Síndrome do aqueduto vestibular alargado: uma causa de disacusia neurossensorial

The large vestibular aqueduct syndrome: a cause of neurosensory dysacusia

Daniela Polo Camargo da Silva*
Jair Cortez Montovani**
Danielle Tavares Oliveira***
Marisa Portes Fioravanti****
Ivanira Ayako Tamashiro*****

Abstract
Background: the large vestibular aqueduct syndrome (LVAS) is characterized by the enlargement of the vestibular aqueduct associated with sensorineural hearing loss. The level of hearing loss varies and may be fluctuant, progressive or sudden. Vestibular symptoms may be present. The diagnosis is reached by imaging methods. Aim: To report an LVAS case. Method: a female infant was submitted to a computerized tomography of the ears and to audiologic tests. Results: enlargement of the vestibular aqueduct of more than 1.5mm and sensorineural hearing loss in the right ear were observed. Conclusion: with an early hearing evaluation it is possible to diagnose hearing loss, even in children were this loss is unilateral. Although the literature indicates that the diagnosis of LVAS occurs at a later age, in this case the etiologic diagnosis was enabled by computerized tomography.
Key Words: Vestibular Aqueduct; Malformation; Hearing; Hearing loss.

Resumo
Palavras-Chave: Aqueduto Vestibular; Malformação; Audição; Deficiência Auditiva.

Artigo de Estudo de Caso
Artigo Submetido a Avaliação por Pares
Conflito de Interesse: não
Introduction

The large vestibular aqueduct syndrome (LVAS) was first described by Valvassori e Clemis1 in 1978. The LVAS is characterized by an enlargement of the vestibular aqueduct (EVA) associated with neurosensory dysacusia. The syndrome might be manifested from birth and present possible genetic etiology2.

Described in 14% of the children with progressive neurosensorial dysacusia, it is more frequent in females, presenting descendent audiometric configuration and it is generally bilateral3. The hearing fluctuation can occur in the beginning, with occasional vestibular symptoms4.

The distinction of the diagnosis with other illnesses is carried through by means of image examination.

The treatment is clinical or surgical. Lin et al.5 observed significant auditory improvement in individuals treated with corticoid, after recurrent episodes of sudden deafness. However, Willing et al.6 demonstrated that the ELA surgery does not provide significant benefit. However, other authors reported benefits in patients with LVAS and deafness acquired after language development, submitted to cochlear implantation7. Another possibility is to adapt hearing aids.

Objective

The aim of the present study was to report the case of an infant with unilateral dysacusia and LVAS.

Method

This research was submitted to the Committee of Ethics in Research of the FMB - UNESP, protocol 03/10/05 and legal responsible of the subject read and signed a consent form, allowing the spreading of the present results.

The subject was an infant, one year of age, female, without familiar antecedents of hypoacusia. She was born full-term, 3380g, without any neonatal intercurrence. The mother presented diagnosis of Diabetes Mellitus type II. Serological tests were negative.

Results

Examinations of transient otoacoustic emissions (TOAE) and Auditory brainstem response (ABR) were carried through. At the first evaluation, the TOAE were present to the left and absent to the right. At the second evaluation, the results were maintained, and a conductive alteration was discarded by the tympanometry. On the behavioral auditory evaluation, at seven months of age, response to sonorous localization to the left was evidenced even when the stimulation was to the right.

On the ABR, the electrophysiological threshold at 20 dBnHL to the left and the absence in 100 dBnHL to the right was observed. At one year of age, a computerized CAT scan (CT) of the temporal bone was carried through evidencing EVA only to the right, measuring 2.5mm (Figure 1).

Discussion

The vestibular aqueduct is an osseous canal that extends from the medial vestibule wall to an opening in the posterior surface of the squamous portion of the temporal bone. The duct and the endolymphatic sacs filled with endolympha course through this aqueduct. Some authors report that the EVA results from an abnormal development of the endolymphatic duct during the embryological period8.

The clinical findings of LVAS, mainly type and degree of the neurosensorial dysacusia, are variable and for some even the correlation between the dysacusia and the size of EVA is discussible3. Sugiura et al.9 demonstrated with three-dimensional nuclear magnetic resonance that the deafness was caused by the reflux of the hyperosmolar fluid of the enlarged endolymphatic sac to the interior of the cochlea.
With regards to the etiology, some authors suggest autosomal recessive inheritance, explaining, as in our case, the lack of familial history for hypoacusia. Other authors have described mutation of gene SLC26A4 associating isolated deafness and LVAS.

In the bilateral case the diagnosis is generally precocious given to the characteristics of the dysacusia, however, when the case is unilateral, such the dysacusia as the LVAS can remain without diagnosis as a result of the non-accomplishment of image examinations.

The treatment of this disorder consists of amplification, speech-language therapy and the prevention of cranium trauma. Occasionally, the cochlear implantation must be considered, mainly in the progressive cases.

Conclusion

Even so consulted literature reports that the diagnosis of LVAS is delayed in the majority of the cases, in the present case study, the etiological diagnosis was carried through precociously. The precocious diagnosis was made possible through the use of the CT in order to search for a unilateral dysacusia of unknown etiology.

References