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Crop Science/ Original Article

Modeling the yield of winter 
maize using biomass 
distribution index in the tropical 
region of Yunnan, China
Abstract – The objective of this work was to establish and validate the 
dry matter distribution and yield prediction models based on physiological 
developmental timing, to compare the differences between the dry mass 
distribution index model and the dry mass distribution coefficient model, for 
the simulation of ear dry mass and to improve the accuracy of maize growth 
models for predicting yield. The experiments were conducted in three tropical 
sites (Longchuan, Mangshi, and Ruili) in the tropical region of Yunnan 
Province, China. The NRMS of ear dry mass and yield were generally less 
than 10. The dry mass distribution index method (NRMS = 5.44% and RMSE 
= 807.22 kg ha-1 for ear dry mass; and NRMS = 7.32% and RMSE = 707.67 kg 
ha-1 for grain yield) is better than the dry mass distribution coefficient method 
(NRMS = 7.52% and RMSE = 1115.31 kg ha-1 for ear dry mass; NRMS = 8.6% 
and RMSE = 830.76 kgha-1 for grain yield) to simulate maize ear dry mass and 
grain yield. The distribution index model improves the accuracy of the model, 
which is valuable for future maize production and management in Yunnan.
Index terms: Zea mays, dry mass, grain yield, simulation model.

Modelagem do rendimento do milho de 
inverno por meio do índice de distribuição de 
biomassa na região tropical de Yunnan, China
Resumo – O objetivo deste trabalho foi estabelecer e validar um modelo de 
previsão de distribuição de massa de matéria seca e de rendimento, com base 
no tempo de desenvolvimento fisiológico, para comparar as diferenças entre 
o modelo de índice de distribuição de matéria seca e o modelo de coeficiente 
de distribuição de matéria seca, para a simulação da massa de matéria seca da 
espiga e para melhorar a precisão de modelos de crescimento do milho para 
a previsão de rendimento. Os experimentos foram realizados em três locais 
(Longchuan, Mangshi e Ruili), na região tropical da província de Yunnan, 
China. O NRMS da massa de matéria seca e o rendimento da espiga foram 
geralmente menores que 10. O método do índice de distribuição da massa 
de matéria seca (NRMS = 5,44% e RMSE = 807,22 kg ha-1 para massa de 
matéria seca da espiga; e o NRMS = 7,32% e RMSE = 707,67 kg ha-1 para 
rendimento de grãos) é melhor do que o método do coeficiente de distribuição 
de massa de matéria seca (NRMS = 7,52% e RMSE = 1115,31 kg ha-1 para 
massa de matéria seca de espiga; NRMS = 8,6% e RMSE = 830,76 kg ha-1 para 
rendimento de grãos) para a simulação da massa de matéria seca de espiga e 
o rendimento de grãos de milho. O modelo do índice de distribuição melhora 
a precisão do modelo, o que é valioso para o futura produção de milho e seu 
manejo em Yunnan.
Termos para indexação: Zea mays, massa de matéria seca, rendimento de 
grãos, modelos de simulação.
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Introduction

Maize (Zea mays L.) is one of the most important 
food crops in the world, accounting for 36.8% of the 
annual grain sown in China (43.32 million) in 2021 
(Zeng, 2022). Winter-sown maize is essential to 
agricultural production and accounts for a significant 
portion of farmers’ household income, making it one of 
the most essential cash crops. The crop growth model 
is a tool for describing the inner law of crop growth and 
development based on the crop growth process, dry 
mass accumulation, and yield formation, by integrating 
the research findings of crop physiology, meteorology, 
ecology, water fertilization, soil, and agronomy, using 
computer technology and mathematical methods 
(Cai et al., 2021). The development of a model for the 
accumulation and distribution of dry mass in maize 
is an essential tool for quantitatively analyzing the 
dynamic growth process of maize. It is capable of 
systematically analyzing and summarizing the growth 
situation of maize, offering theoretical guidance for its 
optimal management.

