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ABSTRACT. In this paper we proposed a new statistical test for testing the covariance matrix in one

population under multivariate normal assumption. In general, the proposed and the likelihood-ratio tests

resulted in larger values of estimated powers than VMAX for bivariate and trivariate cases. VMAX was

not sensitive to general changes in the covariance (correlation) structure. The advantage of the new test

is that it is based on the comparison of all elements of the postulated covariance matrix under the null

hypothesis with their respective maximum likelihood sample estimates and therefore, it does not restrict the

information of the covariance matrix into a scalar number such as the determinant or trace, for example.

Due to the fact that it is based on the maximum likelihood estimates and the Fisher information matrix, it

can be used for data coming from distribution other than the multivariate normal.

Keywords: covariance matrix, hypothesis testing, Fisher information matrix.

1 INTRODUCTION

Statistical tests for covariance matrix has been the issue of many papers particularly in qual-
ity control for monitoring processes using several quality characteristics simultaneously, or in
calibrations studies (Li & Tsung, 2011). They are also used to verify the assumption of equal co-

variance matrices when performing statistical tests to compare the vector means of independent
populations, such as in marketing research in the comparison of consumers profiles of different
segments, among many other applications (Montgomery, 2008).

A well-known statistical test used to verify if the covariance matrix of a population (or process)

has a certain specified structure is the generalized variance, |S|, which is based on the determinant
of the sample covariance matrix (see Alt, 1985; Djauhari, 2005). Tests based on transformations
of |S| are also found in the literature (Garcı́a-Diaz, 2007). Although the idea of summarizing

the information of the covariance matrix into a scalar number is appealing, the fact that different
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matrices can have equal or similar determinants makes the generalized variance to fail in detect-

ing some types of changes in the covariance matrix when they take place. The assumption of a
normal distribution as an approximated distribution for |S|, may also restrict its use in certain
areas since it just holds for large sample sizes (Djauhari, 2009). In quality control, for example,

it is common to use samples of sizes n = 4 or 5, cases for which the normal approximation
would not be valid. The exact distribution of |S| for the bivariate case is known and it is related
to a chi-square distribution. However, for p > 2 variables the exact distribution of |S| does not

belong to any class of known probability distributions (Anderson, 1958; Aparisi et al., 1999).

The likelihood-ratio test was presented by Anderson (1958), in a general context for multivariate
normal populations and by Alt (1985), as a tool to monitor the covariance matrix in quality
control. However, the test was based on the chi-square distribution for the test statistic which is

valid asymptotically, only. Costa & Machado (2009; 2008), proposed the VMAX based on the
maximum of the p standardized sample variances, p being the number of variables or quality
characteristics. VMAX was more efficient than the generalized variance to monitor processes

presenting better capability at detecting variances shifts. The critical region of the test (or control
chart) was obtained by numerical integration which involves non-central chi-square distributions.
More recently, Quinino et al. (2012), proposed the VMIX as a tool to monitor the variability
structure of two quality characteristics under the assumption of bivariate normal distribution. In

their paper it was shown that VMIX was more efficient than the generalized variance control
chart and better than VMAX, for some cases.

A more general method was proposed by Sullivan et al. (2007), considering the vector of
parameters θ which includes the elements of the mean vector and the covariance matrix. The

estimated vector of θ is compared with the vector θ specified in the null hypothesis by means
of a test statistic which has an approximated chi-square distribution under the null hypothesis.
What is interesting in Sullivan et al. (2007) test is that there is no restriction on the structure

of the covariance matrix postulated on the alternative hypothesis and it can be used for normal
and non-normal distributions being capable of testing the whole vector of parameters as well as
parts of it. As an illustration for the bivariate case, one could be interested in testing the vector θ

containing all 5 parameters (two means, two variances and one covariance); the parameter vector
θ containing the two means or two variances only, or containing just the variances and the co-
variances, among other possibilities. Other statistical tests for covariance matrices can be found

in the literature (see Yeh et al., 2006; 2012, among others).

In this paper we discuss the performance of the Sullivan et al. (2007), when used to test the
covariance matrix. Its performance will be compared to the likelihood-ratio and the VMAX tests
by using the exact distribution of the test statistic, as well as the chi-square distribution as an

approximation. This paper is organized as follows: in Section 2 the statistical tests are presented;
in Section 3 the results of the comparisons of the tests are shown followed by numerical examples
in Section 4 and final remarks in Section 5.

Pesquisa Operacional, Vol. 35(1), 2015
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2 STATISTICAL TESTS FOR COVARIANCE MATRICES

For all tests presented it this section, it is assumed that X1, X2, . . . , Xn, where Xk =
(Xk1, Xk2, . . . , Xkp)

′, k = 1, 2, . . . , n, is a random sample of size n from a p-variate normal
distribution with the mean vector μ = (μ1, μ2, . . . , μp)

′ and covariance matrix �, a p × p
positive definite matrix, where p is the number of random variables.

2.1 The likelihood-ratio test

The likelihood-ratio is a well-known method of hypothesis testing (Alt, 1985; Casella & Berger,
2002), and it can be used to construct a test for the covariance matrix as follows. Under the
p-variate normal distribution assumption, the likelihood function is given as

L(x1, x2, . . . , xn) = 1

(2π)np/2|�|n/2

n∏
k=1

exp

[
− 1

2
(xk − μ)′�−1(xk − μ)

]
(1)

where xk = (xk1, xk2, . . . , xkp)
′ is the observed vector for the kth sample element, k =

1, 2, . . . , n, and | . | denotes the determinant of the matrix. Let the null and the alternative hy-
pothesis be defined as H0: � = �0, H1: � �= �0, μ unknown. Under the null hypothesis the
maximum (Lo) of the likelihood function (1) is achieved when the vector μ is taken as the
sample mean vector x̄ and � = �0. Under the whole parametric space the maximum (L1) is
achieved when the vector μ is taken as the sample mean vector x̄ and the covariance matrix is
estimated as �̂, where

x̄ = 1

n

n∑
k=1

xk; �̂ p×p = (n − 1)

n
Sp×p (2)

S p×p = (n−1)−1 ∑n
k=1(xk − x̄)(xk − x̄)′ is the sample covariance matrix. The likelihood-ratio

test statistic is then given by

W = −2 ln(L0/L1) = −pn + pn ln(n) − n ln
(∣∣∣A�−1

0

∣∣∣) + tr
(
�−1

0 A
)

(3)

where A = (n − 1)S and tr(.) is the trace operator. The distribution of W under the null hy-
pothesis is asymptotically chi-square and H0 is rejected for values of W larger than the constant
L SC = χ2

α,p(p+1)/2, which is a value taken from a chi-square distribution with p(p + 1)/2 de-
grees of freedom, whose area above is equal to the significance level of the test, α, 0 < α < 1.
In the quality control terminology α is the false alarms rate. When the vector mean μ is known
under the null hypothesis, the test statistic in (3) reduces to

W = −2 ln(L0/L1) = −pn − n ln
(∣∣�−1

0 �̂
∣∣) + ntr

(
�−1

0 �̂
)

(4)

where �̂ = (n)−1 ∑n
k=1(xk − μ)(xk − μ)′.

