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ABSTRACT. The aim of this text is to highlight recent advances of trust-region-based methods for nonlin-

ear programming and to put them into perspective. An algorithmic framework provides a ground with the

main ideas of these methods and the related notation. Specific approachesconcerned with handling the trust-

region subproblem are recalled, particularly for the large scale setting. Recent contributions encompassing

the trust-region globalization technique for nonlinear programming are reviewed, including nonmonotone

acceptance criteria for unconstrained minimization; the adaptive adjustment of the trust-region radius; the

merging of the trust-region step into a line search scheme, and the usage of the trust-region elements within

derivative-free optimization algorithms.
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1 INTRODUCTION

In the numerical solution of nonlinear optimization problems, usually by iterative schemes, it
is desirable to reach convergence to stationary points starting from an arbitrary approxima-
tion, what defines the so-called global convergence. Trust-region methods, originally devised

for unconstrained optimization, are robust globalization strategies that rest upon a model (usu-
ally quadratic) for the objective function around the current iterate and a measure for the agree-
ment between the model and the original function. Their robustness may be connected with the

regularization effect of minimizing (quadratic) models over regions of predetermined size.

A thorough reference to the subject is Conn, Gould & Toint’s book [16], published in 2000, that
includes an extensive annotated bibliography, known at that time. As pointed out in the intro-
duction of such a book (§ 1.2), the term trust region seems to have been coined by Dennis, in

a course that he taught shortly after he heard Powell talk about his technique for solving non-
linear equations [60] (see also [61]). The first official appearance of the term trust region seems
to be in Dennis [22]. Nevertheless, it took a while before such a terminology spread among the
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community, being the survey of Moré [54] highly influential, not to mention the papers on con-

vergence and algorithms of Powell [62, 63] and Moré & Sorensen [56]. Related nomenclature are
restricted step method, adopted by Fletcher [30] and confidence region, employed by Toint [83].

The books of Dennis & Schnabel [24], and of Nocedal & Wright [57] are also relevant refer-
ences on the trust-region scenario. The former is a classic textbook about unconstrained mini-

mization and nonlinear equations that presents not only the details of the optimal hooked step
(cf. Hebden [42]) but also describes the dog-leg [61] and the double-dog leg [23] strategies for
approximately solving the trust-region subproblem, together with a discussion about the initial

choice and the updating of the trust-region radius. The latter, a contemporary textbook on general
nonlinear programming, goes further into nearly exact solutions to the subproblems, including
Steihaug’s approach [81] (see also Toint [83]) and the description of the so-called hard case. The

presented trust-region algorithm for unconstrained minimization is accompanied by the global
convergence analysis under fraction of Cauchy decrease. Besides, the text tackles scaling, non-
Euclidean trust regions and the implementation of the Levenberg-Marquardt strategy upon the

trust-region perspective (see also Moré [53] and references therein). It is worth mentioning that
the Levenberg-Marquardt strategy for the nonlinear least-squares problem may be considered as
a precursor of the trust-region method for unconstrained minimization. When it comes to con-
strained optimization, Nocedal & Wright have also analyzed the trust-region sequential quadratic

programming (SQP) approach, presenting a practical trust-region SQP algorithm.

The purpose of this survey is to highlight recent advances in the area and to put them into per-
spective. It is organized as follows. To provide a ground with the main ideas and the related
notation, an algorithmic framework is recalled in Section 2. Specific approaches concerned with

handling the trust-region subproblem are discussed in Section 3. Recent contributions encom-
passing trust-region globalization for nonlinear programming are reviewed in Section 4, includ-
ing, among others, nonmonotone acceptance criteria for unconstrained minimization and the

usage of the trust-region philosophy within derivative-free optimization algorithms. Finally, a
brief conclusion is given in Section 5.

2 THE ALGORITHMIC FRAMEWORK

The trust-region strategy for minimization on an arbitrary domain is outlined next, following the
presentation of Martı́nez & Santos [50]. The problem upon consideration is

minimize f (x) subject to x ∈ D, (1)

where D ⊂ Rn is an arbitrary closed set and f is continuously differentiable in an open set that
containsD. The gradient is denoted by g := ∇ f .

