
�

�

“main” — 2014/7/1 — 13:27 — page 165 — #1
�

�

�

�

�

�

Pesquisa Operacional (2014) 34(2): 165-187
© 2014 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2014.034.02.0165

A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL
CUTTING STOCK PROBLEM WITH SETUPS

Silvio Alexandre de Araujo1*, Kelly Cristina Poldi2 and Jim Smith3

Received August 1, 2013 / Accepted October 29, 2013

ABSTRACT. This paper investigates the one-dimensional cutting stock problem considering two conflict-

ing objective functions: minimization of both the number of objects and the number of different cutting

patterns used. A new heuristic method based on the concepts of genetic algorithms is proposed to solve the

problem. This heuristic is empirically analyzed by solving randomly generated instances and also practi-

cal instances from a chemical-fiber company. The computational results show that the method is efficient

and obtains positive results when compared to other methods from the literature.

Keywords: integer optimization, cutting stock problem with setups, genetic algorithm.

1 INTRODUCTION

The cutting stock problem has been intensively researched due to its high importance in several
industrial processes (see, for instance Dyckhoff et al., 1997; Wang & Wäscher, 2002; Poldi &
Arenales, 2006, 2010; Oliveira & Wäscher, 2007; Morabito et al., 2009). It consists of finding an
optimized way of cutting objects of known dimension into smaller items in order to meet a given
demand. In general, the objective to be optimized is related to the minimization of the waste
of material. However, according to Foerster & Wäscher (2000), in some real-word problems it
is not appropriate to consider the minimization of the waste of material as a single objective,
because it is only part of the total relevant costs in the cutting process.

In many industries, such as, wood, glass, paper, fiber and steel industries, the profitability of
the cutting process can be affected by the number of times one has to switch between different
cutting patterns in order to satisfy the demand. For instance, the positions of the cutting knives
in the machine may need to be adjusted for each changeover. Such adjustments often interrupt

*Corresponding author
1Universidade Estadual Paulista-UNESP, Departamento de Matemática Aplicada-DMAp, Rua Cristóvão Colombo,
2265, 15054-000 São José do Rio Preto, SP, Brazil. E-mail: saraujo@ibilce.unesp.br
2Universidade Federal de São Paulo-UNIFESP, Instituto de Ciência e Tecnologia-ICT, Rua Talim, 330, 12231-280 São
José dos Campos, SP, Brazil. E-mail: kelly.poldi@unifesp.br
3University of the West of England, Faculty of Environment and Technology, BS16 1QY Bristol, United Kingdom.
E-mail: james.smith@uwe.ac.uk

�

�

“main” — 2014/7/1 — 13:27 — page 166 — #2
�

�

�

�

�

�

166 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

production and may impose a setup cost every time a different pattern is cut. In these situations,
in order to reduce costs, it is desirable to have a cutting plan made of fewer different cutting
patterns. So, in addition to the minimization of the waste of material, the minimization of the
number of different cutting patterns is often considered as a second criterion.

Yanasse & Limeira (2006) highlighted the importance of bi-criteria decision problems when
setup costs are significant when compared to material costs. However, since this bi-criteria ob-
jective function is typically nonlinear and discontinuous it makes the problem more difficult
to solve. In this paper, to address the one-dimensional cutting stock problem with conflicting
objectives as a multi-objective problem, we propose a Genetic Algorithm (GA) to obtain a set of
non-dominated solutions so that the decision maker can take a better decision.

In the next section we present the mathematical model, and in Section 3 we review previous
research. In Section 4 the proposed multi-objective genetic algorithm is detailed. The compu-
tational results are presented in Section 5 and in Section 6 we conclude the paper and present
possible future research.

2 MATHEMATICAL MODELING

We consider the one-dimensional cutting stock problem of cutting objects of known dimension
into smaller items. This is common in many industries where objects, such as pipes, rolls of
materials, etc, is produced in fixed lengths by some machinery, but may be sold to customers in
quantities of smaller lengths. This requires that the stock objects be cut, which is typically done
by a cutting machine with blades that may be set in different positions. Each combination of
blade positions on the cutting machine is known as a cutting pattern. The task then consists of
selecting and applying one or more cutting patterns to objects to produce a number of smaller
sized items in order to meet a given demand. Clearly there are many ways of accomplishing this,
and doing so efficiently requires the optimization of two conflicting objective functions: min-
imization of both the number of objects cut (which effectively minimizes the amount of waste
– known as “trim loss”) and of different cutting patterns used (which reduces the amount of
production time spent while cutting machines are reset). According to the typology proposed
by Wäscher et al. (2007) the problem studied in this paper is an extension of the One Dimen-
sional Single Stock Size Cutting Stock Problem (1D-SSSCSP with setups), which requires that a
weakly heterogeneous assortment of small items be completely allocated to a selection of large
identical objects of fixed dimension. This problem can be formulated as an integer linear opti-
mization problem as follows.

Consider the parameters:

• m: number of types of items (e.g. number of different sizes offered for sale);

• n: number of feasible cutting patterns;

• li : length of item type i, i = 1, . . . , m;

• bi : demand for item type i, i = 1, . . . , m;

• L : length of object;

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 167 — #3
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 167

• a j = (a1 j , a2 j , . . . , am j)
T : vector corresponding to the j th cutting pattern, j = 1, . . . , n,

where ai j is the number of items of type i (i = 1, . . . , m) in the j th cutting pattern.
Moreover, a vector a j is a feasible cutting pattern if and only if

∑m
i=1 liαi j ≤ L , with

αi j ≥ 0 and integer.

Let x j be the number of objects to be cut according to the j th cutting pattern, j = 1, . . . , n,
the bi-criteria mathematical model can be stated as:

minimize: (f1(x), f2(x)) (1)

subject to:
n∑

j=1

αi j x j ≥ bi , i = 1, . . . , m (2)

x j ∈ N , j = 1, . . . , n. (3)

The set of constraints represented by Eq. (2) ensures that the total amount of items produced at
least meets the demand, i.e., the inequality allows overproduction. The set of constraints Eq. (3)
ensures that the number of objects to be cut is non-negative and integer. The objective function
in Eq. (1) minimizes both objectives f1(x) and f2(x).

Yanasse & Limeira (2006) consider both the minimization of the number of objects to be cut,
given by f1(x) = ∑n

j=1 x j and the minimization of the number of different cutting patterns:

f2(x) =
n∑

j=1

δ(x j), where δ(x j) =
{

1, if x j > 0, j = 1, . . . , n
0, otherwise.

(4)

Umetani et al. (2003), Lee (2007) and Golfeto et al. (2009b) consider f2(x) as Eq. (4), and
f1(x) as the ratio (percentage) of the total trim loss to the total length of the demanded items:

f1(x) =
100

(
L

∑n
j=1 x j − ∑m

i=1 li bi

)
∑m

i=1 li bi
. (5)

In the first part of the computational results presented in this paper we consider the mathemati-
cal model Eqs. (1)-(3) with the objective f1(x) as in Eq. (5) and f2(x) as in Eq. (4). In the second
part we consider f1(x) as in Yanasse & Limeira (2006) and f2(x) as in Eq. (4).

3 PREVIOUS RESEARCH

There are some papers in the literature that consider the minimization or the reduction of the
number of setups. In this section we present some of these papers and highlight with bold letters,
the solution methods that will be used in comparisons made on Section 5.

Haessler (1975) proposed a pattern generating heuristic that sequentially adds new cutting pat-
terns to the current solution until all demand is met. In each step, the procedure selects a cutting
pattern, whose trim loss is small and frequency (number of times this cutting pattern is cut) is

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 168 — #4
�

�

�

�

�

�

168 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

high. Farley & Richardson (1984) modeled a pattern minimization cutting stock problem as a
fixed charge problem, and used the simplex method to replace basic variables (the cutting pat-
terns) by surplus variables to reduce the number of patterns. An approach similar to the approach
proposed in Haessler (1975) was considered in Haessler & Sweeney (1991).

Diegel et al. (1993) presented a procedure to identify a pair of patterns in a cutting plan which
can be replaced by a single cutting pattern. Foerster & Wäscher (2000) proposed the solution
method KOMBI, which generalizes this procedure based on the observation that when cutting
patterns are to be combined, total frequency of the new cutting patterns has to be equal to the
total frequency of the initial ones in order to keep the material input constant.