2.2 The VMAX test

Costa & Machado (2008), proposed a new control chart to monitor the covariance matrix �

for bivariate normal populations when the mean vector μ = (μ1, μ2)
′, was known. Let X =

Pesquisa Operacional, Vol. 35(1), 2015
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(X1, X2)
′ be the random vector of interest and H0: � = �0, H1: � = �1, be the null and the

alternative hypothesis, where

�0 =
[

σ 2
1 σ12

σ21 σ 2
2

]
and �1 =

[
a2σ 2

1 abσ12

abσ21 b2σ 2
2

]

a > 0, b > 0 are constants, σ 2
1 , σ 2

2 and σ12 = σ21 are the variances and the covariances of X1

and X2, respectively, under the null hypothesis; a2σ 2
1 , b2σ 2

2 and abσ12, are the variances and the
covariances of X1 and X2, respectively, under the alternative hypothesis. Under this structure,
changes in the variances and covariances values of X1 and X2 are allowed but the correlation
structure is not affected by the changes.

The VMAX test statistic is defined as

V M AX = max{S2
1, S2

2} (5)

where

S2
1 =

∑n
k=1(xk1 − μ1)

2

nσ 2
1

; S2
2 =

∑n
k=1(xk2 − μ2)

2

nσ 2
2

,

(xk1, xk2), k = 1, 2, . . . , n, are the sample values of the random vector X = (X1, X2)
′. For a

given significance level α, 0 < α < 1, the critical region of the test is obtained by solving the
equation (6) for CL, considering a = b = 1. The null hypothesis is then rejected for any value of
(5) larger than the critical constant CL. In the quality control field the constant CL is the control
limit.

α = 1 −
∫ nCL/a2

0
Pr

[
χ2

n,(tρ2 /1−ρ2)
<

nCL

b2(1 − ρ2)

]
e−t/2

2n/2	
(n

2

) t (n/2)−1 dt (6)

where χ2
n,(tρ2/1−ρ2)

represents a chi-square distribution with n degrees of freedom and non-

centrality parameter given by tρ2/(1 − ρ2), 	(.) is the Gamma function, ρ is the correlation
coefficient between X1 and X2 and Pr[.] denotes the probability of the considered event. Under
the alternative hypothesis the expression in (5) is used to compute the power of VMAX test.
When the means (μ1, μ2) are unknown, they can be replaced by the respective sample means.

Details about the equation (6) can be found in the Appendix of Costa & Machado’s (2008; 2009)
papers. Basically, it was derived taking into consideration the fact that under the bivariate normal
distribution assumption, nS2

1

/
a2 has a chi-square distribution with n degrees of freedom (χ2

n ). It
can also be shown that conditioned on xk = (xk1, xk2, . . . , xkp)

′, the random variable defined as

nS2
2

b2(1 − ρ2)

has a non-central chi-square distribution with n degrees of freedom and non-centrality parameter
given as (ρ2

/
1 − ρ2)χ2

n . The equation (6) follows taking into account that

pw = 1 − Pr
[
(S2

1 ≤ CL) ∩ (S2
2 ≤ CL)

]
where pw = α when a = b = 1 (under the null hypothesis), and pw is the power of the test
under the alternative hypothesis.

Pesquisa Operacional, Vol. 35(1), 2015
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Costa & Machado (2008), also considered the case where the covariance matrix �1 was defined
as

�1 =
[

a2σ 2
1 σ12

σ21 b2σ 2
2

]
.

In this case, under the alternative hypothesis the correlation coefficient between X1 and X2 would
change to ρ = σi j /abσ1σ2, where σ1, σ2, are the standard deviations of the variables X1 and X2,
respectively.

VMAX test was extended by Costa & Machado (2009), for the multivariate case ( p > 2) by
using a similar approach as taken to the bivariate normal population. Numerical integration was
used to obtain the critical constant CL of the test.

2.3 Sullivan et al. (2007) statistical test

Sullivan et al. (2007), proposed a statistical test that can be applied for two groups of consecutive
independent homogeneous observations with the purpose of comparing the parameters of the
distributions of both groups. This test is of importance in quality control since it can be used to
compare the process parameters before and after some identified change point in the structure of
the sample observations. In a more general context Sullivan et al. (2007) test could be applied in
the comparison of the vector means and/or the covariance matrices of two independent groups.

Let’s suppose that the parameters of the distributions before (A) and after (B) the change point,
are described by the parameter vector θ which consists of the elements of the vector mean μ

and the covariance matrix �. As an illustration, for the bivariate normal distribution the vector
θ can be defined as θ = (μ1, μ2, σ 2

1 , σ12, σ 2
2 )′ or θ = (μ1, μ2, σ1, ρ12, σ2)

′, where σ12 and ρ12

are the covariance and correlation between the two variables and σi is the standard deviation of
the variable Xi , i = 1, 2. Let θ A and θ B be the parameter vectors of the groups of observations
A and B respectively, and θ̂ A and θ̂ B be their respective maximum likelihood estimators. Let
the (k0 × 1) vector δ̂ = (θ̂ A − θ̂ B ), be the maximum likelihood estimator of the difference
vector δ = (θA − θ B), where k0 is the number of parameters being compared. As well known,
under general regularity conditions, the maximum likelihood estimators have asymptotically a
multivariate normal distribution (Casella & Berger, 2002). Therefore, under the null hypothesis,
asymptotically, the quadratic form

χ2
A,B = δ̂′�̂−1

δ̂ δ̂

has a chi-square distribution with k0 degrees of freedom, where �δ and �
δ̂

are the theoretical

and the estimated covariance matrices of δ̂, respectively. The null hypothesis corresponds to the
non-changing in the vector of parameters, i.e., δ = 0. The covariance matrix �

δ̂
is approximated

by the Fisher information matrix (Casella & Berger, 2002), and it is estimated by using an al-
gebraic expression for the expected value of the Hessian matrix, which is then evaluated at the
maximum likelihood estimates of the parameters.