The research on maize growth simulation is 
relatively mature, and more applications such as 
CERES-Maize, WOFOST, EPIC, APSIM-Maize, 
etc. are currently available (Rugira et al., 2021; 
Amiri et al., 2022; Di Bene et al., 2022; Wang et al., 
2023). The model can accurately predict the maize 
development, morphogenesis, biomass accumulation, 
distribution, and yield formation processes, with dry 
mass accumulation and distribution serving as the 
core module of the model. The accumulation and 
distribution of dry mass is a complex physiological-
ecological process. It is affected by numerous 
variables, including climate, varieties, management 
practices, and planting techniques (Levis et al., 2018). 
The accumulation of dry mass in maize is the basis 
for seed formation and, in conjunction with dry 
mass distribution, it determines yield (Elmore et al., 
2019). Theories such as the functional equilibrium 
(Friedlingstein et al., 1999), the optimal control 
(Cohen, 1971), and the source-sink relationship (Ping 
et al., 2010) are commonly applied premise-hypotheses 
to model the dry mass distribution in crops (Contreras 
et al., 2013; Tan et al., 2019). The simulation of crop 
dry mass distribution processes is confined by dry 
mass distribution models based on a single theoretical 
hypothesis. Subsequently, a variety of simulation 
methods for predicting dry mass distribution were 

developed, among which the dry mass distribution 
coefficient method and the dry mass distribution 
index are the most extensively used. By leveraging the 
dry mass distribution coefficient method, a model of 
the dry mass dynamics of summer maize in northern 
China was developed, and the dynamics of the dry 
mass distribution were investigated for maize leaves, 
stems, and ears (Li et al., 2016). 

There are variations in the simulation effects of 
dry mass distribution, despite the relatively advanced 
simulation studies on maize growth and yield 
formation. Moreover, fewer studies have compared 
the dry mass distribution coefficient method and the 
distribution index method. 

The objective of this work was to establish and 
validate the dry matter distribution and yield prediction 
models based on physiological developmental timing, 
to compare the differences between the dry mass 
distribution index model and the dry mass distribution 
coefficient model, for the simulation of ear dry mass 
and to improve the accuracy of maize growth models 
for predicting yield.

Materials and Methods

A field experiment was conducted in Longchuan 
(24°2'N, 97°79'E), Mangshi (24°4'N, 98°59'E), and 
Ruili (24°1'N, 97°85'E), located in the southern part of 
Yunnan Province, China, which is the main planting 
area of winter sowing maize. The average annual 
temperature in the whole area is 18–21℃, the average 
annual precipitation is 1,400–1,700 mm, and the 
sunshine duration is 2,281–2,453 hours. The soil from 
the experimental area is classified as a Ferralsol (IUSS 
Working Group WRB, 2015).

The meteorological data of each meteorological 
station were obtained from The Yunnan Meteorological 
Bureau, including the daily maximum and minimum 
temperatures, and the number of sunshine hours. The 
Penman-Monteith formula was used to calculate the 
total solar radiation value required by the model.

Crop data were obtained from the field experiments 
in Longchuan and Ruili in 2010–2012, and Mangshi in 
2017–2018. Sowings were performed in the following 
periods: two at the Ruili site, in 2010 (7 December and 
28 December); two at the Longchuan site, in 2010 (18 
December and 29 December); and two at the Mangshi 
site, in 2017 (14 December and 4 January). All 
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harvestings were carried out in June of the following 
years. The sowed maize cultivars were Huidan 4 
(HD4) and Deyu 6 (DY6), and 150 plants were planted 
in each plot. The number of plots per cultivar at the 
Longchuan and Ruili sites was 7 and the number of 
plots per cultivar at the Mangshi site was 9, with plot 
size of 36 m2. After seedling emergence, five normal, 
uniformly growing maize plants were chosen from 
each plot and marked. To determine their yield, data 
such as aboveground dry, dry seed, and dry mass of 
the ear organs were measured until the end of their 
reproductive period.

