
Pesquisa Operacional (2021) 41: e231454 p.1-25
doi: 10.1590/0101-7438.2021.041.00231454
© 2021 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
ARTICLES

A CHEMICAL REACTION OPTIMIZATION ALGORITHM FOR
PHASOR MEASUREMENT UNIT PLACEMENT

Aileen Carniel1* and Mario Mestria2

Received November 26, 2019 / Accepted October 18, 2021

ABSTRACT. Optimal Phasor Measurement Unit (PMU) Placement (OPP) aims to reduce equipment costs
while maintaining electrical systems’ observability. PMU´s synchronized phasor data provide electrical
systems’ information with high quality and frequency enabling the implementation of faster than real-time
state estimators. We applied Chemical Reaction Optimization (CRO) method at OPP problem, testing it
successfully at IEEE power system databases (14, 30, 57 and 118 bars) through two distinct models. The
relationships between CRO parameters and the occurrence of elementary reactions was exploited, achieving
better results through specific reactions. Due to problems similarity and larger scales, the software was
adapted to Beasley OR-Library Set Covering (SC) problems. In the process to achieve GAPs smaller than
10% for some files, we tried out dedicated local searches, disturbance recurrence limits and stop condition
changes. However, we suggest continuing to evaluate CRO method adherence to SC problem using different
data structures to decrease computational times.

Keywords: Combinatorial Optimization, Phasor Measurement Unit, Observability, Smart Grids, Chemical
Reaction Optimization.

1 INTRODUCTION

Currently, power systems operate tend to operate in stressful situations, since worldwide energy
demand steadily increases. The availability and reliability of electricity networks have a profound
impact on society, especially on industry, where energy failures and instabilities might cause
financial losses.

A traditional power grid consists basically of power plants, transmission, and distribution sys-
tems with unidirectional energy flow, from generation units to consumers. At the end of 20th
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2 A CHEMICAL REACTION OPTIMIZATION ALGORITHM

century, Supervisory Control and Data Acquisition Systems (SCADA) were implemented to re-
motely monitor and control the substation equipment. These systems receive energy data such as
voltage, current, and active and reactive power data from the RTUs (Remote Terminal Units) at a
frequency of 2 to 30 seconds. The low communication rate restricts SCADA to quasi-stationary
operating conditions with absence of transient events.

The implementation of high precision state estimators was possible after the development of
the synchrophasor technology in the 1980s. A GPS (Global Position System) was inserted at
PMUs, which are synchronous bi-directional measurement units capable of transmitting module
and phasor data about voltage, current, and active and reactive power. The PMUs communica-
tion rate approximates 60 measurements per second, enabling control systems that are faster than
real-time, or to human perception, therefore preventing transient instabilities. In order to be ap-
plied to electrical systems state estimators must be fully observable. Two different approaches
might be used for the observability analysis, numerical and topological. The latter is simpler and,
consequently, it is more frequently used.

Due to the bidirectional energy metering, PMUs and other smart meters integrate renewable en-
ergy sources, microgrids, and distributed generation to electrical systems enabling a smart grid.
Smart grid technology not only inserts new energy sources to power systems, but also enhances
production, distribution, and energy consumption. It maximizes equipment usage, increases the
availability of systems, and reduces energy loss due to real-time monitoring and control sys-
tems, making the operational activities more efficient and safer. Distributed energy resources
and additional innovations associated to smart grids allow enhancing the networks by chang-
ing their topologies to minimize the total losses due to electrical resistances in the lines and
complementary equipment (Cavalheiro, Vergı́lio & Lyra, 2018).

In distribution networks, smart grids are a part of smart cities. Smart cities are composed of
intelligent systems that interact with energy, materials, services, and the economy. Their focus is
in the economic development of the city and in the improvement of life quality. Intelligence is
inserted through infrastructure, strategies of service usage, and through data collection for urban
planning and management. Usually the smart grids implementation takes place in 3 stages:

1. Adding intelligence to electric power system through network automation and monitoring by
meters in a reliable communication using PMUs;

2. Replacing electromechanical meters by intelligent electronic ones, which allows bidirectional
measurement;

3. Adding intelligence to consumer centers through intelligent equipment that optimize energy
consumption, uses renewable energy sources, and energy storage, including electric vehicle
charge stations.