The framework used in Sullivan et al. (2007) test makes it possible to build a test for the covari-
ance matrix components as shown next.

Pesquisa Operacional, Vol. 35(1), 2015
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2.4 An Adaptation of Sullivan et al. (2007) to test the covariance matrix

In this section we will describe an adaptation of the Sullivan et al. (2007) test for the situation
in which only the covariance matrix of the population is concerned. From all over this paper we
will call this test as an adapted Sullivan et al.

Let p = 2, μ1 and μ2 pre-specified and θ = (σ1, ρ12, σ2)
′ be the parameter vector from a

bivariate normal distribution. Let θ̂ be the vector containing the maximum likelihood estimates
of the parameters in θ . Let H0: θ = θ0 and H1: θ = θ1, be the null and the alternative hypothesis
which are equivalent to H0: δ = 0 and H0: δ �= 0, where δ = θ − θ0 . Let the test statistic be
defined as

χ2
s = δ̂′�−1

δ̂
δ̂ (7)

where δ̂ = θ̂ − θ0. Under H0, asymptotically, the test statistic in (7) has a chi-square distribution
with k0 = 3 degrees of freedom being the null hypothesis rejected for large values of (7), accord-
ing to the significance level of the test. Under the bivariate normality assumption the covariance
matrix �

δ̂
is obtained through the Fisher information matrix (see Beyer, 1978; Sullivan et al.,

2007), which is given by

�δ̂ =
⎡
⎢⎣ d −e f

−e h −g

f −g i

⎤
⎥⎦ (8)

where

d = σ 2
1

2n
, e = ρ12(ρ

2
12 − 1)σ1

2n
, f = ρ2

12σ1σ2

2n
,

g = ρ12(ρ
2
12 − 1)σ2

2n
, h = (ρ2

12 − 1)

n
and i = σ 2

2

2n
,

being the values of σ1, σ2, ρ12, σ 2
1 , σ 2

2 , σ12 as specified in H0, where σ 2
1 , σ 2

2 are the variances
of X1 and X2 variables, respectively.

The adapted Sullivan et al. test for the covariance matrix can also be extended for p > 2
variables. Let X be a (p × 1) random vector with multivariate normal distribution, with mean
vector μ(θ) and covariance matrix �(θ), where μ(θ) = (μ1(θ), μ2(θ), . . . , μp(θ))′ . In this
case the typical (i,j) element of the Fisher information matrix is given by

Ii, j = ∂μ

∂θi
�−1 ∂μ′

∂θ j
+ 1

2
tr

[
�−1 ∂�

∂θi
�−1 ∂�

∂θ j

]
where

∂μ

∂θi
=

[
∂μ1

∂θi
,
∂μ2

∂θi
, ...,

∂μp

∂θi

]
; ∂�

∂θi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�1,1

∂θi

∂�1,2

∂θi
. . .

∂�1,p

∂θi

∂�2,1

∂θi

∂�2,2

∂θi
. . .

∂�2,p

∂θi
...

...
...

...

∂�p,1

∂θi

∂�p,2

∂θi
· · · ∂�p,p

∂θi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pesquisa Operacional, Vol. 35(1), 2015
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tr(.) is the trace operator and �i, j is the (i,j) element of the covariance matrix �.

A possible advantage of the adapted Sullivan et al. test regarding to the VMAX and the like-

lihood-ratio tests comes from the fact that all the parameters of the covariance matrix postulated
in the null hypothesis are compared in its test statistic, one by one, with their respective max-
imum likelihood estimates, so that there is no reduction of the covariance matrix information

into a single measure such as the determinant, or others. It also allows the correlation coeffi-
cients under the null and the alternative hypothesis to be completely different being therefore, a
more general test. The test can also be used for non-normal multivariate data since it is based on

the maximum likelihood estimates and the Fisher information matrix. It also can be used to test
shifts in the variances of the variables only.

3 COMPARISON OF THE STATISTICAL TESTS

The power of the adapted Sullivan et al., the VMAX and the likelihood-ratio tests were esti-

mated by using Monte Carlo simulation under the multivariate normal distribution assumption.
The null hypothesis is H0: � = �0, where �0 is pre-specified. For the adapted Sullivan et al.
test as well as for the likelihood-ratio, the exact and the asymptotic chi-square distributions of

the test statistics were also consider to determine the respective rejection regions of H0.

In this paper, in the implementation of the VMAX test for the bivariate normal distribution, the
Gauss-Legendre and the Pegasus method were used to sort out the numeric integration and to
determine the zeros of the function given in (6) in Section 2.2 (see Davis & Rabinowitz, 1984,

for details). Due to the fact that the values of CL for p = 2 obtained by using numeric integration
were similar to those obtained by using simulation, the value of CL for p = 3 was obtained by
simulation only.

In order to determine the critical region of the tests by the exact distribution (except for VMAX,

p = 2), M = 50.000 random samples of fixed sizes n = 5, 10, 25, 50 and 100 were generated
from a p-variate normal distribution with mean vector μ and covariance matrix �0 as stipulated
in the null hypothesis. For each sample the respective test statistic was calculated and the empir-

ical distribution was built based on the M obtained sample values. By using this distribution the
critical region of the test was determined according to the pre-specified significance level α =
0.05 for the tests. After the determination of the critical region, the respective type I error and

power of the tests were estimated as follows. First, 10.000 random samples were generated from
a multivariate normal distribution under the null hypothesis considering � = �0. For each sam-
ple and each test, the null hypothesis was tested and the proportion of rejection was calculated

given an estimate of type I error of the test. Afterwards, 10.000 samples were generated from
a multivariate normal distribution under the alternative hypothesis, H1: � = �1, considering
different �1 settings, �1 �= �0. Again for each sample and each test, the null hypothesis was

tested and the proportion of rejection was computed given an estimate of the power of the test.
This procedure was repeated k = 50 times under the null and the alternative hypothesis. At the
end, average estimates of the type I error and the power were obtained by taking the average over

Pesquisa Operacional, Vol. 35(1), 2015
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all 50 repetitions for each test, respectively. Without loss of generality this study was performed

considering one particular structure for the matrix �0 for p = 2, 3 and assuming μ = 0 under
H0 and H1.