Physiological development time (PDT) is defined 
as the time scale relative to optimal developmental 
conditions (Li et al., 2009), as the following equations:
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where: PE is the daily physiological effect; VE is 
the early maturity genetic parameter of the cultivar, 
and DY6 and HD4 were 0.84 and 0.86, respectively; 
TSE is the temperature and light effect factor; RTE 
is the relative daily thermal effect; Tb is the lower 
limit temperature for development; To is the optimal 
temperature for development; Tm is the upper limit 
temperature for development; T is the average daily 
temperature, with values of 10, 24, and 35℃ for Tb, 
To and Tm. SRE is the solar radiation effect; Q is the 
daily solar radiation; Tsc is the maize temperature 
sensitivity coefficient, estimated by the parameter 
debugging, with a value of 0.2.

Taking into account the diurnal temperature 
difference that affects maize growth and development, 
it is assumed that the combined effect of daily thermal 
effects on daily temperature variation comprises 50% 
of the average temperature (Tav), while 25% of the 

maximum temperature (Tmax) and 25% of the minimum 
temperature (Tmin) are each represented as follows:

RTE =0.5×RTE(Tav)+0.25×RTE(Tmax)+0.25×RTE(Tmin).

The daily dry mass accumulation of maize population 
was determined by total daily photosynthesis (Mensch 
formula) and respiratory consumption. The dry mass 
distribution index is defined as the ratio of dry mass 
accumulation in each organ to the total dry mass 
accumulation in the ground at a certain time. On the 
basis of a generalization and analysis of the existing 
literature, a dynamic relationship was established 
between the ear organs distribution index and 
physiological development time. The fundamental 
dynamic model is stated as (Xu et al., 2016): 
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where: DIMEB(PDT) is the distribution index of maize 
ears biomass at PDT; DIMEBm is the maximum of 
distribution index of maize ears biomass, which is a 
genetic parameter of the model. The values of DIMEBm  
are 0.456 and 0.463 for the HD4 and DY6 cultivars, 
respectively. MSB(i) is the maize shoot biomass at the 
ith days.

The distribution coefficient is defined as the ratio of 
daily biomass accumulation of special part to which of 
total shoot, which remains constant (Yu et al., 2020):
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where DCMEBi is the distribution coefficient of 
maize ear biomass at ith days. MEBi and MSBi are 
daily accumulation of maize ears biomass and daily 
accumulation of maize shoot biomass, respectively.

The final economic yield is determined by the biomass 
accumulation of the maize ear and the proportion of the 
economic product (seeds) in the organ (Zhang, 2006):

Yield MEB fe� �

where: yield is the seed yield; and fe is the proportion 
of seeds to ears organs, estimated by parameter 
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debugging given a value of 0.7. MEB is the maize ears 
biomass at harvest.

The applicability of the model is evaluated by 
comparing the simulated value with the measured 
value with a 1:1 graph and various evaluation indices. 
The most common statistical methods for evaluating 
the model precision are the root mean square error 
(RMSE) and the normalized root mean square error 
(NRMSE), which can reflect the relative error and 
absolute error between the simulated value and the 
measured value. The smaller are the RMSE and 
NRMSE, the better will be the accuracy of the model, 
as the equations below: 
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where: Xi is the measured value; Yi is the simulated 
value; Xi is the average of the measured values; and n 
is the number of samples. 

