods

DM, dry matter; OM, organic matter; CP, crude protein; NDFap, neutral detergent fiber corrected for ash and protein; ADF, acid detergent fiber; NFC, nonfibrous carbohydrates; TC, total carbohydrates; and iNDF, indigestible neutral detergent fiber; EE, ether extract.
including intake, chewing, and the swallowing of the feed bolus. The variable rumination was calculated taking into account the time spent with regurgitation, re-chewing and re-swallowing of the food bolus. For the time spent with rest, we considered the time that the animals took to lie down, stand up and sleep, that is, the time without feeding and rumination.

Feed (FE) and rumination (RE) efficiencies were calculated according to the following equations:

\[FE = \text{DM intake (kg) / feeding time (h)}; \]
\[RE = \text{DM intake (kg) / rumination time (h)}; \]
\[\text{RE/NDF} = \text{intake of NDFap (kg) / rumination time (h)}. \]

The statistical analysis used the following model:

\[Y_{ijkl} = \mu + Q_i + T_j + (P/Q)_{ik} + (V/Q)_{il} + e_{ijkl}, \]

in which:

- \(Y_{ijkl} \) is the observation of the animal 1, during the k period, subjected to the treatment j;
- \(\mu \) is the general constant;
- \(Q_i \) is the effect of the Latin square i, in which i = 1;
- \(T_j \) is the effect of the treatment j, in which j = 1, 2, 3, 4 and 5;
- \((P/Q)_{ik} \) is the effect of period k within the Latin square i, in which k = 1, 2, 3, 4, and 5;
- \((V/Q)_{il} \) is the effect of animal 1 within the Latin square i, in which l = 1, 2, 3, 4, and 5; and
- \(e_{ijkl} \) is the random error associated with each observation, assuming the NID (0; \(\sigma^2 \)).

Data were subjected to the analysis of variance and regression, using the GLM and REG procedures of SAS (SAS Institute Inc., Cary, NC, EUA) for data analysis, at 5% probability. The variables were subjected to Dunnet’s test, at 5% probability, considering the cochineal nopal cactus treatment as a control.

Results and Discussion

The chemical composition of cochineal nopal cactus, without storage time, and of erect prickly pear, after different storage times, did not differ for OM, CP, NDFap, NFC, total carbohydrates (TC), EE, and MM (Table 2), except for DM and iNDF. Cochineal nopal cactus did not differ from erect prickly pear without storage time, for DM, however, they differed in the treatments with 7, 14, and 21 days of storage.

The average chemical composition of erect prickly pear and cochineal nopal cactus (Table 2) is in agreement with previous studies conducted on these plant materials (Rocha Filho, 2012; Conceição et al., 2016).

Santos et al. (1992) observed no apparent losses of DM and other chemical components for the cultivars Sweet, Gigante, and Redonda, under storage conditions with natural ventilation. The DM of cochineal nopal cactus (233.9 g kg\(^{-1}\)), obtained by those authors, was higher than the DM of other cultivars, but this variation was attributed to the time of year, when the cactus was harvested and stored, that is, during the dry period in the region.

In the comparison of the storage times of erect prickly pear, there was an increasing linear effect (p < 0.05) for MM and CP, and a decreasing linear effect (p < 0.05) for OM and TC (Table 2).

Levels of total carbohydrates decreased linearly during storage. Crude protein and ash levels increased. Such changes found in the chemical composition