The simulated models under the alternative hypothesis (see Tables 1 and 2), were chosen to make
it possible to evaluate whether the traditional likelihood-ratio, the adapted Sullivan et al. and the

VMAX tests were able to detect small and large differences from �0. In models 1-6 for p = 2,
and models 1, 6, 7 for p = 3, changes in the variances and in the correlation structure were
allowed. Models 7-10 for p = 2, 4 and 8 for p = 3, were more restrict since the variances were

allowed to change but the correlation (in model 4) and the covariance (in model 10) structures
remained the same as under the null hypothesis. On the contrary, the models 2, 3 and 5 for p = 3,
have the same variances as H0 but different correlation and covariance structures.

Tables 1 and 2 also present the ratio of the covariance matrices traces and determinants under

H0 and H1 as well as the ratio of the maximum of the variances under the alternative and null
simulated models. The ratio of the determinants for the bivariate models ranged from 1 (cases 2
and 3) to 2.67 (case 5), which corresponds to an increase of 0 to 166,67% in the determinant

under H1 compared to the determinant under H0. For the trivariate models the ratio ranged from
1.13 to 9.73 (case 8).

3.1 Comparison by using the exact distribution of the tests statistics

The average proportions of rejection of H0 for each test discussed in this paper are shown in

Tables 3 and 4, for p = 2, under the null and the alternative hypothesis models. When the exact
distribution was used to build the critical region of the tests, the estimates of the type I error
were 0.05 as expected. Considering only the exact distributions of the test statistics, the adapted

Sullivan et al. test (SE) performed better than the likelihood-ratio (LRE) for all sample sizes
except in cases 2, 4 and 5, for n = 50 and 100, cases which both tests were similar. Compared
to VMAX the SE test presented larger power values in cases 1-6 for all sample sizes. Both tests

had similar performance for cases 7-10 with some advantage to VMAX for smaller sample sizes.

It is important to point out the outstanding superiority of the SE test in case 2 when compared
to VMAX even for smaller samples sizes (SE average power ≥ 0.58; VMAX average power
around 0.05 for all samples sizes). This is an important point in favour of SE since the correlation

structure of �1 and �0 are completely different (opposite covariance structure), although the
variances of the two random variables are the same as well as the generalized variance. VMAX
presented also poor performance for situations where the matrix �1 was diagonal with variances

similar to the matrix �0 (cases 1, 3 and 4). In these cases, the maximum power values were
achieved at n = 100 being equal to 0.05 (case 1), 0.18 (case 3) and 0.41 (case 4), values much
lower than the obtained results from SE and LRE. Just as an example, for n = 25 the power

values from SE were above 0.7 (0.77; 0.79; 0.82) and above 0.6 from LRE (0.63; 0.67; 0.72).
Even for case 5 which the increase of the generalized variance under the alternative hypothesis
was 166,67% compared to the null hypothesis, the VMAX did not performed well for samples

Pesquisa Operacional, Vol. 35(1), 2015
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Table 1 – Simulated models −p = 2 variables.

under the null hypothesis Case ρ12 σ1 σ2 Trace Det H V R

�0 =
[

1 0.5
0.5 1

]
null 0.50 1.00 1.00 2.00 0.75 –

under the alternative hypothesis Case ρ12 σ1 σ2 T R DR H V R

�0 =
[

1 0

0 1

]
1 0.00 1.00 1.00 1.00 1.33 1.00

�0 =
[

1 −0.50
−0.50 1

]
2 –0.50 1.00 1.00 1.00 1.00 1.00

�0 =
[

1 0

0 1.13

]
3 0.00 1.00 1.06 1.07 1.51 1.13

�0 =
[

1 0

0 1.25

]
4 0.00 1.00 1.12 1.13 1.67 1.25

�0 =
[

1 0
0 2

]
5 0.00 1.00 1.41 1.50 2.67 2.00

�0 =
[

2.32 0

0 0.63

]
6 0.00 1.52 0.79 1.48 1.95 2.32

�0 =
[

1 0.53

0.53 1.13

]
7 0.50 1.00 1.06 1.07 1.13 1.13

�0 =
[

1 0.56
0.56 1.25

]
8 0.50 1.00 1.12 1.13 1.25 1.25

�0 =
[

1 0.71

0.71 2

]
9 0.50 1.00 1.41 1.50 1.99 2.00

�0 =
[

2.32 0.61
0.61 0.63

]
10 0.50 2.32 1.52 1.48 1.45 2.32

(*) Det: determinant; T R and DR: ratios between the traces and the determinants of the covariance

matrices under H1 and H0, respectively; H V R: ratio between the maximum of the variances under H1

and H0. ρ12 is the correlation between both variables. σi is the standard deviation of variable X1, i = 1, 2.

of size n = 5 (power = 0.29) reaching a power equal 0.74 for n = 25 (for this particular value of
n, the power values of SE and LRE were 0.96 and 0.93, respectively). That is not very surprising

since the test statistic of VMAX is based only upon the maximum ratio between the sample and
the population variances postulated in the null hypothesis.

When the matrix �1 is diagonal with variances larger than �0 (cases 5 and 6), the power of

VMAX increases for all sample sizes but the values are still lower than SE and LRE, except
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Table 2 – Simulated models −p = 3 variables.