Results and Discussion

The accumulation and distribution of maize 
biomass were studied with PDT as the time variable. 
The RMSE of HD4 and DY6 at the maturity stage 
was predicted by the PDT model to be 5.12 and 6.47 
days, respectively. Due to the different experimental 
sites, sowing dates, and cultivars, there were certain 
differences for the aboveground dry mass of maize, 
which reached the averages of 32,393.98 kg ha-1 in 
Longchuan, 37,813.18 kg ha-1 in Ruili, and 28,141.73 
kg ha-1 in Mangshi. The NRMSE and the RMSE of 
dry mass models from three stations were 5% and 
1,638.78 kg ha-1, respectively. In accordance with the 
comparison between the simulated and the measured 
values (Figure 1), both values fell basically near the 
1:1 line, and the aboveground dry mass effect of the 
model was excellent. The NRMSE and the RMSE 
values of simulated dry mass in the experimental sites 
were respectively the following ones: in Ruili, 3.11% 
and 1,177.18 kg ha-1; in Mangshi, 4.15% and 1,169.92 
kg ha-1; in Longchuan, 7.1% and 2,302.68 kg ha-1. The 
comparison of different sites shows that the error of 
Longchuan is higher than the other two points, but 

the NRMS were all lower than 10%. The validation 
results show that the model can accurately simulate 
the changing trend of maize dry mass in the tropic of 
southwest China. 

There were significant differences for dry mass of 
ear between the three different sites, and the average 
dry mass of ear in Ruili was higher than that in 
Longchuan and Mangshi, with 14,901.23 kg ha-1 in 
Longchuan, 16,846.3 kg ha-1 in Ruili, and 12,741.6 
kg ha-1 in Mangshi. According to the comparison 
both the simulated and measured values basically fell 
near the 1:1 line (Figure 2), and the dry mass of ear 
effect was excellent. The NRMSE and RMSE of the 
distribution index model for predicting the ear dry 
mass were 5.44% and 807.22 kg ha-1, respectively. The 
NRMSE and RMSE of the distribution coefficient 
model for predicting the ear dry mass were 7.52% 
and 1,115.3 kg ha-1, respectively. The results show 
that the NRMSE of both the distribution index and 
the simulated dry mass of the ear of the distribution 
coefficient model was within 10%, and that the 
prediction effect was satisfactory. The comparison of 
different models shows that the error of the distribution 
coefficient model is higher than that of the distribution 
index model. The NRMSE values of the distribution 
index model of simulated and measured dry mass of 
the ear in Longchuan, Ruili, and Mangshi were 7.1, 
3.51, and 4.76%, respectively, and the RMSE were 
1059.23, 596.81 and 606.65 kg ha-1, respectively. The 
comparison of different sites shows that the error of 
Longchuan was higher than those of the other two 
sites.

Figure 1. Comparison of simulated and measured 
aboveground dry mass values of maize (Zea mays) in 
Longchuan, Ruili and Mangshi, Yunnan Province, China.
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Due to different environments and sites, yields 
ranged somewhat between each site, with an average of 
9,773.74 kg ha-1 in Longchuan, 8,430.39 kg ha-1 in Ruili, 
and 10,786.12 kg ha-1 in Mangshi. The comparison of 

simulated and observed yield are summarized for the 
two models (Figure 3). The NRMSE and the RMSE of 
yield predicted by the dry mass distribution coefficient 
model were 8.6% and 830.76 kg ha-1, respectively. The 
NRMSE and the RMSE of yield predicted by the 
dry mass distribution index model were 7.32% and 
707.67 kg ha-1, respectively. In the comparison, both 
simulated and the measured values (Figure 3) fell 
basically near the 1:1 line, and the yield prediction 
effect was excellent. The comparison of different 
models shows that the error of yield predicted by the 
dry mass distribution coefficient model was higher 
than the other one. As shown in Figure 4, the NRMSE 
values of yield predicted by the dry mass distribution 
index model in Longchuan, Ruili, and Mangshi were 
8.96, 5.96, and 7.54%, respectively; and the RMSE 
were 875.92, 643.69 and 636.3 kg ha-1, respectively. 
The comparison of different sites shows that the error 
of Mangshi was higher than that of the other sites. 
The validation results show that the distribution index 
model could simulate the changing trend of maize 
yield more accurately in the tropic of southwest China.