The RTUs replacement by PMUs at transmission and distribution networks is affected by the
high cost of PMUs and telecommunication equipment. The price of PMUs is determined by the
functionalities provided by them and by the number of channels. Mohammadi et al. (2016) esti-
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mated the cost of a PMU with two measurement channels in US$ 40,000, with a US$ 4,000 added
for each additional channel. Also, a switch and 1 km of optic fiber, required for the installation,
are both estimated in US$ 4,000.

Such financial constraints elicited the search for the optimization of electrical meter placement,
called OPP (Optimal PMU Placement), in order to allocate the minimum amount of metering de-
vices as PMUs. According to (Liao, Hsieh, Guo, Liu & Chu, 2015), OPP aims to simultaneously
minimize the number of PMUs and to ensure the complete observability of the whole power grid.

NIST (2012) describes that meter devices in a smart grid generate a negligible amount of load
(amount of data being carried) to the network, and moreover, a smart grid plan must ensure that
all meter devices can be keep a reliable communication. In our case, we can evaluate the need of
one or more PMUs.

The OPP issue has been studied since the 1990s and has already been solved through different
optimization techniques, from heuristics to mathematical methods, hybrid models, and matrix
reduction methods. Currently, there is a trend for heuristic optimization methods and, in addi-
tion to that, as stated by (Zhou, Centeno, Phadke, Hu, Novosel & Volskis, 2008) OPP is classi-
fied as a NP-hard problem, for which heuristic methods can produce robust solutions in faster
computational time.

As stated before, OPP can be considered a Set Covering Problem, since each electrical bus that
is selected to receive a PMU installation covers the measurement of a certain number of adjacent
buses. Hence, when selecting a group of buses to install PMUs, a group of subsets is selected in
order to cover the whole search space, in this case, the electrical system.

This paper aims to solve the OPP problem by CRO method, applying topological observability
to optimize IEEE power test systems with a minimum number of PMUs, details in the section 3.
A model for IEEE power systems was implemented and best known solutions were reached with
different CRO parameterization. More than 3500 combinations were compiled. CRO parame-
ters behavior and the relationships between CRO parameters and the occurrence of elementary
reactions was exploited, achieving better results through specific reactions.

The tests in IEEE power system databases through two distinct models with CRO method reached
optimal values. Thus, due to the similarity between the OPP and SCP, the algorithm to solve the
OPP problem was adapted to solve SCP for larger scales using Beasley OR-Library instances.
So, this other algorithm was also tested at OR-library for large size instances available to set
covering problems. In the process to achieve GAPs smaller than 10% for some files, we tried out
dedicated local searches, disturbance recurrence limits and stop condition changes. However, we
suggest continuing to evaluate CRO method adherence to SCP using different data structures to
decrease computational times. In summary, the CRO was proposed in this paper for OPP and
SCP problems.

This paper is organized as follows: Section 2 presents a literature review about the observability
of electrical systems, heuristic algorithms applied to the OPP problem, and the Chemical Reac-
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tion Optimization. Section 3 describes the methods employed for the solution of the OPP prob-
lem, presenting initial solution restrictions, disturbance procedures, the parameterization process,
and computational results. Section 4 shows the method developed for the Set Covering Problem,
including local search procedures, initial population restriction groups, disturbance procedures,
stopping criterion tests, and other specific adaptations. Finally, we provide conclusions and final
remarks in Section 5.

2 LITERATURE REVIEW

2.1 Electrical System Observability

With the goal of analyzing the observability of an electrical system, an incidence matrix was
generated and filled with the system measurement relations. It indicates whether each system
bus is observable directly or indirectly (if its data are measured from other measured data).

If the system is completely observable, its state variables can be inferred through a h(x) linear
function or a H design matrix that relates the estimated states to the actual measurements. The
observability of a system might be analyzed either numerically or topologically.

In topological observability analysis power system is represented by a topological graph. The
graph has ‘n’ number of nodes representing the bar of the network bus and ‘e’ number of edges
representing the branches of the network connecting the bus bars. In topological approach the
optimal PMU placement set is searched such that each bus of the network is observable by at
least one PMU as described in Roy, Sinha & Pradhan (2012).

The system is said to be numerically observable if H design matrix has full rank (Nazari-Heris
& Mohammadi-Ivatloo, 2015). However, H matrix is complex to be set up due to the high mag-
nitude of the electrical system. Therefore, the use of topological observability through defined
rules of analysis is preferred, especially when zero injection buses, that do not have energy or
load injection, are present in the electrical systems.