Let ‖ · ‖ be an arbitrary norm on Rn and the associated induced matrix norm. Let the parameters
σ1, σ2, θ , �min, M , γ be such that 0 < σ1 < σ2 < 1, θ ∈ (0, 1), �min > 0, M > 0 and
γ ∈ (0, 1]. Initially, an arbitrary feasible point x0 ∈ D is known, a symmetric matrix B0 ∈ Rn×n

such that ‖B0‖ ≤ M is given, together with an initial radius �0 ≥ �min. At the k-th iteration, the
first trust-region radius tried is denoted by �k , whereas the trust-region radius finally accepted
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is denoted by �k . Given xk ∈ D, gk := g(xk), Bk = BT
k ∈ Rn×n such that ‖Bk‖ ≤ M and

�k ≥ �min, the steps for obtaining �k and xk+1 are given next:

Algorithm 1. Trust-region for minimization on an arbitrary domain

Step 0. Set �← �k .

Step 1. Compute a global solution sQ
k (�) of

minimize Qk(s) := M
2 sT s + gT

k s

subject to xk + s ∈D, ‖s‖ ≤ �.
(2)

If Qk(s
Q
k (�)) = 0, stop.

Step 2. Compute s̄k(�) such that

�k(s̄k(�)) ≤ γ Qk(s
Q
k (�))

xk + s̄k (�) ∈ D, ‖s̄k(�)‖ ≤ �,
(3)

where �k(s) := 1
2sT Bks + gT

k s for all s ∈ Rn .

Step 3. If
f (xk + s̄k(�)) ≤ f (xk )+ θ�k(s̄k (�)) (4)

then define sk = s̄k(�), xk+1 = xk + sk , �k = �. Choose �k+1 ≥ �min, Bk+1 = BT
k+1

such that ‖Bk+1‖ ≤ M and return.

Otherwise, replace � by �new ∈ [σ1‖s̄k(�)‖, σ2�] and go to Step 1.

Some remarks about the Algorithm 1 are in order:

i. If the Algorithm 1 stops at Step 1, so that Qk(s
Q
k (�)) = 0, then xk is stationary for

problem (1) (cf. [50]).

ii. In Step 2, the quadratic model is required to decrease a fraction of the minimum of the
auxiliary subproblem (2). The solution of the auxiliary subproblem plays the role of the
classical Cauchy point, with a practical advantage of being computed possibly with a single
projection step, whereas computing a Cauchy point approximation may require more than
one projection on the feasible region.

iii. The fixed parameter �min > 0 imposes a lower bound for the first trust-region radius tried
at each iteration. As a result, larger steps are tried far from the solution, and artificially
small trial steps inherited from previous iterations are eliminated.

iv. The acceptance condition (4) of Step 3 is an Armijo-like alternative presentation of the
usual ratio between the actual and the predicted reductions:

Aredk

Predk
:= f (xk)− f (xk + s̄k(�))

�k(0)−�k(s̄k(�))
≥ θ. (5)
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It is worth mentioning that the current value of such a ratio may be used in more sophisti-
cated schemes for updating the trust-region radius.

v. Although the subproblems

minimize �k(s)
subject to xk + s ∈D, ‖s‖ ≤ �.

(6)

might be difficult, as linear approximations of the set D are not employed, particular cases
are solvable, which include Euclidean balls; spheres; complements of Euclidean balls;
intersection of the aforementioned sets, among others. Thus, the algorithm is not restricted
to a convex domain. For further details, see [50].

vi. By choosing ‖ ·‖ as the �∞ norm, in case de domainD is a polytope, the subproblem (6) is
solvable, with polynomial complexity for an ε-approximate solution, for arbitrary quadrat-
ics (cf. Vavasis [84]).