Vanderbeck (2000) proposed an exact method for the pattern minimization problem which is
formulated as a quadratic integer programming problem. Kolen & Spieksma (2000) presented
a branch-and-bound algorithm that produces the Pareto optimal solutions for a set of small in-
stances of the problem.

Umetani et al. (2003) proposed a formulation and an Iterated Local Search (ILS03) for min-
imizing the number of stock objects while using at most a predetermined number of different
cutting patterns. The local search algorithm uses the neighborhood obtained by perturbing one
cutting pattern in the current set of patterns, where the perturbations are done by utilizing the
dual solution of the auxiliary Linear Programming (LP) problem. Umetani et al. (2006) extended
the previous paper and proposed a local search algorithm (ILS06) that alternately uses two types
of local search processes with the 1-add neighborhood and the shift neighborhood, respectively.
To improve the performance of the local search, the authors have incorporated LP techniques to
reduce the number of solutions in each neighborhood. A sensitivity analysis technique and the
dual simplex method have been introduced to solve a large number of associated LP problems
quickly. Through computational experiments, the authors claim that their new algorithm obtains
solutions of better quality than those obtained by other existing approaches.

Yanasse & Limeira (2006) suggested a Hybrid Heuristic (HH) to obtain a reduced number of
different patterns in cutting stock problems. Initially, they generate cutting patterns with limited
waste that fulfill the demands of at least two items when the patterns are repeated, but without
overproducing any of the items. The problem is reduced and a residual problem is solved. Then,
pattern reduction techniques (local search) are applied starting with the generated solution.

Lee (2007) proposed a local search heuristic, called Crawla, which is based on Integer Linear
Programming (ILP). The heuristic holistically integrates the master and subproblem of the usual
price driven pattern-generation paradigm, resulting in a unified model that generates new cutting
patterns in situ. The method spends some time to generate new columns, but guarantees that
new columns give an integer LP improvement (rather than the continuous LP improvement
sought by the usual price driven column generation).

Moretti & Salles Neto (2008) solved a nonlinear cutting stock problem that considers the min-
imization of, both, the number of objects and setup. They used a linearization of the problem
and a column generation procedure. The master is solved by an Augmented Lagrangian method.
A heuristic is applied to obtain an integer solution.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 169 — #5
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 169

Alves & Valerio de Carvalho (2008) proposed a branch-and-price-and-cut algorithm to exactly
solve the pattern minimization problem. Alves et al. (2009) solved this problem with column
generation and described different strategies to strengthen the formulation considered in their
paper. High quality lower bounds were derived from the new integer programming model, and
also from a constraint programming model.

Golfeto et al. (2009a) presented a symbiotic approach that co-evolves a population of potential
cutting patterns alongside a population of plans using those patterns. However they combine
the multiple objectives into a scalar function via a weighted sum approach. They presented the
methods Symbio1, Symbio5 and Symbio10, where the weight for minimization of the waste
is always 1 and the weights for setup minimization is respectively, 1, 5 and 10. As they have
subsequently shown (Golfeto et al., 2009b) that the Pareto front is non-convex, a “true” multi-
objective approach that maintains an approximation to the Pareto front can potentially find a
more diverse set of solutions. In Golfeto et al. (2009b), they extended the previous method by
considering a multi-objective approach that uses a niche strategy to evaluate the solutions and
gives a set of non-dominated solutions, which are not evaluated by a common scalar function.
This solution method is called Symbio.

Cerqueira & Yanasse (2009) introduced a heuristic approach that produces a solution to the one-
dimensional cutting stock problem with a reduced number of different patterns in the solution.
The method proposed begin separating the items in two disjointed groups, according to their
demands. Patterns are generated with items of these groups and those with limited waste are
accepted. A residual problem is solved with items whose demands are not satisfied and, with the
solution obtained, they apply a pattern reducing procedure of the literature.

Cui & Liu (2011) presented a sequential heuristic procedure, where a set of items are cut from
objects of the same length to minimize the object cost, with a secondary objective being to reduce
the pattern count of the cutting plan. The procedure generates the current pattern to produce
some items, and continues until all items are fulfilled. The algorithm uses a set of candidate
items for generating the current pattern and another set of candidate patterns from which the
current pattern is selected. It generates candidate patterns using the candidate items, determines
the estimated cutting-plan cost of each pattern using a look-ahead strategy, and selects the pattern
of the minimum cost as the current pattern. Based on computational results, the authors argue
that the algorithm is efficient.

Mobasher & Ekici (2013) considered the cutting stock problem with setup cost, developed a
mixed integer linear program and analyze a special case of the problem. Motivated by this spe-
cial case, they propose two local search algorithms and a column generation based heuristic
algorithm. Computational results are presented using instances from the literature.

Henn & Wäscher (2013) presented a recent review on cutting stock problem with setup and
pointed out interesting direction for future research.

For most of the cases, heuristic (rather than optimal) methods were proposed, since it has been
shown that pattern minimization in cutting stock problem is NP-hard (McDiarmid, 1999;
Yanasse & Limeira, 2006). Most of these papers solve the pattern minimization problem in a

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 170 — #6
�

�

�

�

�

�

170 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

single or in two stages (Alves et al., 2009). In the former, one tries to find a cutting plan with
the best balance between waste and the number of different patterns. In the latter, the pattern
minimization problem is solved by assuming that no more than a given number of objects can be
used. Usually, this number is obtained by solving a standard cutting stock problem.

In fact, only two papers in the literature take the multi-objective approach. The approach taken
by Kolen & Spieksma (2000) solves only small instances of the problem. The multi-objective
approach described in Golfeto et al. (2009b) is potentially more robust; however the authors
report that a drawback of their method is the computational time, commenting that it took be-
tween 60 and 80 minutes to run each instance of the problem. We hypothesize that a large part
of this comes from the complex representation of plans, which contains not just the choice of
patterns but also the frequency in which they are used. This creates a far larger search space,
and means that (i) larger populations are required to adequately sample the search space, (ii) us-
age patterns must be evolved (a complex nonlinear mapping), rather than calculated via simpler
heuristics, and (iii) a large part of the search space is infeasible, and the crossover and mutation
operators they use are not specialized to avoid such regions. Each of these factors incurs its own
computational burden. We hypothesize that the use of a simpler representation combined with
heuristics to determine usage patterns can avoid much of this computational overhead.

4 SOLUTION METHOD

When an optimization problem involves more than one objective function, the task of finding one
or more solutions is known as multi-objective optimization (Ehrgott, 2005; Steuer, 1985).

Although single-objective optimization problems may have a unique optimal solution, multi-
objective optimization problems typically present a possibly uncountable set of solutions that,
when evaluated, produce vectors whose components represent trade-offs (conflicting scenarios)
in objective space. A decision maker then chooses an acceptable solution (or solutions) by se-
lecting one or more of these vectors (Van Veldhuizen & Lamont, 2000).

4.1 Multi-objective Optimization

Consider, without loss of generality, the minimization of q components, fk , k = 1, . . . , q of a
vector function f of a decision variable vector x in a universe S, where

f(x) = (f1(x), f2(x), . . . , fq (x)).

Then, a decision solution vector x ∈ S is said to dominate y ∈ S if and only if f(x) ≤ f(y) and
f(x) �= f(y) (i.e., fk (x) = fk (y) for all k and fk (x) < fk (y) for at least one k); this is called
Pareto dominance. A solution vector is said to be non-dominated if it is not dominated by any
other feasible vector. A decision vector x ∈ S is said to be Pareto optimal if and only if there is
no y ∈ S for which f(y) dominates f(x) according to the definition above.

The Pareto optimal set is the set of all non-dominated solution vectors. The surface formed by
the corresponding points in objective function space is called the Pareto front.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 171 — #7
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 171

Figure 1 illustrates these ideas for a two-objective case. Solution C dominates E and F because
their objective values for both f1 and f2 are greater than those for C. Meanwhile, the objective
values for A and B are smaller than those for solution C, and so both A and B dominate C.
However neither G nor D dominate, or are dominated by, C.

Figure 1 – Pareto dominance.

In the presence of multiple Pareto optimal solutions, it is not possible to prefer one solution
over the other. In the absence of other information all Pareto optimal solutions are equally
important, and in a typical real world situation the decision making process may take account
of many factors which are time-dependent, subjective, or otherwise hard to quantify. Hence,
heuristics for multi-objective optimization have two goals: 1) to find a set of solutions as close
as possible to the Pareto front and 2) to find as diverse a set of solutions as possible. Taken to-
gether this usually means that heuristics try to produce an approximation to the Pareto front in
which solutions are sparsely spaced.