In order to define the topological rules, direct measurements are made by the installed PMUs and
pseudo-measurements are calculated using the previous ones. At zero injection buses (ZIBs), it
is possible to estimate voltage and/or current in one of its adjacent buses through the Kirchhoff’s
laws. ZIBs are the buses which have neither any generation nor any load. According to Roy,
Sinha, and Pradhan (2012), at zero injection buses no current is injected into the system, and
this is used as pseudo information to make system observable with a smaller number of PMUs
compared to the case when information of ZIBs is not considered.

The observability of the electrical system might be handled as an optimization model restriction
or might be inserted as a penalty at the objective function, setting up a multi-target problem.
Some works include the measurement of redundancy maximization at the objective function in
order to assure the observability of the system in cases of a PMU and/or a branch data acquisition
failure. In these cases, at least one direct or indirect redundant measurement is added to each bus.
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2.2 Optimization algorithms applied to the OPP problem

Lam & Li (2012) claims that all metaheuristics have the same performance when compared
through the average of several objective functions, although it is usual for a specific method to
fit one class of problems better than others. Pereira et al. (2018) claimed that a metaheuristic is
a set of concepts that can be used to define heuristic methods applicable to an extensive set of
different problems.

Due to the malleability of electrical networks, lower computational development and execution
time is required when compared to mathematical methods. Silva & Mestria (2018) used a meta-
heuristic method to solve a combinatorial optimization problem and reached results as exact as
hybrid methods from literature in terms of accuracy and execution time.

Similarly, several heuristic optimization methods were applied to the OPP problem. Among them
are “Particle Swarm Optimization” (PSO), “Simulated Annealing” (SA), “Tabu Search” (TS),
“Bacteria Foraging Optimization” (BFO), “Artificial Bees Colony” (ABC), “Cellular Learning
Automata” (CLA) and “Differential Evolution” (DE).

Both Mohammadi-Ivatloo (2009) and Bedekar et al. (2011) have solved the OPP problem
through Genetic Algorithms (GA), while Hui-Ling et al. (2013) presented an algorithm that
combines Minimum Span Tree (MST) with an improved GA, called MST-GA. A binary dis-
crete version of the PSO, based on the behavior of particles at the environment, called Modified
Binary Particle Swarm Optimization (BPSO) was used by Hajian et al. (2011) who added a new
topological observability rule to maximize the use of existing data.

The study of Su & Chen (2010) included individual costs for each PMU installed, which is pro-
portional to the amount of adjacent buses and to communication conditions. Huang & Wu (2013)
analyzed observability based on the configurability control and Ahmadi et al. (2011) presented a
classical approach, assuring total observability and maximizing measurement redundancy.

The Tabu Search (TS) algorithm explicitly employs its search history to escape local minima
and to implement an exploratory strategy. Koutsoukis et al. (2013) employed the Recursive Tabu
Search (RTS) algorithm, in which they combined the observability numerical analysis with a
Greed Algorithm for initial population creation. The study of Saha Roy et al. (2012) assured
that all buses had initially received a PMU and, subsequently, eliminated them by priority, ac-
cording to the connectivity level of the bus. Afterwards, this work applied the Pruning method,
considering that all buses must be doubly observable.

The Biogeography-Based Optimization (BBO) model is inspired in species migration from one
habitat island to another. A multi-target BBO method is presented in the works of Jamuna &
Swarup (2012) and Jamuna & Swarup (2011) to minimize the PMUs implementation, assuring
the system observability and maximizing the redundancy measurement.

Xu et al. (2013) used the canonical CRO form and presented a simplified CRO model (SCRO)
to solve OPP problem. The SCRO presented more efficient results with a simpler structure and a
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shorter computational time than the canonical one. The model presented by Xu et al. (2013) was
used as a reference in this investigation.

2.3 Chemical Reaction Optimization (CRO)

CRO, created by Lam & Li (2010), is a metaheuristic inspired by the thermodynamic laws that
govern chemical reactions. These authors have applied CRO to different engineering problems
in discrete and continuous domains, concluding that it presents a superior performance when
compared to other optimization algorithms. A physical system is said to be unstable when it
presents excess of energy. In this situation, it tends to rearrange itself through chemical reactions
in order to release this excess, therefore stabilizing itself.

The CRO is a multi-agent algorithm in which the manipulated agents are a population of
molecules, where each molecule owns a different problem solution. Molecule solutions suffer
chemical changes that might be triggered through unimolecular or intermolecular operations,
defined as elementary reactions. There are four types of elementary reactions: on-wall ineffec-
tive collision, decomposition, intermolecular ineffective collision, and synthesis. Unimolecular
collisions occur when one molecule collides with an external body, such as the vessel wall, and
intermolecular collisions take place when one molecule collides with another one within the sys-
tem. In decomposition reactions, the molecule splits into two new molecules when colliding with
an external element, and in the synthesis reactions two molecules that clash form a new one.