under the null hypothesis Case ρ12 ρ13 ρ23 Det Trace DR H V R

�1 =
⎡
⎢⎣ 1 0.6 0.6

0.6 1 0.8
0.6 0.8 1

⎤
⎥⎦ null 0.60 0.60 0.80 0.22 3.00 – –

under the alternative hypothesis Case ρ12 ρ13 ρ23 Det Trace DR H V R

�1 =
⎡
⎢⎣2 0 0

0 0.5 0
0 0 0.25

⎤
⎥⎦ 1 0.00 0.00 0.00 0.25 0.92 1.13 2.00

�1 =
⎡
⎢⎣ 1 0.3 0.2

0.3 1 0.8

0.2 0.8 1

⎤
⎥⎦ 2 0.30 0.20 0.80 0.33 1.00 1.50 1.00

�1 =
⎡
⎢⎣1 0 0

0 1 0.8

0 0.8 1

⎤
⎥⎦ 3 0.00 0.00 0.80 0.36 1.00 1.64 1.00

�1 =
⎡
⎢⎣ 1.2 0.72 0.72

0.72 1.2 0.96
0.72 0.96 1.2

⎤
⎥⎦ 4 0.60 0.60 0.80 0.37 1.20 1.68 1.20

�1 =
⎡
⎢⎣ 1 0.3 0.3

0.3 1 0.4
0.3 0.4 1

⎤
⎥⎦ 5 0.30 0.30 0.40 0.73 1.00 3.32 1.00

�1 =
⎡
⎢⎣ 1.2 0.36 0.36

0.36 1.2 0.48

0.36 0.48 1.2

⎤
⎥⎦ 6 0.30 0.30 0.40 1.26 1.20 5.73 1.20

�1 =
⎡
⎢⎣ 1.2 0.36 0.36

0.36 1.5 0.48

0.36 0.48 1

⎤
⎥⎦ 7 0.27 0.33 0.39 1.32 1.23 6.00 1.50

�1 =
⎡
⎢⎣ 1 0.6 0.6

0.6 4 0.8
0.6 0.8 1

⎤
⎥⎦ 8 0.30 0.60 0.40 2.14 2.00 9.73 4.00

(*) Det: determinant; T R and DR: ratios between the traces and the determinants of the covariance matrices

under H1 and H0, respectively; H V R: ratio between the maximum of the variances under H1 and H0. ρi j

is the correlation between variables. Xi and X j , i �= j .

for n = 50 and 100, where they all achieved similar power (around 1). For the models 7-10

which the correlation structures are the same under the null and the alternative hypothesis, the
performance of the likelihood-ratio test decreased and its power estimates were always lower
than SE and VMAX, except in cases 9 and 10 for n ≥ 50, which all tests presented similar power
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Table 3 – Type I error and power estimates of the tests −p = 2, n = 5, 10 and 25.

Average proportion of rejection of the null hypothesis

n = 5 n = 10 n = 25

Case LRE SE VMAX LRE SE VMAX LR LRE SC SE VMAX

null 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.06 0.05 0.05

1 0.10 0.25 0.05 0.23 0.43 0.05 0.67 0.63 0.79 0.77 0.05
2 0.29 0.58 0.05 0.72 0.89 0.05 1.00 1.00 1.00 1.00 0.05

3 0.11 0.27 0.07 0.26 0.46 0.08 0.71 0.67 0.81 0.79 0.10
4 0.11 0.29 0.09 0.28 0.49 0.12 0.75 0.72 0.84 0.82 0.17

5 0.20 0.41 0.29 0.50 0.68 0.44 0.94 0.93 0.96 0.96 0.74
6 0.26 0.45 0.36 0.62 0.75 0.55 0.98 0.98 0.99 0.98 0.87

7 0.05 0.06 0.08 0.05 0.07 0.08 0.08 0.06 0.09 0.07 0.10
8 0.05 0.07 0.10 0.06 0.08 0.12 0.11 0.09 0.14 0.12 0.17

9 0.09 0.18 0.29 0.21 0.33 0.46 0.61 0.57 0.68 0.65 0.74
10 0.16 0.26 0.37 0.43 0.52 0.56 0.91 0.89 0.92 0.92 0.87

(*) LR and LRE: are the likelihood-ratio using chi-square approximation and the exact distributions; SC and

SE are the adapted Sullivan et al. using chi-square approximation and the exact distributions; VMAX test

using the exact distribution.

Table 4 – Type I error and power estimates of the tests −p = 2, n = 50 and 100.

Average proportion of rejection of the null hypothesis

n = 50 n = 100

Case LR LRE SC SE VMAX LR LRE SC SE VMAX

null 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 0.93 0.93 0.96 0.96 0.05 1.00 0.93 1.00 1.00 0.05

2 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05
3 0.95 0.95 0.97 0.97 0.13 1.00 0.95 1.00 1.00 0.18

4 0.96 0.96 0.98 0.98 0.25 1.00 0.96 1.00 1.00 0.41
5 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
7 0.08 0.07 0.10 0.09 0.13 0.11 0.11 0.13 0.13 0.18

8 0.16 0.14 0.19 0.18 0.26 0.28 0.27 0.31 0.31 0.40
9 0.89 0.88 0.92 0.91 0.94 0.99 0.99 0.99 0.99 0.99

10 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00

(*) LR and LRE are the likelihood-ratio tests using chi-square and the exact distributions. SC and

SE are the adapted Sullivan et al. test using chi-square and the exact distributions. VMAX is the

test using the exact distribution.
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values (around 1). On the other hand, the performance of VMAX increased but the SE was still

very competitive.

Tables 5 and 6 present the estimates of type I error and power for p = 3. Considering only the
exact distributions to compare the tests (they all reach 0.05 type I error under the null hypothesis),
it can be seen that the VMAX did not perform well for cases 2, 3 and 5 (estimated power 0.05

for all sample sizes). These results are expected since the test statistic of VMAX just takes into
account changes in variances of the variables. For these models the adapted Sullivan et al. was
more efficient than the maximum likelihood ratio test (SE: power ≥ 0.30; LRE power ≥ 0.16, for

n ≥ 10), particularly for case 5 (power = 0.38 for n = 5 and ≥ 0.70 for n ≥ 10). That was due
to the fact that �1 and �0 have equal diagonal values although completely different covariance
structures.

Table 5 – Type I error and power estimates of the tests −p = 3, n = 5, 10 and 25.

Average proportion of rejection of the null hypothesis

n = 5 n = 10 n = 25

Case LRE SE VMAX LRE SE VMAX LRE SE VMAX

null 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 0.31 0.73 0.24 0.88 0.98 0.40 1.00 1.00 0.70
2 0.07 0.12 0.05 0.16 0.30 0.05 0.49 0.65 0.05

3 0.11 0.22 0.05 0.34 0.57 0.05 0.84 0.93 0.05
4 0.05 0.06 0.11 0.05 0.07 0.15 0.08 0.11 0.21

5 0.12 0.38 0.05 0.41 0.70 0.05 0.91 0.97 0.05
6 0.17 0.43 0.14 0.57 0.78 0.18 0.97 0.99 0.26

7 0.20 0.46 0.17 0.63 0.82 0.25 0.99 1.00 0.40
8 0.59 0.69 0.66 0.95 0.97 0.88 1.00 1.00 1.00

(*) LR and LRE are the likelihood-ratio tests using chi-squared and the exact distributions.