According to Fonseca & Fleming (1995), conventional optimization techniques, such as gradient-
based and simplex-based methods are difficult to extend to the true multi-objective case, because
they were not designed with multiple solutions in mind. In contrast to this, it has long been
recognized that the population-based algorithms are potentially well-suited to multi-objective
optimization.

Over the last two decades, Evolutionary Algorithm (EA) techniques have received much at-
tention as optimization techniques (Michalewicz, 1994; Hertz & Kobler, 2000; Beasley, 2002;
Fogel, 2005; Eiben & Smith, 2010). EAs are stochastic optimization methods inspired by
Darwin’s theory of natural selection that iteratively refine a (usually fixed size) “population”,
which is a multiset of representations of candidate solutions of the search space. Starting from
a randomly-generated initial population, individuals are probabilistically selected according to
their fitness (quality) to act as “parents”, from which new “offspring” (candidate solutions) are
generated using simplified abstractions of genetic recombination and mutation. The offspring in
turn have their fitness evaluated and the cycle completes by selecting a next generation from
the union of the current generation and the offspring, typically taking into account age and/or
quality.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 172 — #8
�

�

�

�

�

�

172 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Thus an Evolutionary Algorithm’s evolving population can search for multiple solutions in paral-

lel, potentially exploiting similarities available in the family of possible solutions to the problem.
So, the most striking difference to classical optimization algorithms is that EAs uses a population
of solutions in each iteration instead of a single solution. If an optimization problem has a single

optimum, then via genetic drift, all EA population members will converge to (an approximation
of) that optimal solution. However, if an optimization problem has multiple optimal solutions,
an EA can be used to approximate multiple optimal solutions in its final population; this ability

to find multiple solutions makes EAs unique in solving multi-objective optimization problems
(Deb, 2011).

The Vector Evaluated Genetic Algorithm (VEGA) sub-divide the population, using different ob-
jectives to award fitness to different sub-populations (Schaffer, 1985). Goldberg (1989) suggested

using the concept of domination, which was adopted and refined by many different implemen-
tations of Multi-objective Optimization Evolutionary Algorithms (MOEAs), such as the Multi-
objective Genetic Algorithm (MOGA) (Fonseca & Fleming, 1993), the Non-dominated Sorting

Genetic Algorithm (NSGA) (Srinivas & Deb, 1994) and the Niched Pareto Genetic Algorithm
(NPGA) (Horn et al., 1994). The literature on MOEA is now extensive and good surveys can be
found in Chinchuluun & Pardalos (2007), Coello (2000), Ehrgott & Gandibleux (2000), Gong et
al. (2009) and Zhou et al. (2011).

4.2 A Multi-objective Genetic Algorithm for the 1D-SSSCSP with Setups

In this study we propose a Genetic Algorithm (GA) to solve the bi-criteria problem which min-
imizes both the waste of material and the number of different cutting patterns. The algorithm

was adapted from Araujo et al. (2011) in order to deal with the two conflicting objective func-
tions. Moreover, that paper considered minimizing the waste of material for the One Dimensional
Multiple Stock Size Cutting Stock Problem (1D-MSSCSP) (Wäscher et al., 2007) under the con-

dition that production exactly met demand. In this paper we significantly extend the heuristic to
tackle a multi-objective version of the One Dimensional Single Stock Size Cutting Stock Prob-
lem (1D-SSSCSP) and we also allow inequalities – that is to say we allow for overproduction of
items, with the excess quantities treated as waste.

We first discuss the way that fitness is assigned to a candidate solution in the context of the cur-
rent population, then the selection processes via which individuals are selected for reproduction
and survival. Next, we discuss the representation and the recombination operator that work on
that representation to create new offspring, and finally the process via which the representation

of a solution is transformed into a candidate solution.

Rank-based fitness assignment function: Fonseca & Fleming (1993) provide this non-
dominated classification of a GA population. Consider an individual which is dominated by ηi

individuals in the current population. It is given a rank τi = 1 + ηi , so all non-dominated
solutions are given rank 1, and the rest are ranked according to how many solutions dominate
them. Note that this is biased in favor of solutions in sparsely populated regions.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 173 — #9
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 173

The idea of using the ranking rather than raw fitness values to determine selection probabilities

has been shown to combat premature convergence. In this case a simple linear ranking tech-
nique is used to assign effective fitness. If μ(τi) denotes the number of solutions with rank τi in
population of total size P, then the fitness of any individual is given by:

Fi = P −
τi−1∑
k=1

μ(k) − 0, 5(μ(τi) − 1) i = 1, . . . , P. (6)

Equation (6) associates the same fitness for every solution of the same rank. To promote diver-
sity among the non-dominated solutions, this fitness is then moderated to preferentially reward

solutions that are dissimilar to others of the same rank. Let σshare be a parameter that defines
how far apart two individuals must be in order for them to decrease each other’s fitness. The
region within radius σshare of a solution is called its niche. For each solution i and j of the same
rank, calculate the sharing function value which is given by:

Sh(di j) =
⎧⎨
⎩ 1 −

(
di j

σshare

)β

, if di j ≤ σshare

0, otherwise
(7)

where β is a parameter, typically β ∈ [1, 2], and di j is the distance between the solutions i and
j . The distance metric used is the normalized Euclidean distance in objective function space:

di j =
√√√√ q∑

k=1

(
f i
k − f j

k

f max
k − f min

k

)2

(8)

where q is the number of objectives, f max
k and f min

k are the maximum and minimum objective
function value of the kth objective considering the current population, and f i

k is the objective

function value of the kth objective of the solution i.

We evaluate the niche count for solution i, nci as follows:

nci =
μ(τi)∑
j=1

Sh(di j), i = 1, . . . , P. (9)

Then, we compute the shared fitness:

F
′
i = Fi

nci
. (10)

Thus, when comparing two solutions of the same rank, the one from the less crowded region will
have a higher shared fitness. Finally, to preserve the same average fitness for all solutions of the
same rank and maintain selection pressure, we scale the shared fitness as per:

F
′′
i = Fiμ(τi)∑μ(τi)

k=1 F
′
k

F
′
i . (11)

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 174 — #10
�

�

�

�

�

�

174 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Parent selection: given the fitness scheme above we select individuals to be parents using

fitness-proportionate selection, implemented via the “roulette wheel” algorithm. This is concep-
tually the same as spinning a one-armed roulette wheel, where the sizes of the holes reflect the
selection probabilities (Eiben & Smith, 2010).

Population replacement strategy: a steady-state model is used whereby one new individual
is generated per iteration. If this is better than the worst individual of the current population,
then the latter is eliminated and the new individual is included in the sorted population in the
correct position.

Representation: consider an individual as a feasible solution for the cutting stock problem.
The individual is made up of a number of genes, each of which represents a cutting pattern
(a j) and also the number of times it is cut (x j). Therefore, an individual is represented as a

matrix where a column represents a cutting pattern (and the number of times it is cut). We allow
individuals to contain different numbers of patterns, so the number of columns in the matrix
representing an individual can be different, but the number of rows in each matrix is the same:

equal to the number of different items (m) plus one row containing the number of times the
cutting pattern is used.

Creation of initial population: in order to generate the initial population an adaptation of
the simple Repeat Exhaustion Reduction (RER) Heuristic (Hinxman, 1980) is used. It can be

summarized as follows.

Step 1: Construct a cutting pattern a j .

Step 2: Apply this cutting pattern as many times as possible (i.e., determine x j), without exceed-
ing the demand for any item.

Step 3: Update the demand and repeat steps 1 and 2 until the demand is fully met (we have a
feasible integer solution).

In order to assist evolutionary search the initial population should sample the search space, so it

is important to generate individuals with different characteristics. Two different approaches were
used to construct a cutting pattern in Step 1. Each of these ranks items in a different way and
then selects items to go into the cutting pattern according to this rank:

RER 1: Rank items according to the First Fit Decreasing (FFD) heuristic (Johnson, 1974;

Wäscher & Gau, 1996).

RER 2: Rank items randomly and, once an item is chosen, determine the number of times it will
be included on the cutting pattern according to the minimum value between the remaining space
and a percentage of the item’s demand. This percentage is randomly chosen, between 10% and

100% of the item’s demand and is fixed to every item that will be included on the same cutting
pattern. The idea is to have items with similar demand on the cutting pattern and it will help in
reducing the number of different cutting patterns.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 175 — #11
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 175

Once a cutting pattern is constructed the number of times it will be cut, x j , is determined by

taking the maximum value possible, so that it does not overproduce the demand of any item that
belongs to this cutting pattern.