2.1 Convergence results and further comments

The uniform boundedness assumption ‖Bk‖ ≤ M is a common hypothesis for the trust-region
algorithms to reach global convergence ([54, 78]). A weaker condition was used by Powell [63],
namely ‖Bk‖ ≤ M + ˜Mk, with k = 1, 2, 3 . . .. Together with a step sk that provides simple de-
crease f (xk+sk) < f (xk), Powell proved global convergence in the sense of lim infk→∞‖gk‖ =
0 for the unconstrained case (D = Rn ).

Imposing the sufficient decrease condition (4) allows to strengthen the result, so that, for a con-
tinuously differentiable function f with Lipschitz continuous gradient, if ‖Bk‖ ≤ M , D = Rn

and f is bounded below in the level set {x ∈ Rn | f (x) ≤ f (x0)} then limk→∞ ‖gk‖ = 0 (see,
e.g. Theorem 4.8 of Nocedal & Wright [57]).

No doubt, one of the advantages of trust-region methods, as compared with line search methods,
is that the matrix Bk is allowed to be indefinite (cf. Nocedal & Yuan [58]). In Algorithm 1
this provides more freedom to form the quadratic model defined by �k(·), from quasi-Newton
approximations to the true Hessian if the function f is twice continuously differentiable. In the
latter case, convergence to points that satisfy the second order necessary optimality conditions
may be obtained for the unconstrained problem (cf. Shultz, Schnabel & Byrd [78]).

In terms of local convergence, at the early iterations, when xk may be far from the solution x	,
the values of �k may be small and may prevent a full (quasi) Newton step from being taken.
However, at later iterations in which xk is closer to x	, it is hoped that there will be greater
trust in the model. Then �k can be made sufficiently large so that full (quasi) Newton steps are
acceptable and a (superlinear) quadratic convergence rate is achievable.

Under an assumption of weak regularity, defined in terms of feasible arcs, it has been proved
that the Algorithm 1 is well defined and globally convergent to a stationary point, also defined
in terms of feasible arcs emanating from it (see, resp. Theorems 2.3 and 3.2 of [50]). A specific
algorithm for handling the Euclidean ball domain was presented in [50] as well, together with an
extensive set of numerical examples.

Pesquisa Operacional, Vol. 34(3), 2014
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3 TRUST-REGION SUBPROBLEMS

As previously detailed, the exact solution of the trust-region subproblem (TRS) is not required
for reaching convergence of the main algorithm. Moreover, the subproblem does not need to
be solved to high precision and the step sk may satisfy ‖sk‖ ≤ ξ�k for some constant ξ ≥ 1.
As expected, the cost of obtaining a solution for the TRS turns to be more significative as the
problem dimension increases.

A consolidated strategy for computing an approximate solution for the TRS based on Cholesky
factorizations was proposed by Moré & Sorensen [55]. Theoretical properties of the TRS were
presented by Gay [33] and Sorensen [79]. Further, Ben-Tal & Teboulle [9] have deepened the
analysis of the tremendous amount of structure of such a problem. Taking into account the mod-
ern sparse linear algebra subroutines available, the ideas of Gay & Moré-Sorensen were revisited
by Gould, Robinson & Thorne [37]. The resulting software is freely available as the packages
TRS and RQS, as part of the GALAHAD optimization library [36].

In case a factorization turns to be too expensive or not affordable, and just matrix-vector products
are at hand, the inexact conjugate-gradient-like strategy of Steihaug-Toint [81, 83] might be an
alternative. To overcome the likely premature stopping of such a strategy whenever negative
curvature is present, Gould, Lucidi, Roma & Toint [35] have used the Lanczos method to solve
further the subproblem in case the boundary is encountered, defining the GLTR (generalized
Lanczos trust-region) algorithm.

An extension of the strategy of Steihaug & Toint has been recently proposed by Erway, Gill &
Griffin [26], in which a solution of the TRS may be calculated to any prescribed accuracy. A con-
trolling parameter allows the user to take advantage of the tradeoff between the overall number
of function evaluations and matrix-vector products associated with the underlying trust-region
method. An improvement upon Steihaug-Toint has been suggested by Erway & Gill [25], where
the trust-region norm is defined independently of the employed preconditioner. Numerical exper-
iments corroborate the efficiency of the proposed improvement in terms of function evaluations,
as compared with Steihaug’s algorithm and with the GLTR of [35].