SC and SE are the adapted Sullivan et al. test using chi-squared and the exact distributions.

VMAX is the test using the exact distribution.

The performance of VMAX improved for the cases which the variances changed as well as the
correlation structure (cases 1, 6 and 7), particularly for case 1 whose �1 is a diagonal matrix
and the variance of the first variable doubled the respective value giving in �0. The adapted
Sullivan et al. and the maximum likelihood ratio were still more efficient than VMAX in all

cases (power: SE ≥ 0.78; LRE: ≥ 0.57; VMAX: ≥ 0.18, for n ≥ 10). For larger sample
sizes (n = 100), the VMAX estimated power for case 1 was equal to SE and LRE values and
for n = 50 they were similar (0.93 for VMAX and 1 for the other two tests). In case 6 which

corresponds to 1.2 increase of variance, VMAX achieved its maximum estimated power when
n = 100 (power = 0.55), as long as LRE and SE reached power values close to 1 when n = 25.
SE test was the most efficient to detect the increase of variance 1.5 (case 7) since the power

estimates are larger or equal 0.82 for n ≥ 10. Both LRE and SE reached power values closer or
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Table 6 – Type I error and power estimates of the tests −p = 3, n = 50 and 100.

Average proportion of rejection of the null hypothesis

n = 50 n = 100

Case LR LRE SC SE VMAX LR LRE SC SE VMAX

null 0.06 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.05 0.05
1 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00

2 0.86 0.84 0.93 0.92 0.05 1.00 1.00 1.00 1.00 0.05
3 0.99 0.99 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05

4 0.17 0.14 0.24 0.20 0.30 0.33 0.31 0.40 0.37 0.46
5 1.00 1.00 1.00 1.00 0.06 1.00 1.00 1.00 1.00 0.06

6 1.00 1.00 1.00 1.00 0.37 1.00 1.00 1.00 1.00 0.55

7 1.00 1.00 1.00 1.00 0.61 1.00 1.00 1.00 1.00 0.86
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(*) LR and LRE are the likelihood-ratio tests using chi-squared and the exact distributions.

SC and SE are the adapted Sullivan et al. test using chi-squared and the exact distributions.

VMAX is the test using the exact distribution.

equal 1.0 for n ≥ 25. The best values for VMAX occurred for n = 50 (power = 0.61) and for

n = 100 (power = 0.86).

Although n = 5 is a small sample size to test hypothesis about the covariance matrix when
p = 3, the adapted Sullivan et al. performed well for the cases 1, 6 and 7, (power: 0.73, 0.43 and
0.46, respectively), being the estimated power about 3 times larger than VMAX and 2.5 larger

than LRE values.

The efficiency of VMAX in detecting the shifts of the covariance matrix improved a lot for case
8 (power: ≥ 0.66; = 1.0 for n ≥ 25), case which the covariance structure remains the same as
H0 but the variance of the second variable (see �1) is 4 times larger than the value giving in �0.
For this particular case, VMAX power estimates were closer to the SE and LRE values.

Comparing the results of cases 4 and 6 (both have H V R = 1.2, see Table 2), it is possible to
see that the different correlation structure affected the SE and LRE efficiencies since the tests
were more powerful to detect the shits in case 6 than in the case 4. This result is due to the fact
that the values of SE and LRE test statistics take into account all the variances and covariances
values from the �0 and �1 matrices, and the matrix �1 of case 4 is more similar to �0 than the
covariance matrix of case 6. Both SE and LRE did not perform well in case 4 and VMAX had
power estimates larger than these two tests (maximum power estimates: VMAX = 0.46; SE =
0.37; LRE = 0.31). It is important to point out that cases 4 and 8 belong to the framework which
VMAX was proposed by Costa & Machado (2008; 2009) since only increases of variances were
allowed being the correlation, or the covariance, structures the same as in H0. Therefore, the re-
sults suggest that under this framework the performance of VMAX is similar to the performance
of the adapted Sullivan et al. test.

As far as the maximum likelihood-ratio test is concerned its performance was inferior than the
adapted Sullivan et al. in all cases for n ≤ 25 and similar in the majority of cases for n ≥ 50.
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Considering all the results observed for p = 2 and 3, we can conclude that for the evaluated

cases, when the exact distribution was used to build the critical region of the tests, the adapted
Sullivan et al. was more efficient than the maximum likelihood-ratio, both were more efficient
than VMAX with few exceptions. The exceptions were related to the cases whose variances

changed but the correlation (or the covariance) structure under the alternative hypothesis was
kept the same as in H0, situations that fit well in the framework of VMAX test. One of the main
goals in quality control is to detect variances increases and in this context the results showed that

VMAX performed well.

3.2 Discussion of the results from the asymptotic distribution of the test statistic

As far as the chi-square approximation is concerned, for the bivariate cases and small samples
sizes (n = 5 and 10) the maximum likelihood-ratio (LR) and the adapted Sullivan et al. (SC)

tests resulted in estimates of type I error larger than the pre-specified nominal significance level
of 5% (estimates were 19 and 10% respectively, for LR; 12 and 8% for SC). Therefore, their
power estimates could not be compared with the results from the exact distributions of the tests

and were not presented in Table 3. For samples of sizes n = 25 and 50 the estimates were more
reasonable (around 6 to 7%) and equal 5% for n = 100. This is perfectly explained by the fact
that the chi-square approximation is valid only for larger sample sizes. For n ≥ 25 the average

power estimates from the chi-square distribution are shown in Tables 3 and 4. The results were
similar to the estimates obtained by the exact distributions.

Similar pattern was found for p = 3. For small samples (n = 5,10), the estimates of the type
I error based on the chi-square distribution were also much larger than the pre-specified 5%

significance level. For the maximum likelihood ratio test (LR), the estimates were equal 37%
for n = 5, 14% for n = 10, 8% for n = 25, being the approximation to 5% achieved only for
samples of sizes 50 and 100 (estimates around 5 to 6%). For the adapted Sullivan et al. test (SC),

the estimates were 22, 14 and 9% for n = 5, 10 and 25, respectively, achieving 5% only for
larger samples (estimates around 7 to 5% for n = 50 and 100). For n ≥ 50 the average power
estimates from the chi-square distribution are shown in Tables 5 and 6 for the LR an SC tests and
the results were similar to the estimates obtained by the exact distribution.