One individual is constructed by using RER 1 and remaining individuals of the initial population
are constructed using RER 2. The population-size is a parameter of the GA.

Offspring creation: to create a new individual firstly global recombination is applied to select
up to g genes (cutting patterns), then, if necessary, a constructive heuristic is applied.

The recombination operator successively applies the selection operators described above to select
a parent, and then chooses a random gene from that parent, taking care not to choose a gene

which produces an item for which the residual demand has already been met. The parameter g
must be previously defined and it is based on the population characteristics. In this paper we
use the mean number of cutting patterns of the individuals from the current population plus a

certain percentage that gives a higher chance of selecting cutting patterns. If, before g attempts,
the demand for each item is met, then we have a feasible individual. Otherwise, an additional
constructive heuristic phase is carried out in order to create a feasible solution. In this step,

the Repeat Exhaustion Reduction heuristic (RER1) is used again, considering only the residual
demand.

This differs from the traditional use of both recombination and a mutation operator to create
necessary diversity to permit evolution. In our case diversity is created by (i) the use of heuris-

tics to generate novel patterns continuously throughout the run, (ii) the use of randomized global
recombination to select patterns into an offspring, coupled with (iii) the incorporation of con-
structive heuristics within recombination to control how many patterns are added, and finally

(iv) the use of the RER1 heuristic to create new patterns to meet residual demand if needed.

Definition of the x j -value: each time the recombination operator selects a gene, the associated
x j -value (number of times this cutting pattern will be repeated) is recalculated. Starting from

zero, we incrementally increase x j , noting the values at which the first and the last items have
their demand satisfied, and which those items are. We choose x j according to the value for the
last item if the overproduction of the first item is less than a parameter �. Otherwise we choose

x j values which just meet demand for the first item. The parameter � is related to the length of
overproduction.

The idea behind this procedure is that when we choose x j according to the last item, every item
that belongs to that cutting pattern will have its demand met, which should help reducing the

number of cutting patterns needed, at the cost of some overproduction. Conversely, when we
choose x j according to the first item, only this item will have its demand satisfied, consequently
there will be much less overproduction, which will be good for reducing the waste of material

(trim loss or number of objects) but more cutting patterns will be required to produce the other
items, which will increase the number of setups.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 176 — #12
�

�

�

�

�

�

176 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Stopping criterion: it is defined as the maximum number of iterations, where each iteration

represents the generation of an individual.

5 COMPUTATIONAL RESULTS

This section is divided in two parts. In the first one we used a set of forty “real-world” instances
from the literature (Umetani et al., 2003), where results are available for several existing algo-

rithms, giving the minimum loss solutions found for different (fixed) numbers of setups (cutting
patterns). For each instance we compare these with the range of results found from a single run
of the MOGA algorithm. We use a single run in these tests because the aim is to show the multi-
objective aspects of the solutions. A statistical analysis will be done on the results presented in

Section 5.2.

The second data set comprises 1800 instances generated by the Random Generator CUTGEN1
(Gau & Wäscher, 1995). We compare the solution quality of our multi-objective approach against

other single objective methods proposed in the literature. In this case we focus on the best solu-
tion, in terms of number of objects to be cut, of our final population.

MOGA was implemented in C++ and the computational tests were carried out on an Intel(R)
Core(TM) i5-2410M, CPU 2.30 GHz 2.30 GHz with 4.0 GB of RAM, under Windows 7

Professional.

Extensive computational tests were carried out and several parameters were tested. For the
computational results, the parameters used in MOGA are: the size of the initial population was
set equal to 50; the maximum number of genes (g) was based on the average of the number of

genes of the individuals from the initial population plus 20%; the limit of overproduction (�)
produced by a cutting pattern j when cut a number of times (x j) is fixed to 1.5L (see definition
of the x j -value in Section 4.2); the stopping criterion (maximum number of iterations) was set
to 5000 and the parameters related to the rank-based fitness function was σshare = 2/(P − 1)

and β = 1.

5.1 Practical Data Set

As in Lee (2007) and Golfeto et al. (2009b) we used the 40 instances available from Umetani et
al. (2003). These instances come from a chemical fiber company in Japan:

• Number of types of ordered items: m varies from 4 to 20;

• Object length: L = 5180 for the first 20 instances and L = 9080 for the remaining 20

instances;

• Item length: li were randomly generated in the interval [500, 2000];
• Demand: bi were randomly generated in the interval [2, 264] and we aggregated demand

bi of the items that have the same length li – which is common in the literature (Lee, 2007;
Golfeto et al., 2009b).

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 177 — #13
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 177

Table 1 shows the results, for each instance, of the optimal solution considering only the min-

imization of the percentage of trim loss Eq. (5). These optimal solutions were found through
the implementation of the arc flow model presented in Valerio de Carvalho (1999) and Valerio
de Carvalho (2002) in the AMPL modeling language (Fourer et al., 2002) and solved with the

optimizer CPLEX 12.1.

Table 1 – Optimal solutions for trim loss Eq. (5) minimization.

Instances L = 5180 Instances L = 9080

Instance Trim Loss Instance Trim Loss Instance Trim Loss Instance Trim Loss

Fiber06 2.09 Fiber16 0.34 Fiber06 3.03 Fiber16 0.81

Fiber07 3.04 Fiber17 1.79 Fiber07 5.95 Fiber17 1.03

Fiber08 3.26 Fiber18 1.91 Fiber08 1.03 Fiber18 0.49

Fiber09 7.24 Fiber19 4.98 Fiber09 2.86 Fiber19 1.00

Fiber10 2.71 Fiber20 0.81 Fiber10 1.76 Fiber20 4.92

Fiber11 2.98 Fiber23 0.70 Fiber11 2.38 Fiber23 0.15

Fiber13a 2.41 Fiber26 2.31 Fiber13a 2.58 Fiber26 1.00

Fiber13b 2.92 Fiber28a 0.06 Fiber13b 3.08 Fiber28a 1.43

Fiber14 1.15 Fiber28b 0.53 Fiber14 1.85 Fiber28b 0.92

Fiber15 2.95 Fiber29 1.23 Fiber15 1.31 Fiber29 0.17

We compare the proposed MOGA method against three other methods from the literature that
present sets of non-dominated solutions for these instances taken from multiple runs (in the case
of the two local-search based methods): ILS03, Crawla and Symbio proposed, respectively in

Umetani et al. (2003), Lee (2007) and Golfeto et al. (2009b).

Tables 2 and 3 present the comparison of results for the instances where L = 5180 and
L = 9080, respectively. We present in the respective column of each method (ILS03, Crawla,
Symbio, MOGA) the percentage of trim loss (evaluated according to Eq. (5)) obtained with the

respective number of different cutting patterns (columns Setup).

We present every non-dominated solution found by our method. While it is not so simple to
find a good way to provide summary statistics to make a specific point, we have highlighted
certain success of our method. Under our method “MOGA” we have indicated with “∗” runs

for which the best trim loss that we obtained was lower than the best trim loss obtained by all
the others methods (regardless of the number of cutting patterns) and with “∗∗” runs for which
our method obtained the optimal trim loss according to Table 1. Observe that we obtained the

optimal trim loss for eleven instances with L = 9080. Notably, in all but three cases the final
MOGA population contained a choice of non-dominated solutions which were competitive with,
or better than the best results found from multiple runs of other algorithms. In each of the

remaining three cases, when only one non-dominated solution was found in the final MOGA
population, that solution had trim loss of less than a third of the best found by other methods.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 178 — #14
�

�

�

�

�

�

178 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Table 2 – Setup and percentage trim loss obtained by the four methods (L = 5180).