Any molecule exposed to an elementary reaction suffers disturbances, defined by the selected
reaction change operator. The design of the CRO platform allows customization and creation
of new disturbance procedures, which enables its application to different types of problems. The
CRO algorithm presents 8 parameters, as described in Table 1, that defines the algorithm behavior
in terms of population size, stopping criterion, definition of elementary reaction to be performed
at each iteration, and the ability of the system to accept worse solutions.

When there are a small number of molecules, CRO focuses on the local search in some specific
regions. Otherwise, seed is spread throughout the solution space, increasing the chance of achiev-
ing its global minimum. The compliance with synthesis and decomposition criteria presents a
strong relation with the objective function behavior. If the search direction decreases, the decom-
position criterion is not started. If increasing direction does not take place, the molecules will not
convert their kinetic energy to worse solutions and the synthesis criterion will not be achieved.

The flowchart in Figure 1 shows the CRO algorithm, indicating those operations that intensify
local search or neighborhood search, and those that diversify the search space.
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Table 1 – CRO algorithm parameters.

Parameter Description Function
PopSize Population size Initial CRO population size.

MAX ITER Stopping criterion Defines the maximum number of CRO algorithm
iterations to be executed.

initialKE Initial kinetic energy Defines the amount of initial kinetic energy for each
created molecule. The kinetic energy is related to the
tolerance of the system in accepting worse solutions.

KELossRate Rate of kinetic energy loss Defines the percentage of molecule kinetic energy
lost at each collision suffered.

iniBuffer Environment energy buffer Sets the initial amount of energy available at the
environment.

MoleColl Decision variable between
collision types

MoleColl is compared to a randomly generated
parameter to choose between unimolecular
(decomposition and on-wall ineffective collision) or
intermolecular (intermolecular ineffective collision
and synthesis) operations.

Alpha Decision variable between
unimolecular operations

Defines the decomposition criterion limit (NumHit -
MinHit> α). If the chosen molecule meets the
criterion, the decomposition operation is performed;
otherwise, on-wall ineffective collision takes place.

Beta Decision variable between
intermolecular operations

Defines the synthesis criterion limit (KE ≤ β ). If
both chosen molecules meet this criterion, synthesis
operation is performed; otherwise, intermolecular
ineffective collision takes place.

Source: Authors (2019).

Figure 1 – Flowchart of the Chemical Reactions Optimization (CRO) algorithm.

Source: Authors (2019).
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As follows, we describe the flowchart (Figure 1) based on Lam & Li (2010):

1. In Initialization CRO we create the first molecules following the pseudocode from Figure
2, whose solutions are set according to the defined strategy, such as random generation.

Figure 2 – Pseudocode of Molecule class.

Source: Lam & Li (2012).

2. In Intermolecular Operation we decide whether we apply a unimolecular or an inter-
molecular collision. To do this, CRO algorithm generate a random number t, in the interval
of [0, 1]. If it is larger than MoleColl (a parameter of the CRO), it will result in an event of
unimolecular collision. Otherwise, an inter-molecular collision will take place.

3. Next, CRO examine the Decomposition or the Synthesis criterion to decide which type
of collision (left: On-wall ineffective collision or Decomposition; right: Intermolecu-
lar ineffective collision or Synthesis) it is. Figure 3 describes each Chemical Operation
pseudocodes.

4. After that, CRO check all solutions found, identifying the best one and record it. This
iteration stage repeats until the stopping criteria is reached (Stop criterion is reached?).

5. In the final state, CRO output is defined with the best solution found (Find best solution
achieved from all iterations).

Xu et al. (2013) have included the observability of the system as a penalty operator in the ob-
jective function. This multi-objective function can obtain unviable solutions, which could re-
quire a higher number of software iterations to achieve optimal solutions, compromising the
computational time. However, the check of the viability of the solutions became unnecessary.

At their paper, two CRO algorithm versions were applied, the canonical CRO and a simplified
one (SCRO), in which a single elementary reaction is used, the on-wall ineffective collision. The
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Figure 3 – Pseudocodes for Chemical Operations of CRO Algorithm.