In the survey [59], Palagi addresses other possibilities for the numerical solution of the large-
scale TRS: the parametric eigenvalue reformulation-based strategy of Sorensen [80]; the semidef-
inite programming approach of Rendl & Wolkowicz [70]; the exact penalty function based al-
gorithm of Lucidi, Palagi & Roma [46], and the DC (difference of convex functions) based
algorithm of Pham Dinh Tao & Le Thi Hoai An [82].

Along the parametric eigenvalue reformulation-based philosophy for the large-scale TRS is the
work of Rojas, Santos & Sorensen [72], a matrix-free method that improves upon Sorensen’s
original idea [80] by encompassing both the easy and the hard case in a unified and superlinearly
convergent interpolating scheme. The implementation of the LSTRS method, that stands for
large-scale trust-region subproblems, is presented and described in [73].

Another recent matrix-free method for the large-scale TRS has been proposed by Apostolo-
poulou, Sotiropoulos & Pintelas [5]. By assuming that the matrix Bk is updated by the limited
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memory L-BFGS formula with a correction of low rank (one or, at most, two), they have obtained
analytic formulas for the eigenvalues of the involved matrices. Based on such formulas, they
have constructed a positive definite matrix with analytically computable inverse, without any
factorization. Moreover, in the hard case, the inverse power method may be used to compute
the demanded direction of negative curvature. Numerical comparative experiments illustrate the
efficiency of the approach in terms of the obtained accuracy, small running time and negligible
needed amount of memory.

In a following work, Apostolopoulou, Sotiropoulos, Botsaris & Pintelas have extended the pre-
vious results of [5], where the authors have assumed the initial B0 to be a scalar matrix defined
by the Barzilai & Borwein spectral parameter. In [4] the authors have studied the eigenstruc-
ture of minimal-memory BFGS matrices with the usage of any non-zero real number as the
initial scaling factor. Likewise, analytic expressions are derived, factorizations are avoided, and
an algorithm that solely rests upon inner products and vector summations is obtained, with an
extremely favorable numerical performance when compared with the GLTR algorithm of Gould,
Lucidi, Roma & Toint [35].

Along the same perspective is the recent work of Erway & Marcia [27], that addresses the solu-
tion of linear systems of the form (B + σ I )x = c, being B ∈ Rn×n a limited-memory BFGS
matrix (with m updates, m � n) and σ a positive constant. A recursive formula is devised upon
simple conditions on B0 and σ , with complexity m2n. Experiments with m = 5 and n from 103

up to 107 illustrate the performance of the proposed formula comparatively with the matlab di-
rect backslash command (with n ≤ 2× 104) and the built-in conjugate-gradient routine pcg.m.

4 NONLINEAR PROGRAMMING

In this section, several current trust-region-based methods are reviewed, separated in three
classes, namely: unconstrained minimization; constrained minimization and other problems, and
derivative-free optimization.

4.1 Unconstrained minimization

Concerning the convergence of unconstrained minimization algorithms, following the pioneering
work of Powell [62, 63], the general analysis presented by Shultz, Schnabel & Byrd [78] extends
it and practically encompasses the main aspects, addressing first and second order necessary opti-
mality conditions under fraction of optimal decrease and fraction of Cauchy decrease. Although
the authors have focused a class of trust-region-based algorithms, their scheme is sufficiently
broad to include line search algorithms as well.

After such a thorough analysis, completed by the systematization presented in the comprehensive
book of Conn, Gould & Toint [16], one could think that the unconstrained minimization scenario
upon the trust-region perspective had been exhausted. Nevertheless, two aspects have generated
several contributions in the last few years.

First, the attempt to devise an automatic adjustment of the trust-region radius, as examined
by Sartenaer [75], has generated the adaptive trust-region methods, being Zhang, Zhang, &
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Liao [90] one of the first references in this context. Shi & Guo [76] have also proposed an
algorithm that automatically adjusts the trust-region radius at each iteration.