Setup ILS03 Crawla Symbio MOGA Setup ILS03 Crawla Symbio MOGA Setup ILS03 Crawla Symbio MOGA

Instance Fiber06 5180 Instance Fiber14 5180 Instance Fiber23 5180

7 5.19 11 5.45 16 2.83*
6 5.19 2.09** 10 5.45 15 4.98 4.26
5 5.19 5.19 8.27 9 5.45 14 2.84
4 8.28 8.28 8 7.61 13 6.41
2 48.5 17.55 6 5.45 11 17.84 8.55

Instance Fiber07 5180 5 5.45 5.45 10 9.26
10 4.98 4 9.76 9.76 9 2.84 10.69
9 4.98 3 14.06 14.06 8 4.27 12.12
8 4.98 2 63.56 85.08 7 5.70 14.98
7 4.98 Instance Fiber15 5180 6 7.84 17.83
6 8.16 14 4.76 5 19.98 21.40
4 4.98 13 4.76 4 67.11
3 8.16 4.98 8.16 12 4.76 Instance Fiber26 5180
2 11.34 11.34 11 4.76 29 3.39
1 68.61 68.61 10 6.56 28 2.31

Instance Fiber08 5180 6 4.75* 27 3.39
10 4.47 5 8.36 26 3.39
9 4.47 4 4.76 4.76 11.81 25 3.93
8 4.47 3 10.17 6.56 14 3.93
7 4.47 2 49.91 39.07 13 5.00
6 4.47 Instance Fiber16 5180 12 10.39
5 3.26** 16 4.01 10 8.78
4 4.46 13 5.23 9 9.31
3 4.46 4.46 6.86 12 6.45 8 4.47 10.93
2 5.67 5.67 11 10.13 7 5.01 15.78
1 126.94 10 7.68 6 7.16

Instance Fiber09 5180 9 6.46 5 15.78 28.16
9 9.27 8 8.91 4 78.24 96.01
8 9.27 7 8.91 4.01 4.01 Instance Fiber28a 5180
7 11.29 9.26* 6 27.26 5.24 5.23 16 3.67*
6 11.29 5 11.35 7.68 14 4.87*
5 11.29 11.28 4 13.80 16.25 11 9.70
4 11.29 3 45.62 66.41 10 10.91 8.49
3 23.43 11.29 Instance Fiber17 5180 9 10.91 9.70
2 47.71 47.71 10 3.01* 8 18.14 4.88 13.31

Instance Fiber10 5180 9 5.46 5.30 7 26.58 7.29 19.34
14 4.20 8 6.69 4.24 9.63 6 9.70 32.60
13 4.20 7 7.92 44.52 5 13.32 50.69
12 4.20 6 17.28 4.24 5.46 4 28.99
11 4.20 5 22.63 6.69 6.69 Instance Fiber28b 5180
10 4.20 4 7.92 11.59 22 3.97*
6 4.20 3 29.99 29.99 18 4.83*
5 4.20 7.17 Instance Fiber18 5180 17 8.27
4 5.69 4.20 47.31 14 2.97* 15 5.69
3 7.18 5.69 12 4.03* 14 6.55 7.40
2 22.06 22.06 11 5.10 47.56 13 6.55 9.12

Instance Fiber11 5180 10 6.16 12 8.27
12 6.06 9 5.10 5.10 11 6.55 9.98
11 6.06 8 10.41 6.16 10 10.84
10 4.52 7 11.47 9 5.69 13.42
9 4.52 6 5.10 7.22 8 5.69 17.72
8 6.06 5 6.16 10.40 7 8.27 22.87
7 2.98** 4 7.22 11.46 6 15.14 41.78
6 9.13 3 18.90 82.59 5 34.90 96.77
5 6.06 12.20 Instance Fiber19 5180 Instance Fiber29 5180
4 7.59 6.65 14.67 25 4.98 22 2.86*
3 10.67 9.13 24 5.77 20 4.49*
2 52.16 23 4.98 19 7.76

Instance Fiber13a 5180 22 4.98 18 28.99
14 2.41 21 4.98 13 11.03
13 4.24 10 5.77 12 9.40
12 2.41 9 5.77 5.77 8.92 11 14.30 7.76
11 4.24 8 6.56 6.56 10 9.40 9.40
10 4.24 7 7.35 7.35 9 12.66 4.50 11.03
9 4.24 6 8.14 8.93 8 9.40 14.29
8 6.06 5 9.72 10.51 7 2.78 22.46
7 10.05 4 14.45 24.71 6 24.09 43.68
5 6.07 3 46.82 5 32.26 53.48
4 13.38 7.90 Instance Fiber20 5180
3 28.01 13.38 16 3.96*
2 51.79 15 7.11

Instance Fiber13b 5180 14 32.31
9 6.59 12 99.81
8 6.59 8 13.41
7 6.59 7 19.71 7.11 7.11
6 6.59 2.92** 6 26.02 10.26 13.41
5 6.59 10.26 5 54.37 22.86 16.56
4 6.59 6.59 4 57.52 54.37
3 10.27 10.27
2 105.83 21.29

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 179 — #15
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 179

Table 3 – Setup and percentage trim loss obtained by the four methods (L = 9080).

Setup ILS03 Crawla Symbio MOGA Setup ILS03 Crawla Symbio MOGA Setup ILS03 Crawla Symbio MOGA

Instance Fiber06 9080 Instance Fiber15 9080 Instance Fiber23 9080

5 8.46 3.03** 6 1.31** 13 1.39*
4 8.46 355.52 5 10.81 7.64 7 11.41
3 8.46 8.46 3.03 4 7.64 4.48 13.97 6 12.67 6.41 8.91
2 19.30 8.46 3 32.97 7.64 4.48 5 16.42 7.66 10.16
1 73.53 73.53 2 23.47 10.81 4 11.41 20.18

Instance Fiber07 9080 1 200.77 3 20.18 36.45
4 5.95 5.95** Instance Fiber16 9080 Instance Fiber26 9080
3 5.95 13 2.95* 15 1.00**

2 5.95 5.95 5.95 11.52 12 7.24 13 1.94
1 17.10 17.10 11 93.04 12 19.87

Instance Fiber08 9080 7 2.96 10 5.72
4 3.13 1.03** 6 7.25 5.10 9 6.66 6.66
3 7.34 1.03 1.03 3.13 5 7.25 7.25 7.25 8 7.61 7.61
2 17.87 7.34 3.13 19.97 4 13.68 9.39 9.39 7 8.55 9.49
1 32.60 32.60 3 17.97 20.12 6 1.94 10.44

Instance Fiber09 9080 2 45.86 5 3.83 11.38

5 9.95 2.86** Instance Fiber17 9080 4 10.44 23.65
4 9.95 6.41 12 5.33 3 33.09 46.30
3 9.95 9.95 6.41 11 5.33 3.18 Instance Fiber28a 9080
2 27.69 13.50 10 3.18 15 1.43*
1 254.69 9 16.07 14 11.99

Instance Fiber10 9080 8 71.96 13 50.03
5 6.98 1.76** 5 3.18 3.18 8 9.88
4 6.98 1.76 12.20 4 5.33 5.33 7 9.88 7.77

3 9.59 4.37 4.37 3 7.48 13.93 6 18.33 9.88
2 14.81 9.59 2 26.83 24.68 5 5.66 14.11
1 72.21 Instance Fiber18 9080 4 11.99 20.45

Instance Fiber11 9080 9 2.34* 3 20.45 41.56
6 2.38** 8 4.20 2 60.60
5 7.77 5.07* 7 6.06 Instance Fiber28b 9080
4 5.08 7.77 11.90 6 6.07 6.86 19 2.42*
3 10.47 10.47 5.08 5 15.37 2.35 2.35 18 5.43
2 34.71 13.16 4 19.09 4.21 4.21 17 23.50

1 228.70 3 7.93 7.93 16 32.54
Instance Fiber13a 9080 2 33.98 35.84 12 3.93

6 5.79 2.58** Instance Fiber19 9080 11 6.94
5 8.99 44.25 10 2.38* 10 14.47
4 12.20 8.99 9 3.77 8 9.95
3 15.40 8.99 8 3.77 6 3.93 12.96
2 31.43 12.20 7 6.54 5 6.94 22.00
1 406.49 6 6.54 3.77 4 14.47 41.58

Instance Fiber13b 9080 5 5.15 3 29.53
5 3.08** 4 3.27 6.54 Instance Fiber29 9080
4 15.97 28.85 3 6.10 12.07 13 5.90 3.03*
3 9.53 3.08 2 49.96 12 8.76
2 22.42 9.53 9.53 Instance Fiber20 9080 11 11.62 5.89*
1 138.39 138.39 11 4.92** 9 8.76

Instance Fiber14 9080 7 15.97 6 5.90 11.62
7 5.62 6 15.97 5 8.76 17.34
5 5.63 16.94 5 15.97 10.45 27.12 4 20.21 31.65

4 5.63 1.85 4 15.97 37.71 3 45.97
3 43.35 5.63 5.63 3 27.01 64.20
2 24.49 20.71 2 137.46

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 180 — #16
�

�

�

�

�

�

180 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Comparing our results with the results from Golfeto et al. (2009b), we can see that we obtained

complementary results, i.e., we found solution with less trim losses and more setups, which
confirms the difference between these two solution methods. It is possible to see that for some
instances they are far from the optimal trim loss. Our complementary results can be important

depending on the characteristics of the (practical) problem we are solving. Another point that
must be highlighted is that our method is quite efficient, and it takes on average around 5 seconds
to solve each instance, while their method took between 60 and 80 minutes for solving each

instance. So, it is possible to conclude that the proposed multi-objective GA appears as a very
simple and efficient alternative for producing non-dominated solutions for these 40 practical
instances.