Source: Lam & Li (2012).
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10 A CHEMICAL REACTION OPTIMIZATION ALGORITHM

SCRO proposal can be easily understood, since the best results of the canonical form are met
when the CRO parameters lead to a higher number of on-wall ineffective collisions. When the
MoleColl parameter is null and Alpha is high, the choices made by the algorithm would always
lead to a unimolecular reaction, followed by a high probability of on-wall ineffective collision
selection.

This paper has defined that its initial population has a single molecule and, consequently, dis-
misses the advantages of population-based optimization, such as the diversification search in
which different search space areas are visited.

2.4 Discussion

The OPP problem has been widely studied, being solved through different optimization tech-
niques. The review of the literature about the observability and heuristics applied to OPP has
resulted in only one paper that applied CRO to solve the OPP problem, Xu et al. (2013). It
also has revealed that the numerical observability analysis is extremely more complex than the
topological one, as Peng et al. (2006) stated.

As a consequence, CRO was the heuristic method selected to conduct this investigation through
topological observability analysis. CRO can assume different versions according to the developed
change operators or disturbance procedures. We have implemented several operators based on
Lam & Li (2010), Lam & Li (2012), and Xu et al. (2013).

3 OPP PROBLEM MODEL

The objective function of the OPP model aims to minimize the total PMUs cost subjected to the
system observability restriction. Topological observability is analyzed through matrix Hnxm=A.X,
defined as the connectivity, incidence, or design matrix. This paper proposes the use of the most
frequent OPP model, described by Equations (1) and (2):

min
n

∑
i

wixi, (1)

subject to A.X ≥ I (2)

where I = [111...1]TNx1,

wi = PMU installation cost at bus i,

xi =

{
1, if there is a PMU installed at bus i

0,otherwise

and

ai j =


1, if i = j

1, if buses i and j are connected to each other
0,otherwise
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Let: h(j)=aj1.x1+aj2.x2+,. . . ajn.xn, with j=1,. . . m. If ajk is zero, the product ajk does not appear
in h(j). If any xi appearing in h(j) is nonzero, h(j) is observable. If all h(j) in H are nonzero the
system is completely observable.

As previously mentioned, (Xu et al., 2013) implemented a OPP model that includes observability
(Φ) as a penalty operator, with an extremely high penalty factor (λ = 1000) in the objective
function. This model was also implemented for testing purposes, being called “penalty model”.

min
Nbus

∑
i=0

S(i).C(i)+λΦ(S(i)),(λ�1) (3)

where S(i) =

{
1, if there is a PMU installed at i bar

0,otherwise
,

C(i) = cost of a PMU installed at i bar,

Φ(S (i)) = number of observability violations for S(i),

where observability is verified by∑
Nbus
i=0 ∑

Nbus
j=0 A(i, j).S(i)≥1, with

A(i, j) =


1,se i = j

1, if i and j bars are connected
0,otherwise

.

Both models use PMU costs as 1, disregarding costs influences.

3.1 Methods

First, the authors have specified how the population should be created. For the OPP problem, each
molecule solution was implemented as a Boolean vector. The initial population solutions were
created randomly, being restricted to 20 to 35% of the buses of the system with PMUs installed.
This limitation follows Baldwin et al. (1993), which states that the optimal PMU number lies
between 20 and 30% of the total number of buses in the electrical system. However, the upper
limit was set to 35% in order to decrease the execution time required to search for OPP solutions
that can cope with the constraints (2).

CRO elementary reactions were developed as per the pseudocodes presented by Lam & Li
(2012). The implementation of the disturbance procedures for each CRO elementary reaction
define how the intensification and diversification will take place. Table 2 describes the routines
created and applied to achieve the presented results.

Random 2XChange routine was employed in the on-wall and intermolecular ineffective collision
reactions. In the decomposition reactions HalfRandom Change was employed. In the synthesis
reactions, uses OnePositionXChange routine. For each reaction, we inserted a loop of 10 at-
tempts to search for a new solution that meets the problem restriction (2), where the respective
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Table 2 – Disturbance routines applied.

Routine Description Source
2XChange Select a random bit from the molecule solution (w) and

change its value for a smaller position bit value.
Lam & Li (2012)

Random 2XChange Perform a random number (between 0 and 50) of bit pair
exchanges in the molecule solution (w). The positions of
the bits that are changed are randomly selected.

Authors

OneResource Change Randomly selects two positions from the molecule
solutions array (w). Looks for the first bit that is set after
the first position and for the first not-set bit after the second
position. Both bits are exchanged for the output solution.