Table 2. Chemical composition of cochineal nopal cactus (CNC, *Nopalea cochenillifera*) and erect prickly pear (*Opuntia stricta*) stored for 7, 14, and 21 days.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>CNC*(1)</th>
<th>Erect prickly pear (days of storage)</th>
<th>SEM</th>
<th>D</th>
<th>L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM (g kg(^{-1}) as fed)</td>
<td>140.2a</td>
<td>127.3a</td>
<td>118.9b</td>
<td>118.9b</td>
<td>116.9b</td>
<td>3.93</td>
</tr>
<tr>
<td>OM (g kg(^{-1}) dry matter)</td>
<td>913.2</td>
<td>914.7</td>
<td>904.3</td>
<td>896.2</td>
<td>885.1</td>
<td>5.08</td>
</tr>
<tr>
<td>MM (g kg(^{-1}) dry matter)</td>
<td>86.8</td>
<td>85.3</td>
<td>95.7</td>
<td>103.8</td>
<td>114.9</td>
<td>5.08</td>
</tr>
<tr>
<td>CP (g kg(^{-1}) dry matter)</td>
<td>32.5</td>
<td>33.2</td>
<td>32.8</td>
<td>44.2</td>
<td>44.1</td>
<td>2.73</td>
</tr>
<tr>
<td>NDFap (g kg(^{-1}) dry matter)</td>
<td>202.2</td>
<td>227.4</td>
<td>177.3</td>
<td>212.2</td>
<td>203.1</td>
<td>9.04</td>
</tr>
<tr>
<td>NFC (g kg(^{-1}) dry matter)</td>
<td>667.4</td>
<td>642.2</td>
<td>680.6</td>
<td>626.8</td>
<td>624.3</td>
<td>11.82</td>
</tr>
<tr>
<td>TC (g kg(^{-1}) dry matter)</td>
<td>896.5</td>
<td>896.9</td>
<td>857.9</td>
<td>839.1</td>
<td>827.5</td>
<td>7.85</td>
</tr>
<tr>
<td>iNDF (g kg(^{-1}) dry matter)</td>
<td>146.3a</td>
<td>89.6b</td>
<td>89.1b</td>
<td>91.2b</td>
<td>97.1b</td>
<td>5.38</td>
</tr>
<tr>
<td>EE (g kg(^{-1}) dry matter)</td>
<td>11.3</td>
<td>12.2</td>
<td>13.8</td>
<td>13.9</td>
<td>13.7</td>
<td>0.51</td>
</tr>
<tr>
<td>ADF</td>
<td>200.1</td>
<td>172.9</td>
<td>155.2</td>
<td>189.4</td>
<td>188.4</td>
<td>3.50</td>
</tr>
<tr>
<td>Lignin</td>
<td>93.3</td>
<td>108.0</td>
<td>118.6</td>
<td>95.4</td>
<td>96.0</td>
<td>2.16</td>
</tr>
<tr>
<td>pH</td>
<td>5.01a</td>
<td>4.59b</td>
<td>4.79b</td>
<td>4.95a</td>
<td>5.00a</td>
<td>0.06</td>
</tr>
</tbody>
</table>

(1) Without storage. DM, dry matter; OM, organic matter; MM, mineral matter; CP, crude protein; NDFap, neutral detergent fiber corrected for ash and protein; NFC, nonfibrous carbohydrates; TC, total carbohydrates; iNDF, indigestible neutral detergent fiber; EE, ether extract; ADF, acid detergent fiber; pH, hydrogen potential; SEM, standard error of the mean; D, Dunnet’s test, at 5% probability; L, linear effect; and Q, quadratic effect.
of erect prickly pear may be a consequence of the continuation of vital plant processes, such as respiration and microbial aerobic activity over time, which was evidenced by the pH increase 14 days after harvesting the cactus (Table 2).

The pH values for cochineal nopal cactus and erect prickly pear differed according to storage times, except for pH at 14 and 21 days of storage (Table 2). This variation of pH could lead to some changes of intake by the animals, but the inclusion of the cacti was 50% in the diet, and there were no changes in the intake.

Experimental diets met the nutritional requirements for growing heifers (NRC, 2001). The DM consumption, DM as percentage of body weight (DMPBW), OM, digestible OM (DOM), NDF, and total digestible nutrients (TDN) did not differ from the control treatment (Table 3). This indicates that all treatments can be used without interferences in the animal performance.

However, there was an increasing linear effect for CP intake, according to the different times of storage of the erect prickly pear. Possibly, these cactus CP content increased due to OM losses according to storage time.

The results of the consumption of DM%CP were similar to those found by Almeida et al. (2015) for the cactus ‘Gigante’ in supplements for growing dairy cows, and by Monteiro et al. (2014) when replacing wheat bran, ‘Gigante’, and urea in the diets of Girolando heifers.

The apparent digestibility coefficients of DM, OM, CP, and NDFap did not differ from the control treatment. Storage times did not influence nutrient digestibility.

As to the variation of animal weight, there were no differences between the erect prickly pear and the control treatment, as well as no effects of storage times. Heifers had a mean daily weight gain of 1.350 kg per day. The daily requirements for dairy females, with 307 kg mean weight, and 1.350 kg per day weight gain, were 5.5 and 0.991 kg of TDN and CP, respectively. The mean values (Table 3) were similar to those required by the NRC (2001), that is, 5.3 and 0.992 for TDN and CP, respectively. It is worth noting the small proportion of concentrate used (20%) to reach such weight variation. This was probably due to a high proportion of cactus in the diets (50%).