5.2 Randomly Generated Data Set

The eighteen classes of instances generated by the Random Generator CUTGEN1 (Gau &
Wäscher, 1995) were used. For each class, 100 instances were generated and solved. So, the
1800 instances were generated according to the following parameters (Table 4):

• Number of types of ordered items: m = 10, 20 and 40;

• Object length: L = 1000;

• Item length: li were randomly generated in the interval [v1L , v2L]; with lower bound
v1 = 0.01 and 0.2, and upper bound v2 = 0.2 and 0.8;

• Average demand (b̄) (bi , i = 1, . . . , m): 10 and 100.

For each class, the fifth column of Table 4 also shows the mean of the optimal solution for
the number of objects

∑n
j=1 x j , considering the single objective problem of minimizing the

number of objects. The sixth column shows the lower bounds for number of different cutting

patterns
∑n

j=1 δ(x j). The optimal solutions were obtained as in Table 1 and the lower bounds
were presented in Yanasse & Limeira (2006).

In Table 5 we present the computational results comparing our MOGA, using the same param-

eters as above, with the results from four previously published methods. For each presented
method, the first column is the number of objects,

∑n
j=1 x j , and the second column is the

number of different cutting patterns,
∑n

j=1 δ(x j). These four methods are: KOMBI, HH,
ILS06 and Symbio1 proposed, respectively, in Foerster & Wäscher (2000), Yanasse & Limeira

(2006), Umetani et al. (2006) and Golfeto et al. (2009a). We considered Symbio1 because this
method presented the best results in terms of number of objects when compared to Symbio5
and Symbio10.

To reiterate, the published results for these four algorithms do not present a set of non-dominated

solutions, but only one solution with the “best” balance between the number of objects and
the number of different cutting patterns. Therefore in order to compare our method with these

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 181 — #17
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 181

Table 4 – Parameters for the random instances, optimal solution and bounds.

Class b m v1 and v2
Optimal solution Lower bounds∑n

j=1 x j
∑n

j=1 δ(x j)

C1 10 10 0.01 and 0.2 11.48 1.66

C2 100 10 0.01 and 0.2 110.25 1.66

C3 10 20 0.01 and 0.2 22.13 2.55

C4 100 20 0.01 and 0.2 215.93 2.55

C5 10 40 0.01 and 0.2 42.95 4.25

C6 100 40 0.01 and 0.2 424.68 4.25

C7 10 10 0.01 and 0.8 50.24 4.99

C8 100 10 0.01 and 0.8 499.62 4.99

C9 10 20 0.01 and 0.8 93.81 9.24

C10 100 20 0.01 and 0.8 932.26 9.24

C11 10 40 0.01 and 0.8 176.9 16.92

C12 100 40 0.01 and 0.8 1763.45 16.92

C13 10 10 0.2 and 0.8 63.47 6.27

C14 100 10 0.2 and 0.8 632.36 6.27

C15 10 20 0.2 and 0.8 119.59 11.76

C16 100 20 0.2 and 0.8 1192 11.76

C17 10 40 0.2 and 0.8 222.76 21.98

C18 100 40 0.2 and 0.8 2221.56 21.98

methods, the results for the MOGA present the non-dominated solution of the final population

with the fewest objects. Observe that we could choose another non-dominated solution. To give
an idea of the number of non-dominated solutions, we include two additional columns for the
MOGA. Column ND is the average number of non-dominated solutions. These solutions have

different cutting patterns and/or different frequencies. However, some of these solutions have
the same value for the number of cut objects

∑n
j=1 x j and for the number different cutting

patterns
∑n

j=1 δ(x j). So, DND is the average number of non-dominated solutions with different

values for the number of cut objects
∑n

j=1 x j and/or for the number different cutting patterns∑n
j=1 δ(x j).

For the first six classes (C1-C6), where the length of items vary between 1% and 10% of the

length of the objects (small items), MOGA obtained the third best average in terms of number
of objects, but obtained the worst average in terms of number of different cutting patterns. When
the lengths of the items increase to 1% up to 80% of the length of the objects (median items),

i.e., classes (C7-C12), MOGA obtained the second best average in terms of number of objects
after KOMBI. Similar results were obtained for classes C13-C18 which include big items that
vary between 20% and 80% of the length of the objects.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 182 — #18
�

�

�

�

�

�

182 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

T
ab

le
5

–
N

um
be

ro
f

ob
je

ct
s
∑ n j=

1
x

j
an

d
nu

m
be

r
of

di
ff

er
en

tc
ut

tin
g

pa
tte

rn
s
∑ n j=

1
δ
(x

j)
.

K
O

M
B

I
H

H
IL

S0
6

Sy
m

bi
o1

M
O

G
A

C
la

ss
n ∑ j=

1
x

j

n ∑ j=
1
δ
(x

j)
n ∑ j=

1
x

j

n ∑ j=
1
δ
(x

j)
n ∑ j=

1
x

j

n ∑ j=
1
δ
(x

j)
n ∑ j=

1
x

j

n ∑ j=
1
δ
(x

j)
n ∑ j=

1
x

j

n ∑ j=
1
δ
(x

j)
N

D
*

D
N

D
*

1
11

.4
9

3.
40

11
.5

6
3.

31
12

.2
4

2.
43

12
.5

9
3.

09
11

.5
9

6.
46

35
.8

5
2.

31

2
11

0.
25

7.
81

11
0.

4
6.

95
11

4.
49

3.
18

11
5.

17
6.

11
11

1.
25

13
.5

1
6.

08
3.

04

3
22

.1
3

5.
89

22
.1

7
4.

96
23

.5
3

3.
98

25
.9

6
5.

74
23

.3
0

15
.7

3
6.

84
2.

31

4
21

5.
93

14
.2

6
21

5.
98

10
.3

2
22

3.
92

4.
89

23
5.

93
10

.5
9

21
7.

71
29

.4
7

5.
38

5.
30

5
42

.9
6

10
.7

5
42

.9
9

7.
63

45
.2

9
6.

68
57

.1
7

9.
89

45
.2

9
33

.0
0

4.
12

4.
00

6
42

4.
71

25
.4

4
42

4.
89

13
.3

1
44

2.
00

7.
25

47
2.

95
30

.0
7

42
6.

98
62

.3
8

8.
17

8.
17

A
vg

.
13

7.
91

11
.2

6
13

8
7.

75
14

3.
58

4.
73

15
3.

29
10

.9
1

13
9.

35
26

.7
6

11
.0

7
4.

18

7
50

.2
1

7.
9

51
.6

9
7.

66
51

.3
5

5.
52

51
.5

8
6.

36
54

.5
6

8.
98

29
.6

3
2.

04

8
49

9.
52

9.
96

50
2.

23
9.

62
50

7.
92

5.
75

51
0.

5
8.

51
50

1.
16

10
.9

1
20

.5
2

2.
3

9
93

.6
7

15
.0

3
99

.4
9

13
.6

4
96

.3
5

10
.0

5
99

.3
6

10
.9

4
98

.9
4

19
.3

3
5.

55
3.

04

10
93

2.
32

19
.2

8
94

8.
41

18
.2

1
95

4.
55

10
.3

0
97

0.
57

16
.7

93
6.

84
22

.8
5

5.
01

3.
53

11
17

6.
97

28
.7

4
19

5.
67

24
.6

18
2.

88
18

.3
2

19
8.

26
23

.0
4

18
6.

90
39

.5
9

4.
25

4.
17

12
17

66
.2

0
37

.3
1

18
47

.4
2

33
.2

3
18

18
.3

5
18

.4
0

19
32

.1
6

32
.9

3
17

71
.9

7
44

.7
7

4.
01

3.
99

A
vg

.
58

6.
48

19
.7

60
7.