Lam & Li (2011)

OneResourceRandomChange Select a random bit from the molecule solution (w) and
change its value

Lam & Li (2011)

HalfRandom Change Creates two new binary solutions (w1 and w2) similar to
the original molecule (w). Changes the even bits values for
molecule w1 and changes the odd bits values for molecule
w2.

Lam & Li (2011)

OnePosition XChange Selects a random position of the array as a cut-off point to
be applied at the input molecules (w1 and w2). Creates a
new molecule that combines the solutions from w1 and w2.
Its solution incorporates all the bits before the cut-off point
from w1, discarding the rest of the array, and concates them
with all the bits after the cut-off point of w2.

Lam & Li (2011)

Exhaustive Change Runs every position from the molecule solution (w),
changing its value and testing its results. If a best result is
met, it becomes the new solution (w’). It continues the
search at the new solution (w’) until the last array position
is verified.

Authors

Source: Authors.

disturbance procedure was run. During this loop, if any feasible solution was found, this solution
was assumed as the output one and the disturbance loop was broken. On the other hand, if no
feasible solution was found after 10 attempts, the initial solutions were kept as output.

In order to parameterize the CRO algorithm, the range of values for the 8 algorithm parameters,
described at Table 1, was empirically set. Several simulations were run combining them, reaching
more than 3,500 combination tests. If a set of combination tests considers, for example, 2 values
of Iterations x 2 values of Alpha x 2 values of Beta x 3 values of KELoss Rate x 1 values of
Buffer, there would be a total of 24 combinations. The values of each parameter are described
in the Table 3. In the simulations, we have used instances of 14, 30, 57 and 188 buses of IEEE
power systems test cases library and carried out 15 times each instance.

Each value range was defined by observing the behavior of the variables, the correlation of errors,
and the percentage of occurrence of the reactions, as exemplified in Figure 4.

The intervals of the beta parameter were extended in order to increase the occurrence of both the
ineffective intermolecular collision and the synthesis reactions. In the same way, lower Alpha
values were applied to promote the occurrence of the decomposition reactions; higher KELoss-
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Table 3 – CRO Parameters values for parameterization tests.

Parameter Values
PopSize 1, 10, 100
MAX ITER 100, 500, 1000 *(number of nodes from the test files)
iniBuffer 3000, 5000, 10000
initialKE Molecule initial PE, set as objective function value
KELossRate 0,3, 0.5, 0.8
MoleColl 0.2, 0,3, 0.5, 0.8, 0.9
Alpha 10, 100, 200*( number of nodes from the test files)
Beta 200, 500, 800*( number of nodes from the test files)

Source: Author (2020).

Figure 4 – Percentage of occurrence of the elementary reactions versus mean error.

Source: Authors (2019).

Rate values were used to enable worse solutions in different search areas; and higher values of the
Buffer parameter were tested to enable operations that consume energy from the environment,
increasing the feasibility of changes that diversify the search space.

For the tests performed with the model of Xu et al. (2013), named “penalty model”, initial solu-
tions were set as randomly generated Boolean vectors, without any restriction; and both opera-
tions of ineffective collision reactions, OnWall and Intermollecular, were implemented through
a single random bit change, OneResourceRandomChange routine from Table 2. Decomposition
applies HalfRandomChange and Synthesis uses OnePositionXChange routine from Table 2. At
this implemented model, the observability constraint is inserted in the objective function, as per
Equation (3), so it was not necessary to check whether each solution change met the observ-
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ability restriction (2). The parametrization followed the same methodology adopted in the model
proposed in Equations (1) and (2).

The algorithms were developed in Java using the NetBeans 8.2 software. The tests were run in an
Intel Core i7 3.6GHz 16GB RAM computer with Windows 10 operating system. Each parameter
combination was executed 15 times. The best solution found, the mean error, and the average
runtime were recorded.

3.2 Computational Results

The best results found through the different parameter combinations, for both the Penalty model
and the proposed model in Equations (1) and (2), are shown in Table 4.

“BS” cells indicate the best solution found for each PMU number, for each instance of the IEEE
test systems. In Table 4 was used a metric that it represents the average percentage error reached
by algorithm considering the best values in Xu et al. (2013). This metric shows the robustness of
the algorithm provided in the all executions. “AE(%) Penalty” represents the average percentage
error reached by the penalty model, which is the model proposed by Xu et al. (2013) that applies
observability as a penalty at the objective function (equations (3)), as described in start of section
3. “AE(%) Model (1)(2)” represents the average percentage error found for the model proposed
by equations (1) and (2).