The parameters evaluated for the intake behavior of heifers (Table 4) fed erect prickly pear did not differ from the results obtained for feeding them with cochineal nopal cactus. There were no effects of storage times on the erect prickly pear, which indicates that, despite the high palatability of cochineal nopal cactus because of its high-carbohydrate content (Santos et al., 2001; Rocha Filho, 2012), the diets were not selected differently by the animals.

Table 3. Intake and digestibility of nutrients in Girolando heifers fed cochineal nopal cactus (CNC, Nopalea cochenillifera) and erect prickly pear (Opuntia stricta) stored for 7, 14, and 21 days.

<table>
<thead>
<tr>
<th>Intake (kg per day)</th>
<th>CNC(1)</th>
<th>Erect prickly pear (days of storage)</th>
<th>SEM</th>
<th>D</th>
<th>L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td></td>
<td>0 7 14 21</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>8.49</td>
<td>8.38 8.02 9.25 8.84</td>
<td>0.34</td>
<td>0.170 0.094 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM (% BW)</td>
<td>2.47</td>
<td>2.49 2.38 2.71 2.59</td>
<td>0.10</td>
<td>0.210 >0.05 0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>7.68</td>
<td>7.60 7.23 8.28 7.89</td>
<td>0.29</td>
<td>0.197 0.157 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM</td>
<td>5.39</td>
<td>5.53 5.24 6.14 5.65</td>
<td>0.20</td>
<td>0.061 0.188 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDFap</td>
<td>2.14</td>
<td>2.32 2.01 2.43 2.31</td>
<td>0.16</td>
<td>0.422 >0.05 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>0.97</td>
<td>0.93 0.90 1.12 1.04</td>
<td>0.05</td>
<td>0.060 0.032 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDN</td>
<td>5.04</td>
<td>5.14 5.03 5.93 5.38</td>
<td>0.23</td>
<td>0.086 0.146 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digestibility (g per day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>633.40</td>
<td>673.32 668.73 691.36 654.85</td>
<td>14.33</td>
<td>0.120 >0.05 0.317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM</td>
<td>702.86</td>
<td>727.37 725.82 743.05 716.56</td>
<td>12.99</td>
<td>0.326 >0.05 >0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>655.13</td>
<td>656.77 672.02 717.47 678.39</td>
<td>23.52</td>
<td>0.380 0.280 0.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDFap</td>
<td>522.58</td>
<td>622.05 536.53 590.86 592.84</td>
<td>34.45</td>
<td>0.271 >0.05 0.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight variation (kg per day)</td>
<td>1.36</td>
<td>1.43 1.39 1.46 1.13</td>
<td>0.14</td>
<td>0.120 >0.05 >0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Without storage. DM, dry matter; BW, body weight; OM, organic matter; DOM, digestible organic matter; NDFap, neutral detergent fiber corrected for ash and protein; CP, crude protein; and TDN, total digestible nutrient. SEM, standard error of the mean; D, Dunnet’s test; L, linear effect; Q, quadratic effect, at 5% probability.
The animals showed a good stimulation for total chewing, mostly taking approximately 12 hours for this activity. This was possible due to the NDF content of the experimental diets, according to the NRC (2001). NDF provided an adequate pH for normal ruminal conditions, salivary secretion, and an appropriate environment for ruminal fermentation.

Conclusions

1. Erect prickly pear (*Opuntia stricta*) maintains its nutritional value stable, when subjected to different storage times up to 21 days.

2. The intake behavior of Girolando heifers does not differ between treatments with erect prickly pear (nonstored, or stored for 7, 14, and 21 days), and the cochineal nopal cactus (control).

Acknowledgments

To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for scholarships granted.

References

OLIVEIRA, M.C. Avaliação técnica, econômica e acompanhamento da qualidade do leite de sistemas de produção de bovinos leiteiros no Agreste pernambucano. 2013. 163p. Dissertação (Mestrado) - Universidade Federal Rural de Pernambuco, Garanhuns.

ROCHA FILHO, R.R. Palma gigante e genótipos resistentes à cochonilha do carmim em dietas para ruminantes. 2012. 74p. Tese (Doutorado) - Universidade Federal Rural de Pernambuco, Recife.

Nutritional value of erect prickly pear stored for different periods

Received on September 29, 2016 and accepted on January 30, 2017