48
17

.8
2

60
1.

9
11

.3
9

62
7.

07
16

.4
1

59
1.

73
24

.4
1

11
.4

9
3.

17

13
63

.2
7

8.
97

64
.2

0
8.

93
64

.1
6

6.
68

65
.2

3
7.

28
81

.2
5

9.
57

31
.6

2
1.

85

14
63

2.
12

10
.3

2
63

3.
26

10
.5

1
63

7.
03

6.
85

64
6.

77
8.

62
63

3.
48

10
.5

3
29

.7
6

1.
8

15
11

9.
43

16
.8

8
12

3.
9

16
.2

8
12

2.
44

12
.3

4
12

7.
39

13
.6

6
12

6.
20

19
.0

9
12

.5
2.

6

16
11

91
.8

0
19

.9
1

11
97

.6
6

19
.8

9
12

17
.9

1
12

.4
6

12
54

.6
9

16
.6

8
11

95
.9

2
21

.2
6

11
.0

2
2.

69

17
22

4.
68

31
.4

6
24

4.
02

29
.7

6
23

1.
41

22
.4

4
24

4.
49

27
.2

2
23

7.
25

39
.1

8
4.

27
4.

18

18
22

42
.4

38
.2

8
22

68
.3

37
.9

23
07

.7
0

22
.5

0
24

14
.0

7
32

.7
22

49
.7

9
41

.8
8

3.
71

3.
69

A
vg

.
74

5.
67

20
.9

7
75

5.
22

20
.5

4
76

3.
44

13
.8

8
79

2.
10

17
.6

9
75

3.
98

23
.5

8
15

.4
8

2.
80

*N
D

is
th

e
av

er
ag

e
nu

m
be

r
of

no
n-

do
m

in
at

ed
so

lu
tio

ns
an

d
D

N
D

is
th

e
av

er
ag

e
nu

m
be

r
of

di
ff

er
en

t
no

n-
do

m
in

at
ed

so
lu

tio
ns

,
i.e

.,
so

lu
tio

ns
w

ith
di

ff
er

en
t

va
lu

es
fo

r
th

e
nu

m
be

r
of

cu
t

ob
je

ct
s

∑ n j=
1

x
j

an
d/

or
fo

r
th

e
nu

m
be

r
di

ff
er

en
t

cu
tti

ng
pa

tte
rn

s
∑ n j=

1
δ
(x

j)
.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 183 — #19
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 183

We can conclude that, taking the best solution in terms of number of objects, our method pro-

duces good results when the number of objects is analyzed, but this solution is not good in terms
of the number of different cutting patterns. However, the reader should be aware that this com-
parison only considers the member of final population with the fewest objects – and that since

the algorithm is designed to produce a diverse set of solutions, others will have different trade-
offs between objects and cutting patterns. On overall average our method produced 3.4 different
non-dominated solutions for each instance. Since the number of cutting patterns is integer this

limits the possible diversity and 3.4 seems to be a good number of non-dominated solutions.

Considering the computational time, it is not easy to do a complete comparison because of the
difference between the machines. However, it is possible to observe in Table 6 that our method
is relatively fast (it takes, on average, 11.48 seconds to solve each instance). Moreover, it is

relatively robust and does not vary much according to the characteristics of the instances (see,
for instance, class C12).

Table 6 – Average CPU time (in seconds) for each method.

Class KOMBI HH ILS06 Symbio5 MOGA

C1 0.14 0.23 0.10 18.54 3.55

C2 1.14 0.48 0.22 37.88 5.02

C3 1.74 0.12 0.72 33.25 5.17

C4 16.00 2.75 2.69 68.11 6.21

C5 38.03 3.43 7.55 58.29 18.12

C6 379.17 7.81 23.18 158.04 28.95

C7 0.07 0.11 0.21 19.62 14.77

C8 0.20 0.60 0.27 48.48 8.46

C9 3.37 0.49 1.96 38.75 6.46

C10 3.25 3.36 2.19 127.25 5.40

C11 36.26 7.17 19.16 117.85 29.14

C12 76.31 44.62 23.87 426.08 27.16

C13 0.08 0.13 0.26 17.66 7.82

C14 0.13 0.25 0.31 31.19 10.10

C15 1.81 0.97 2.01 41.12 6.19

C16 2.60 2.46 2.21 133.90 4.42

C17 50.93 15.46 22.01 153.45 10.36

C18 70.94 50.61 26.84 388.89 9.26

Average 37.90 7.84 7.54 106.58 11.48

Note: CPU time for KOMBI234 was on a 486/66 processor, for ILS06

was on a Pentium IV (2 GHz) processor, for HH was on a Intel Celeron

(266 MHz) processor and for Symbio5 was on a AMD SEMPRON

2300+ (1.5 GHz).

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 184 — #20
�

�

�

�

�

�

184 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

Regarding the direct comparison between the two GAs, observe that in Tables 5 and 6 we com-

pare our method, which finds, for each instance, a set of non-dominated solutions, against other
methods including the method presented in Golfeto et al. (2009a) which finds only one solution
for each instance. Referring to the results presented in Table 5, we are comparing our method

against Symbio1 which is the best (in terms of saving in waste) single objective method pre-
sented in Golfeto et al. (2009a). Even comparing with Symbio1, we obtain slightly better results.
A comparison with Symbio5 or Symbio10 would give a more explicit difference in favor of our

method. Moreover, Table 6 shows that, on average, our method took only 11.47 seconds, while
their method took 106.58 seconds to solve each instance. It is worth re-emphasizing that our
method finds a set of non-dominated solution while their method finds only one solution.

6 CONCLUSION AND FUTURE RESEARCH

This paper dealt with the one-dimensional cutting stock problem considering two conflicting
objectives. In practice, hundreds of different items may need to be cut, requiring thousands of
different cutting patterns, which makes even the minimization of loss problem difficult to solve.

When other practical aspects, such as reducing production time lost to set-ups are taken into
account, the resulting nonconvex multi-objective function is far more complex. In order to deal
with this difficulty, we have proposed a straightforward multi-objective genetic algorithm. The

proposed method is very simple, flexible in terms of the objective function to be minimized
and relatively efficient in terms of computational time. Considering the quality of the produced
solution, the method is competitive with other methods from the literature and it has the advan-

tage of producing a set of non-dominated solutions, from which the decision maker can choose
according to the many factors which influence businesses.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian agencies CAPES, CNPq, FAPESP (Process 2011/

22647-0) and the European Union (Project 2012/00464-4) for financial support.

REFERENCES

[1] ALVES C, MACEDO R & VALERIO DE CARVALHO JM. 2009. New lower bounds based on column

generation and constraint programming for the pattern minimization problem. Computers & Opera-

tions Research, 36(11): 2944–2954.

[2] ALVES C & VALERIO DE CARVALHO JM. 2008. A branch-and-price-and-cut algorithm for the pat-

tern minimization problem. RAIRO Operations Research, 42(4): 435–453.

[3] ARAUJO SA, CONSTANTINO AA & POLDI KC. 2011. An evolutionary algorithm for the one-

dimensional cutting stock problem. International Transactions in Operational Research, 18(1):
115–127.

[4] BEASLEY JE. 2002. Population heuristics. In: Handbook of applied optimization [edited by PARDA-

LOS PM AND RESENDE MGC], Oxford University Press, 138–157.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 185 — #21
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 185

[5] CERQUEIRA G & YANASSE H. 2009. A pattern reduction procedure in a one-dimensional cutting

stock problem by grouping items according to their demands. Journal of Computational Interdisci-

plinary Sciences, 1(2): 159–64.

[6] CHINCHULUUN A & PARDALOS P. 2007. A survey of recent developments in multiobjective opti-
mization. Annals of Operations Research, 154(1): 29–50.

[7] COELLO CAC. 2000. An updated survey of GA-based multi-objective optimization techniques.

ACM Computing Surveys, 32(2): 109–143.

[8] CUI Y & LIU Z. 2011. C-sets-based sequential heuristic procedure for the one-dimensional cutting

stock problem with pattern reduction. Optimization Methods and Software, 26(1): 155–67.

[9] DEB K. 2011. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons Ltd,
United Kingdom.

[10] DIEGEL A, CHETTY M, VAN SCHALKWYK S & NAIDOO S. 1993. Setup combining in the trim

loss problem—3to2 & 2to1. Working paper. Business Administration. University of Natal. Durban.
First Draft.