The first results were reached with the MoleColl parameter null, which prevents the occurrence
of intermolecular reactions. Since only unimolecular reactions were performed, the synthesis
criterion was never checked, therefore, lower Beta values were accepted in these cases. The best
results were found for the highest KELossRate values, which indicate that the algorithm accepts
worse solutions.

The proposed model according to Equations (1) and (2) reaches optimal solutions with lower
percentage errors than the penalty model. However, the best results were still found with the
higher incidence of local search reactions (on-wall and intermolecular ineffective collisions) and
the lower incidence of the decomposition and synthesis reactions. For comparison purposes, the
average runtime achieved for each model in the IEEE 118 bus system was compared.

The lowest computational time (376 ms) in this paper presented was obtained when running the
penalty model, according to Equations (3) and (4) with Intel Core i7 3.6GHz 16GB RAM. Xu
et al. (2013) have reached the optimal solution in 3.1s using the canonical CRO, and 1.1s with
SCRO with an Intel Core Duo 2.66 Hz CPU and 2 GB RAM. Both computers run one stream of
instructions rather than multiple parallel streams per core. Thus, using the metric “CPU Single
Thread Rating” (PassMark, 2020) for comparison sees Table 5.

With the proposed model, as shown in Equations (1) and (2), this work has reached a runtime
of 991ms in the IEEE 118 bus system. The present research has focused on the quality of the
solution instead of the algorithm computational time. However, in this bus system was considered
irrelevant.
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16 A CHEMICAL REACTION OPTIMIZATION ALGORITHM

Table 5 – Comparison between computers.

Our paper Xu et al. (2013)
CPU Intel Core i7 3.6GHz Intel Core Duo 2.66 Hz
CPU Single Thread Rating 2904 743
Time IEEE 118 bus system (seconds) - algorithm 0.376 s - CRO 3.1s - CRO 1.1s - SCRO
Time IEEE 118 bus system (seconds) normalized 1.46 s - CRO 3.1s - CRO 1.1s - SCRO

Source: Authors (2020).

3.3 Discussion

The developed software for the proposed model, set by Equations (1) and (2), reached best known
solutions for the IEEE power system test cases (14, 30, 57 and 118 buses) with better error rates
and in a lower computational time than the software using the penalty model (0.376s against
1.46s for IEEE 118 buses test case). However, running time was considered irrelevant due to the
software purposes.

The best results still presented a higher frequency of local search reactions than global search
ones, especially for on-wall ineffective collision reactions. This corroborates Xu et al. (2013)
regarding the SCRO model efficiency for the OPP problem.

4 SET COVERING PROBLEM

The Set Covering Problem goal is to find the subset combination with the lowest cost that is able
to cover a given search space; considering that each subset covers a given point set in space.

We handled OPP problem as a Set Covering problem, once a set of buses is chosen to guarantee
measured or calculated data from the electrical network. The developed CRO algorithm for OPP
problems was tested in SCPs in order to check its behavior in large scale problems. (Beasley,
1990) provides an OR-Library for Set Covering Problems with large size instances to evaluate
the large-scale problems.

The work of Yu et al. (2014) has applied CRO to OR-Library, therefore it was used as the
reference work for the tests with SCP instances. Table 6 shows Beasley OR-Library instances
details.
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Table 6 – Beasley OR-Library test groups.

Test Group
Number

Number of
instances by

group

Problem Scale Cost Variation Density Optimal
solution is
known?
(Yes/No)

4 10 200 x 1000 1-100 2% Yes
5 10 200 x 2000 1-100 2% Yes
6 5 200 x 1000 1-100 5% Yes
A 5 300 x 3000 1-100 2% Yes
B 5 300 x 3000 1-100 5% Yes
C 5 400 x 4000 1-100 2% Yes
D 5 400 x 4000 1-100 5% Yes

NRE 5 500 x 5000 1-100 10% No
NRF 5 500 x 5000 1-100 20% No
NRG 5 1000 x 10000 1-100 2% No
NRH 5 1000 x 10000 1-100 5% No

E 5 50 x 500 - 2% Yes
CLR.10 1 511 x 210 - 2% No
CLR.11 1 1023 x 330 - 5% No
CLR.12 1 2047 x 495 - 2% No
CLR.13 1 4095 x 715 - 5% No
CYC.6 1 240 x 192 - 2% Yes
CYC.7 1 672 x 448 - 5% No
CYC.8 1 1792 x 1024 - 10% No
CYC.9 1 4608 x 2304 - 20% No
CYC.10 1 11520 x 5120 - 2% No
CYC.11 1 28160 x 11264 - 5% No

Source: Adapted from Yu et al. (2014).