Second, adopting a nonmonotone criterion for acceptance of the step has generated nonmonotone
trust-region methods. It was motivated by the popularity of nonmonotone line search techniques
for the solution of unconstrained optimization problems by Newton’s method. Condition (4), or
equivalently (5), is relaxed by replacing the objective value at the kth-iteration by the maximum
of the function values at the current and the previous p iterations, for a given positive integer
p. This strategy has been proposed by Deng, Xiao & Zhou [21], and it is based on Grippo,
Lampariello & Lucidi’s ideas [39]. Subsequent related contributions are the works of Mo, Liu &
Yan [52], Gu & Mu [41] and Liu & Ma [45]; nevertheless, these three references have employed
the average function value of the latest p + 1 iterations instead of the maximum, following the
approach of Zhang & Hager [88].

Combining the aforementioned two features, several nonmonotone adaptive trust-region methods
have been devised for unconstrained minimization. Among them, and chronologically, we should
mention Zhang & Zhang [89], Fu & Sun [32], Shi & Wang [77] and Ahookhosh & Amini [2],
among others.

Following Nocedal & Yuan’s ideas [58], some authors have adopted a combination of trust-region
and line search ideas. This is the case of Shi & Wang [77], Ahookhosh, Amini & Peyghami [1]
and Liu & Ma [45]. It is worth mentioning that the quadratic models adopted by Liu & Ma
are convex, what is not mandatory in trust-region methods. The matrices Bk are diagonal, so
it is possible to solve exactly the trust-region subproblems. Moreover, the obtained directions
are always of descent at the current iterate xk . As a consequence of the adopted line search, the
global convergence result obtained is weaker than the usual global convergence of trust-region
methods: instead of reaching stationarity at all limit points, the authors have just established that
there exists a stationary limit point of the generated sequence.

Subspace properties of trust-region methods were analyzed and assessed by Wang & Yuan [86].
Filter trust-region algorithms for unconstrained optimization have been first addressed by
Gould, Sainvitu & Toint [38], based on the multidimensional filter devised by Gould, Leyffer
& Toint [34] for solving (possibly) large-scale systems of nonlinear equations and nonlinear
least-squares problems. More recently, Fatemi & Mahdavi-Amiri [29] improved upon Gould,
Sainvitu & Toint’s ideas.

Last but not least, in the latest textbook of Griva, Nash & Sofer [40] the trust-region methods
are described in the basics for unconstrained optimization, in parallel with line search methods,
as a strategy for guaranteeing convergence.

4.2 Constrained minimization and additional problems

When it comes to bound-constrained optimization, there are a few recent contributions to be
reviewed. The first is the filter-trust-region method of Sainvitu & Toint [74], in which the authors
have extended the technique of [38] by means of a gradient-projection method.

Pesquisa Operacional, Vol. 34(3), 2014
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The second is the trust-region affine method of Wang [85], where two trial steps are computed.
The primary is obtained by solving an appropriate quadratic model in an ellipsoidal region de-
fined by an affine scaling technique that depends on both the distance of the current iterate to
the boundary and the trust-region radius. For establishing convergence and avoiding iterations
trapped around nonstationary points, an auxiliary step is defined along an approximate projected
gradient. The trial step to generate the next iterate is chosen as the one that produces more re-
duction of the quadratic model, so that the limit points of this algorithm are not bounded away
from stationarity.

The third is the DC (difference of convex) trust-region method of Le Thi Hoai An et al. [3].
The authors have used the DC framework in the solution of nonlinear optimization problems
within convex domains using trust regions. More specifically, DC local models for the quadratic
model of the objective function were used to compute the trust-region step, and a primal-dual
subgradient method was applied to the solution of the associated trust-region subproblems. Exact
second-order derivatives of the objective function turned out to be essential, theoretically and
practically. Moreover, the applicability of the approach rests upon projections on the feasible
set being affordable. Bound constrained minimization was used to illustrate and validate the
proposed idea, in a thorough set of computational tests.