[11] DYCKHOFF H, SCHEITHAUER G & TERNO J. 1997. Cutting and packing. In: Annoted Bibliogra-

phies in Combinatorial Optimization [edited by DELL’AMICO M, MAFFIOLI F & MARTELLO S],

John Wiley & Sons, Chichester, 393–413.

[12] EHRGOTT M. 2005. Multicriteria optimization. Springer Verlag, Berlin.

[13] EHRGOTT M & GANDIBLEUX X. 2000. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22(4): 425–460.

[14] EIBEN AE & SMITH J. 2010. Introduction to evolutionary computing. Natural computating series.
Springer-Verlag, Berlin Heidelberg.

[15] FARLEY AA & RICHARDSON KV. 1984. Fixed charge problems with identical fixed charges.

European Journal of Operational Research, 18(2): 245–249.

[16] FOERSTER H & WÄSCHER G. 2000. Pattern reduction in one-dimensional cutting stock problem.

International Journal of Production Research, 38(7): 1657–1676.

[17] FOGEL DB. 2005. Evolutionary computation: Toward a New Philosophy of Machine Intelligence.

IEEE Press Series on Computational Intelligence. John Wiley & Sons, USA.

[18] FONSECA CM & FLEMING PJ. 1993. Genetic algorithms for multiobjective optimization: formula-

tion, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic

Algorithms [edited by FORREST S], Morgan Kaufmann Publishers Inc, 416–423.

[19] FONSECA CM & FLEMING PJ. 1995. An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary Computation, 3(1): 1–16.

[20] FOURER R, GAY DM & KERNIGHAN BW. 2002. AMPL: A modeling language for mathematical

programming. Duxbury Press, Belmont.

[21] GAU T & WÄSCHER G. 1995. CUTGEN1: A problem generator for the one-dimensional cutting

stock problem. European Journal of Operational Research, 84(3): 572–579.

[22] GOLDBERG DE. 1989. Genetic algorithms in search, optimization and machine learning. Redwood
City:Addison-Wesley Publishing Company.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 186 — #22
�

�

�

�

�

�

186 A GENETIC ALGORITHM FOR THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SETUPS

[23] GOLFETO RR, MORETTI AC & SALLES NETO LL. 2009a. A genetic symbiotic algorithm applied

to the one-dimensional cutting stock problem. Pesquisa Operacional, 29(2): 365–382.

[24] GOLFETO RR, MORETTI AC & SALLES NETO LL. 2009b. A genetic symbiotic algorithm applied
to the cutting stock problem with multiple objectives. Advanced Modeling and Optimization, 11(4):

473–501.

[25] GONG M, JIAO L, YANG D & MA W. 2009. Research on evolutionary multi-objective optimization

algorithms. Journal of Software, 20(2): 271–289.

[26] HAESSLER RW. 1975. Controlling cutting pattern changes in one-dimensional trim problems.
Operations Research, 23(3): 483–493.

[27] HAESSLER RW & SWEENEY PE. 1991. Cutting stock problem and solution procedures. European

Journal of Operational Research, 54(2): 141–150.

[28] HENN S & WÄSCHER G. 2013. Extensions of cutting problems: setups. Pesquisa Operacional,

33(3): 133–162.

[29] HERTZ A & KOBLER D. 2000. A framework for the description of evolutionary algorithms. Euro-

pean Journal of Operation Research, 126(1): 1–12.

[30] HINXMAN A. 1980. The trim-loss and assortment problems: a survey. European Journal of Opera-

tional Research, 5(1): 8–18.

[31] HORN J, NAFPLIOTIS N & GOLDBERG DE. 1994. A niched Pareto genetic algorithm for multi-
objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation,

IEEE World Congress on Computational Intelligence [edited by FOGEL DD], IEEE, 1: 82–87.

[32] JOHNSON DS. 1974. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8(3): 272–314.

[33] KOLEN AWJ & SPIEKSMA FCR. 2000. Solving a bi-criterion cutting stock problem with open-ended
demand: a case study. Journal of the Operational Research Society, 51(11): 1238–1247.

[34] LEE J. 2007. In situ column generation for a cutting-stock problem. Computers & Operations

Research, 34(8): 2345–2358.

[35] MCDIARMID C. 1999. Pattern minimisation in cutting stock problems. Discrete Applied Mathemat-

ics, 98(1-2): 121–130.

[36] MICHALEWICZ Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, New York.

[37] MOBASHER A & EKICI A. 2013. Solution approaches for the cutting stock problem with setup cost.
Computers & Operations Research, 40(1): 225–35.

[38] MORABITO R, ARENALES MN & YANASSE HH. 2009. Special issue on cutting, packing and related

problems. International Transactions in Operations Research, 16(6).

[39] MORETTI AC & SALLES NETO LL. 2008. Nonlinear cutting stock problem model to minimize the

number of different patterns and objects. Computational and Applied Mathematics, 27: 61–78.

[40] OLIVEIRA JF & WÄSCHER G. 2007. Cutting and packing. European Journal of Operational Re-

search, 183(3): 1106–1108.

[41] POLDI KC & ARENALES MN. 2006. Heurı́sticas para o problema de corte de estoque unidimen-
sional inteiro. Pesquisa Operacional, 6: 473–492.

Pesquisa Operacional, Vol. 34(2), 2014

�

�

“main” — 2014/7/1 — 13:27 — page 187 — #23
�

�

�

�

�

�

SILVIO ALEXANDRE DE ARAUJO, KELLY CRISTINA POLDI and JIM SMITH 187

[42] POLDI KC & ARENALES MN. 2010. O problema de corte de estoque unidimensional multiperı́odo.

Pesquisa Operacional, 30: 153–174.

[43] SCHAFFER JD. 1985. Multiple objective optimization with vector evaluated genetic algorithms. In:

Proceedings of the First International Conference on Genetic Algorithms [edited by GREFENSTETTE

JJ], Lawrence Erlbaum Associates, 93–100.

[44] SRINIVAS N & DEB K. 1994. Multi-objective function optimization using non-dominated sorting

genetic algorithms. Evolutionary Computation Journal, 2(3): 221–248.

[45] STEUER RE. 1985. Multiple criteria optimization: Theory, computation and application. John Wiley

& Sons, New York.

[46] UMETANI S, YAGIURA M & IBARAKI T. 2003. An LP-based local search to the one dimensional
cutting stock problem using a given number of cutting patterns. IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences, E86-A, 1093–1102.

[47] UMETANI S, YAGIURA M & IBARAKI T. 2006. One dimensional cutting stock problem with a
given number of setups: A hybrid approach of metaheuristics and linear programming. Journal of

Mathematical Modelling and Algorithms, 5(1): 43–64.

[48] VALERIO DE CARVALHO JM. 1999. Exact solution of bin-packing problems using column genera-

tion and branch-and-bound. Annals of Operations Research, 86: 629–659.

[49] VALERIO DE CARVALHO JM. 2002. LP models for bin packing and cutting stock problems. Euro-

pean Journal of Operational Research, 141(2): 253–273.

[50] VAN VELDHUIZEN DA & LAMONT GB. 2000. Multiobjective evolutionary algorithms: analyzing

the state-of-the-art. Evolutionary Computation, 8(2): 125–147.

[51] VANDERBECK F. 2000. Exact algorithm for minimizing the number of setups in the one-dimensional

cutting stock problem. Operations Research, 48(6): 915–926.

[52] WANG PY & WÄSCHER G. 2002. Editorial on cutting and packing. European Journal of Opera-

tional Research, 141(2): 239–240.

[53] WÄSCHER G & GAU T. 1996. Heuristics for the integer one-dimensional cutting stock problem: A
computational study. OR Spektrum, 18(3): 131–144.

[54] WÄSCHER G, HAUSSNER H & SCHUMANN H. 2007. An improved typology of cutting and packing

problems. European Journal of Operational Research, 183(3): 1109–1130.

[55] YANASSE HH & LIMEIRA MS. 2006. A hybrid heuristic to reduce the number of different patterns
in cutting stock problems. Computers & Operations Research, 33(9): 2744–2756.

[56] ZHOU A, QU BY, LI H, ZHAO SZ, SUGANTHAN PN & ZHANG Q. 2011. Multiobjective evolu-

tionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1):

32–49.

Pesquisa Operacional, Vol. 34(2), 2014