Therefore, by the results presented for p = 2, 3, it is clear that the chi-square approximation
did not work well for small sample sizes being not recommended in these situations. The exact
distribution of the test statistics obtained by Monte Carlo simulation should be used for small
sample sizes.

4 EXAMPLES OF APPLICATION

In this section two examples of application are presented. The first is a general situation and the
second is a particularly case of quality control. In all examples the adapted Sullivan et al. test

described in Section 2.4 is compared with the maximum likelihood-ratio and VMAX tests.
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Example 1. The transpiration data of 20 healthy females was given on Table 5.1 from Johnson
& Wichern (2002). The variables of interest were: rate of sweat (X1), quantity of sodium (X2)
and quantity of potassium (X3). Suppose the researcher wants to test the null hypothesis H0 :
� = �0 against H1: � �= �0, where

�0 =
⎡
⎢⎣ 3 11 2

11 200 6
2 6 3.74

⎤
⎥⎦

By the data from Johnson & Wichern (2002), one can find the maximum likelihood estimate of
the population covariance matrix as

�̂ =
⎡
⎢⎣ 2.735 9.509 −1.718

9.509 189.798 −5.937
−1.718 −5.937 3.447

⎤
⎥⎦

The parameter vector under the null hypothesis, the respective maximum likelihood vector esti-
mate and the difference between these two vectors are given by

θ0 = (σ1, ρ12, σ2, ρ13, ρ23, σ3)
′ = (1.732, 0.449, 14.142, 0.597, 0.219, 1.933)′

θ̂ = (1.654, 0.417, 13.776, −0.559, −0.232, 1.856)′

δ̂ = θ̂ − θ0 = (−0.078, −0.032, −0.366, −1.156, −0.451, −0.076)′.

The results of the three tests discussed in this paper are shown in Table 7. All tests except VMAX,
rejected the null hypothesis. From the structure of �0 and �̂ matrices, it is easy to notice that
VMAX was not sensitive to the covariances deviations from these two matrices. Since the ratios
between the variances of �0 and �̂ are close to 1, the result of VMAX is consistent with its
theoretical formulation.

Table 7 – Test statistic values and critical limits – Example 1.

Test Test statistic Critical limits – α = 0.05

LR 38.69 12.59
LRE 38.69 14.23

SC 85.88 12.59
SE 85.86 14.16

VMAX 0.95 1.77

Example 2. In Aparisi et al. (1999) an example was given where three quality characteristics
were measure in a part (see Fig. 1): the distance between centers, X1 (cm), and the diameters X2

(cm) and X3 (cm). According to the authors the vector mean and the covariance matrix when the
process was under control were known and given by

μ0 = (20, 7, 4)′; �0 =
⎡
⎢⎣ 0.04 0.02 0.01

0.02 0.02 0.011

0.01 0.011 0.01

⎤
⎥⎦ .
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Figure 1 – Part of the example 2. Source: See [Aparisi et. al, 1999].

To illustrate the statistical tests discussed in this paper we perform the following: (i) initially
5 samples of size n = 5, 10, 25, were simulated from a multivariate normal distribution with
parameters μ0, �0; (2) the remaining 5 samples were generated from a multivariate normal
distribution with mean vector μ0 but different covariance matrices as follows: samples 6 and 7
from matrix �1, samples 8 and 9 from �2, sample 10 from �3, where

�1 =
⎡
⎢⎣ 0.0168 −0.0053 0.0001

−0.0053 0.0092 0.0002
0.0001 0.0002 0.0009

⎤
⎥⎦�2 =

⎡
⎢⎣ 0.0682 −0.0053 0.0001

−0.0053 0.0092 0.0002
0.0001 0.0002 0.0009

⎤
⎥⎦

�3 =
⎡
⎢⎣ 0.1288 −0.0053 0.0001

−0.0053 0.0092 0.0002
0.0001 0.0002 0.0009

⎤
⎥⎦ .

The highest ratio between the variances under the alternative and the null hypothesis were 1.7 for
�2 and 3.2 for �3. The variances in �1 are smaller than the variances in �0. For each sample the
null hypothesis H0: � = �0, was tested against H1: � �= �0, by using the maximum likelihood-
ratio, the adapted Sullivan et al. and VMAX tests at α = 0.005 significance level. The results are
given in Tables 8 and 9 with the critical limits of each test considering the exact distribution as
well as the asymptotic chi-square for the maximum likelihood-ratio and the adapted Sullivan et
al. tests. For sample sizes of n = 5, the sample covariance matrices are also shown. By the exact
distribution it can be seen that for the first 5 samples the null hypothesis was not rejected by any
of the statistical tests and all n. For samples 6, 7, 8 and 9, H0 was rejected by the adapted Sullivan
et al. (SE) test for all sample sizes; by the maximum likelihood-ratio (LRE) it was rejected for
n = 10 and 25, except for sample 8 whose rejection occurred for n = 25, only. On the other
hand, VMAX rejected the null hypothesis only for sample 9 when n = 25 and did not rejected
for samples 6, 7 and 8 for any sample size.

The null hypothesis was rejected for sample 10 by all statistical tests as expected considering the
fact that this sample came from a multivariate normal distribution whose variance of X1 is 3.2
times larger than the respective variance given in �0.
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Table 8 – Results of the Example 2 – samples sizes n = 10 and n = 25 – α = 0.005.

Test Statistics – observed values

n = 10 n = 25

Sample LRE SE VMAX LRE SE VMAX

1 10.4610 2.9871 1.3467 6.6965 4.5624 1.0794
2 5.4263 4.6919 1.3168 11.4868 13.9057 1.8518

3 5.7642 4.9829 1.4768 2.5405 2.5593 1.2564
4 4.8761 3.8433 0.8694 2.4840 2.8476 1.1432

5 3.4707 4.1756 1.7074 4.7600 5.8345 1.7261
6 37.6804 355.8093 0.7003 62.1800 504.5504 0.4022

7 36.0395 185.7810 0.4293 77.2557 367.9003 0.5291

8 21.1632 84.7545 1.0847 89.3189 257.7654 1.4477
9 57.8377 186.1254 2.5899 219.0934 480.5102 4.0263

10 46.2343 60.5017 4.2255 160.5388 207.9995 3.4506

LLR = LSC = 18.5476; LRE = 24.1789; LLR = LSC = 18.5476; LRE = 20.5275;
LSE = 52.0888; LVMAX = 2.7559. LSE = 29.5167; LVMAX = 2.0007.