Lukšan, Matonoha & Vlček [47] have solved the �1 optimization problem by means of a sequence
of parametrized trust-region interior point-barrier methods, and the sequence of solutions thus
obtained is shown to converge to the solution of the original problem.

For bound-constrained nonlinear systems, Bellavia, Macconi & Morini [8] have devised an affine
scaling trust-region approach. Concerning general nonlinear programming, the global conver-
gence of a trust-region SQP-filter algorithm has been addressed by Fletcher, Gould, Leyffer,
Toint & Wächter [31] and also by Maciel & Mendonça [48].

Kanzow & Petra [43] have reformulated the mixed complementarity problem as a bound-con-
strained nonlinear least-squares problem with zero residual. On the basis of this reformulation,
a trust-region method for the solution of mixed complementarity problems is considered. This
trust-region method combines a projected Levenberg-Marquardt step to guarantee local fast con-
vergence under suitable assumptions, affine scaling matrices which are used to improve the
global convergence properties, and a multidimensional filter technique to accept the full step
more frequently.

For unconstrained multiobjective problems, Carrizo, Lotito & Maciel [12] have proposed a trust-
region quasi-Newton algorithm, based on the BFGS updates for scalar optimization. Comparative
results with the usage of exact Hessians have shown a clear advantage for the BFGS approxima-
tion, when it comes to the total number of demanded functional evaluations.

4.3 Derivative-free optimization

Among the strategies employed in the derivative-free optimization scenario, the trust-region al-
gorithms rest upon linear or quadratic approximations to the objective function, which are based
only on the objective function values at sample points. These local surrogate models are the core
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of the interpolation-based derivative-free optimization methods, reviewed by Karasözen in the
survey [44], also described in the book of Conn, Scheinberg & Vicente [20] and pointed out in
the survey of Rios & Sahinidis [71].

Powell’s algorithm COBYLA (constrained optimization by linear approximations) [64] was cre-
ated for addressing nonlinearly constrained optimization problems with a few variables and it is
easy to use, according to the author. Each iteration forms linear approximations to the objective
and constraint functions by interpolation at the vertices of a simplex, and a trust-region bound
restricts each change to the variables. Thus, a new vector of variables is calculated, which may
replace one of the current vertices, either to improve the shape of the simplex or because it is the
best vector that has been found so far, according to a merit function that gives attention to the
greatest constraint violation. COBYLA was followed by UOBYQA (unconstrained optimization
by quadratic approximation) [65], NEWUOA [66, 67] and BOBYQA [68]. The latter is an ef-
ficient algorithm that handles bound-constrained minimization and does not have a companion
convergence theory.

Also based on models is the so-called DFO (derivative free optimization) method of Conn,
Scheinberg & Toint [17], for unconstrained minimization. It encompasses techniques that en-
sure geometric quality of the considered models, based upon Lagrangian polynomials. Indeed,
for the model to be well-defined, the interpolation points must be poised, meaning that they must
be compatible with the interpolation conditions imposed on them. The convergence of this ap-
proach is presented in [14], using Newton’s fundamental polynomials, an alternative to Lagrange
functions.

Marazzi & Nocedal [49] have also proposed (linear and quadratic)-model-based algorithms for
unconstrained derivative-free optimization, whose convergence is ensured by trust regions. The
geometric quality of the model is controlled by means of a taboo region for the potentially de-
generate points, that are avoided by imposing an aditional constraint, wedged-shape in the linear
case.

A numerical study was presented by Fasano, Morales & Nocedal [28] concerning unconstrained
derivative-free optimization, aimed to investigate the effect of dispensing with the geometry
phase altogether. To their surprise, although ill-conditioning had been observed, a self-correcting
mechanism seemed to be present, so that no failure was observed. To remove a point from the
current set, Moré-Sorensen [55] algorithm was used. Very competitive comparative results with
DFO [17, 14] and NEWUOA [66, 67] were shown. Scheinberg & Toint [17] have analyzed fur-
ther the intrinsic self-correcting mechanism of combining trust regions and interpolating models
for unconstrained derivative-free optimization.