There are more algorithms to simulate yield 
formation among the currently established models, 
and their precision varies. During the nutrient 
growth stage, the dry mass distribution module of the 
CERES-maize model distributes the photosynthetic 
products proportionally to roots, stems, and leaves. 
In the reproductive growth phase, the actual biomass 

Figure 2. Comparison of simulated and measured values 
of dry mass of the ear of the winter maize (Zea mays) by 
the distribution coefficient model (left) and the distribution 
index model (right). Yunnan Province, China.

Figure 3. Prediction results of Yunnan winter maize (Zea 
mays) yield verified by distribution index and distribution 
coefficient models.
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increment obtained is calculated to be greater than 
the potential increment of seeds; and then, biomass 
increment is allocated to roots and stems (Jones & 
Kiniry, 1986). The proportion of dry mass allocated 
to each organ in the APSIM-maize model is dependent 
on the reproductive stage. At the seedling stage, the 
root-crown ratio is 1, and at the flowering stage, it 
is 0.087 (Keating et al., 2003). The dry mass of the 
WOFOST model is also distributed to the organs in 
a proportion determined by the developmental period 
and the reproductive period (Ma & Zhou, 2016). Solar 
radiation is converted into photosynthetic products by 
the dry mass allocation module of the EPIC model. 
Following that, they are distributed to the root system 
and aboveground parts, with the distribution ratios 
typically ranging from 0.3 to 0.5, at the root seedling 
stage, and from 0.05 to 0.2, at the maturity stage (Li 
et al., 2004). These models are predicted on a single 
hypothesis for dry mass allocation, which defines the 
allocation ratio as a fixed value that influences the 
precision of dry mass allocation and the formation of 
yield dynamics.

The methods of distribution index and distribution 
coefficient in the present study are commonly used in 
empirical models. Some authors accurately simulated 
winter wheat, castor, tulip, and tomato crops using two 
simulation models (Shi et al., 2016; Xu et al., 2016; 
Chen et al., 2019; Li et al., 2019). The results of previous 
studies on the dry mass distribution index model and 
the coefficient model provide reliability for the current 

study. The results of the present work are consistent 
with previous studies on other crops, which verified 
its scientific validity (Lü et al., 2013). The model can 
accurately simulate the growth and yield changes of 
winter maize in southwest China. In addition, the dry 
mass allocation index model shows a high prediction 
accuracy regarding the adaptability of ear dry mass and 
yield of maize. Therefore, it is capable of enhancing 
the overall accuracy of the model. The application of 
the dry mass distribution index model can also assist 
in the future improvement of winter maize yield in 
the region, and it is essential for the analysis of winter 
maize crop production.

Moreover, the uncertainty of various parameters 
and input drivers constituted an important reason for 
the inaccurate simulation results. Furthermore, the 
model does not take into account such factors as water 
and fertilizer, which leads to errors in model prediction 
and needs further study. 

Conclusions

1. The model for dry mass distribution and yield 
prediction in maize (Zea mays) based on physiological 
development time is established. 

2. Normalized root mean square error of 
aboveground dry mass, ear dry mass, and yield are 
generally less than 10% in different sites, which could 
effectively simulate winter maize in Yunnan tropical 
region.

3. A comparative study between the dry mass 
distribution index model and the distribution 
coefficient model shows that the accuracy of the dry 
mass distribution index model is higher than that of the 
distribution coefficient model.

Acknowledgments

To Program of National Natural Science Foundation 
of China (31860331, 32160420), and to the Yunnan 
Province Major Science and Technology Projects 
(202202AE090021), for funding this work. We all 
appreciate the consideration and comments of the 
anonymous reviewers and editors, which are helpful 
for further research.

Figure 4. Prediction results of winter maize (Zea mays) 
yield verified by distribution index model, in three stations, 
in Yunnan.
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