(*) LLR and LSC: likelihood-ratio and the adapted Sullivan et. al tests critical limits using chi-square

distribution. LRE and LSE: likelihood-ratio and the adapted Sullivan et. al tests critical limits using exact

distribution. LVMAX: critical limit for VMAX test.

Considering the asymptotic chi-square distribution the null hypothesis was rejected for samples
6-10 by likelihood-ratio (LR) as well as by the adapted Sullivan et al. (SC) for all sample sizes.
However, it is important to remind that as shown in Section 3.2, for p = 3 and n = 5, 10, 25,
the type I error of these two tests for small samples is inflated being larger than the pre-specified
significance level, particularly for n = 5, 10.

It is interesting to point out that the same parameters μ0 and �0 were used by Costa & Machado
(2009), in the illustrative example given on Section 5 of their paper. The matrix �1, which was
used in our example, is the covariance matrix of the sample number 4 presented in Costa &
Machado’s example (2009), and it was considered similar to the matrix �0 by the VMAX test in
their paper.

5 FINAL REMARKS

Considering the exact distribution of the tests statistics, in the majority of the simulated cases,
the adapted Sullivan et al. and the likelihood-ratio tests resulted in larger values of estimated
power than VMAX for bivariate and trivariate normal distributions. VMAX was not sensitive to
general changes in the covariance (or correlation) structure. Its estimated powers increased when
the variances were larger under the alternative than the null hypothesis and the covariance (or
correlation) structure remained similar under H0 and H1. This result is no very surprising since
VMAX was built with the main purpose of detecting variances shifts and it has been proved to
be efficient on this type of situation (see Costa & Machado, 2008, 2009; Quinino et al., 2012). It
still can be used for this purpose but it is important to point out that the adapted Sullivan et al.
was also competitive in these particular cases.
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Table 9 – Results of the Example 2 – sample size n = 5.

Sample covariance matrix
Test statistic – Observed values

LRE SE VMAX

1 S1 =
⎡
⎢⎣0.0970 0.0419 0.0203

0.0419 0.0245 0.0123

0.0203 0.0123 0.0073

⎤
⎥⎦ 5.8330 5.2599 1.9393

2 S2 =

⎡
⎢⎣0.0189 0.0012 0.0044

0.0012 0.0077 0.0069
0.0044 0.0069 0.0119

⎤
⎥⎦ 5.4071 12.8939 1.0760

3 S3 =
⎡
⎢⎣0.0265 0.0176 0.0144

0.0176 0.0363 0.0158

0.0144 0.0158 0.0102

⎤
⎥⎦ 11.4558 10.3729 1.5729

4 S4 =
⎡
⎢⎣0.0238 0.0007 0.0010

0.0007 0.0079 0.0069

0.0010 0.0069 0.0096

⎤
⎥⎦ 4.5389 10.4866 0.7665

5 S5 =
⎡
⎢⎣0.0183 0.0128 0.0050

0.0128 0.0128 0.0049
0.0050 0.0049 0.0024

⎤
⎥⎦ 12.0149 8.5493 0.7537

6 S6 =
⎡
⎢⎣ 0.0131 −0.0055 0.0019

−0.0055 0.0067 −0.0004
0.0019 −0.0004 0.0006

⎤
⎥⎦ 23.6423 201.5283 0.2886

7 S7 =
⎡
⎢⎣ 0.0184 −0.0086 0.0015

−0.0086 0.0092 −0.0001

0.0015 −0.0001 0.0010

⎤
⎥⎦ 19.4767 155.7951 0.4992

8 S8 =
⎡
⎢⎣ 0.0322 −0.0126 0.0027

−0.0126 0.0117 0.0000

0.0027 0.0000 0.0016

⎤
⎥⎦ 20.3896 158.6873 1.2901

9 S9 =
⎡
⎢⎣0.0850 0.0039 0.0047

0.0039 0.0223 −0.0032
0.0047 −0.0032 0.0010

⎤
⎥⎦ 33.6708 215.0552 3.0146

10 S10 =
⎡
⎢⎣ 0.3802 −0.0113 −0.0047

−0.0113 0.0175 0.0008
−0.0047 0.0008 0.0006

⎤
⎥⎦ 79.7073 131.9005 7.6054

LLR = LSC = 18.5476; LRE = 36.4839; LSE = 111.3334; LVMAX = 3.8140 – α = 0.005.

(*) LLR and LSC: likelihood-ratio and the adapted Sullivan et al. tests critical limits using chi-square

distribution. LRE and LSE: likelihood-ratio and the adapted Sullivan et. al tests critical limits using exact

distribution. LVMAX: critical limit for VMAX test.

As far as the efficiency of the likelihood-ratio test is concerned, the results showed that the

adapted Sullivan et al. test was more efficient in most of the cases, except for larger samples
were their performance were similar. In fact for p = 3 the adapted Sullivan et al. was always
superior. In some cases for p = 2, VMAX was more efficient than the likelihood-ratio test.
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The results presented in this paper had indicated that the adapted Sullivan et al. is a good al-

ternative for testing hypothesis about the structure of the covariance matrix. It is a very flexible
test and it can be applied in more general situations to detect differences in the variances as well
as in other parameters of the covariance matrix. Also the fact that the adapted Sullivan et al.

test depends upon the calculation of Fisher Information matrix, makes it possible to be used for
multivariate normal and non-normal populations.

For small samples sizes the chi-square approximation did not performed well being not recom-
mended since the estimates of type I error were larger than the pre-specified significance level

for the adapted Sullivan et al. and for the likelihood-ratio tests. However, this fact does not make
the use of the adapted Sullivan et al. or the likelihood-ratio tests restrictive since the exact dis-
tribution of the respective test statistics under the null hypothesis are easily obtained by Monte

Carlo simulation. The same is true for the VMAX test for p > 2 since in these situations the use
of numerical integration to find the critical region of the test is more complex and Monte Carlo
simulation can be very helpful.
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