An algorithm for least-squares minimization upon the derivative-free perspective was proposed
by Zhang, Conn & Scheinberg [87], taking advantage of the intrinsic structure of the problem,
but following the features of Conn, Scheinberg & Vicente [18] and of Powel [66] for practical
efficiency.

Conn, Scheinberg & Vicente [19] have broaden the theoretical analysis of global convergence of
trust-region algorithms to first- and second-order critical points. They have considered a class of
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methods based on the minimization of quadratic or linear models, with results that do not depend
on the sampling techniques to generate the sets of interpolant points. Important issues addressed
include global convergence when acceptance of iterates is based on simple decrease of the ob-
jective function; trust-region radius maintenance at the criticality step, and global convergence
for second-order critical points.

An opportune discussion concerning the differences between the description of an algorithm
for practical use and its description for developing convergence theory is given by Powell [69].
Moreover, in such a work he presents the global convergence of an algorithm for unconstrained
derivative-free optimization in Rn under the assumption that the models interpolate the objective
function in n + 1 points, what ensures unicity of the models in the linear case.

Bandeira, Scheinberg & Vicente [6] have analyzed the sparse recovery of models for functions
with sparse Hessians, in unconstrained minimization. Probabilistic models for the unconstrained
case have been handled by Bandeira, Scheinberg & Vicente [7].

When it comes to model-based general constrained derivative-free optimization, two algorithms
stand out: the DFO of Conn, Scheinberg & Toint [15] and Berghen & Bersini’s CONDOR [10],
an extension of Powell’s UOBYQA. Both had been designed for small dimensional problems
and high-computing-load objective functions. DFO uses linear or quadratic models to guide the
search, in contrast to UOBYQA and CONDOR, thus requiring less function evaluations to build
the local models. The authors of CONDOR, however, based on their experimental results, have
surprisingly discovered that their code used less function evaluations than DFO to reach an opti-
mum point, despite the fact that the cost to build a local model is higher. The heuristic used inside
UOBYQA (and also inside CONDOR) has shown to be relevant to reduce the number of func-
tion evaluations in the presence of noisy and high computing load objective functions. A primary
aim of Berghen & Bersini was to provide an updated version and a more accessible description
of such a heuristic. It is worth mentioning that for both DFO and CONDOR, the performance
improves in case the gradients of the constraints are available.

In Conejo et al. [13], the authors have established the global convergence of a trust-region-based
algorithm developed for convex-constrained derivative-free optimization under usual assump-
tions. Although the problem upon consideration is assumed to be smooth, only the derivatives of
the constraints are available.

Problems with smooth constraints (not necessarily convex) and derivative-free objective func-
tion were also tackled by Bueno, Friedlander, Martı́nez & Sobral [11] within the inexact restora-
tion approach, that performed favourably in terms of robustness in comparison with COBYLA
and three other benchmarks. For problems with thin domains, defined by computationally in-
expensive but highly nonlinear functions, Martı́nez & Sobral [51] have proposed the algorithm
SKINNY, that splits the main iteration into a restoration step, where infeasibility is decreased
without evaluating the objective function, followed by the derivative-free minimization on a re-
laxed feasible set. In the presented comparative numerical experiments, SKINNY were able to
solve more problems than DFO [15].
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5 FINAL REMARKS

The trust-region-based methods constitute a relatively recent research area among the nonlinear
programming community. The fact that over half of the referred contributions of this survey date
from 2000 onwards corroborates the potential strength that the focused subject has being reached,
with a promising even greater impact in the near future. To name a few, nonconvex constrained
optimization; robust optimization and noisy optimization are challenging branches of increasing
interest and under current investigation, in which the trust-region framework may offer valuable
ingredients to produce globally convergent and robust algorithms.
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e Industrial, Argentina.

[49] MARAZZI M & NOCEDAL J. 2002. Wedge trust region methods for derivative free optimization.
Math. Program., 91(2, Ser. A): 289–305.
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