4.1 Set Covering Model

The Set Covering model presented by Yu et al. (2014) was implemented at this investigation for
test purposes, following Equations (4) and (5), where Sj is a subset that covers a certain space
and aij displays the search space points covered by each subset. However, Yu et al. (2014) uses
Real vectors instead of Boolean vectors to represent the SCP solution.

min
n

∑
j

c jx j, (4)

subject to ai jx j ≥ I (5)

where x j =

{
1, if S jis a solution subset

0, otherwise
,

c j =S j subset cost,

ai j =

{
1, if i∈S j,or if i element is covered by j subset

0,otherwise.
, i≤m .

I =[111...1]TNx1.
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4.2 Methods

4.2.1 Initial Tests

The initial solutions of the population were set as Boolean vectors in which the bits indicate
which subset is part of the solution. Initially, the vectors were created randomly, without any
restriction. After performing tests with the Beasley scp41 test file, similarly to the IEEE tests,
the authors have inserted a restriction, setting only 20 to 35% of the subsets as part of the initial
solution. Likewise, if a created solution is already present at the population, a new solution is
generated.

After running the scp41, scp51, scp61 file tests, other Beasley SCP types were tested as scpe1,
scpe2, and groups of a, b, c, d, e , and nre. For some types, the computational time spent to
find a solution that meets the coverage constraint (5) and the limit set to 20 to 35% of the se-
lected subsets were considered too high. For such files, the restriction of the selected subsets was
removed.

The change operators, or disturbance procedures, for the elementary reactions were the same
used for the IEEE test files. Due to the struggle to find new solutions that meet the coverage
constraint (5) after the disturbance of the elementary reactions, if the constraint is not reached,
the disturbance is run up to 100 times. After that, if a solution in accordance to the constraint is
still not found, the initial solution was taken as output. Otherwise, if at any time feasible solutions
were found by the disturbance procedures, their results were taken as output and the loop was
broken before reaching the limit.

In order to improve the initial and final solutions, a local search that changes a random number
of bit pairs, 2XChange routine at Table 2, was run 10 times after each molecule creation. After
the CRO result an exhaustive search, Exhaustive Change routine at Table 2, where after each bit
change the results are checked for improvement, is performed 10 times. After each execution of
local searches, if a new solution that fits the constraint with better results is found, it is assumed
as the new solution.

There are several instances in Beasley library, leading to a high computational time for the
parametrization of each one. Therefore, the parametrization was restricted to the scp41 file,
applying its parameters to all the other file types.

The same methodology used in the IEEE test parametrization was employed in SCP, including
the same tested parameter combinations. The best results of the CRO parameters scp41 are shown
in Table 7 and were applied to all the Beasley library test files.

For each Beasley file, CRO was run 15 times with Table 7 parameters, recording the best solution,
mean solution value, mean error, and mean computational time found. Tests were performed for
31 of the 80 instances available in the Beasley library. The results are presented at Table 8.
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Table 7 – Defined CRO parameters for SCP.

Parameter Values
PopSize 10
MAX ITER 15*(Number of columns of the Set Covering problem)
iniBuffer 10000
initialKE 50000
KELossRate 0.3
MoleColl 0.3
Alpha 0.5*(Number of columns of the Set Covering problem)
Beta 1*(Number of columns of the Set Covering problem)

Source: Authors (2019).

Table 8 – Results for Beasley library test files.

Instance Mean
Computational

Time (s)

Lines
(Search
Space

elements)

Columns
(available
subsets)

Best
Known
Solution
Yu et al.
(2014)

Best
Found

Solution

GAP (%) Mean
Solution

Value

Mean
Error
(%)

41 167 200 1000 429 432 0.70% 449.60 4.80%
42 168 200 1000 512 525 2.54% 555.40 8.48%
43 160 200 1000 516 531 2.91% 546.53 5.92%
44 175 200 1000 494 530 7.29% 543.93 10.11%
45 176 200 1000 512 522 1.95% 548.40 7.11%
46 169 200 1000 560 568 1.43% 592.33 5.77%
410 161 200 1000 514 548 6.61% 563.33 9.60%
51 1077 200 2000 253 271 7.11% 278.27 9.99%
55 1085 200 2000 211 221 4.74% 225.53 6.89%
510 1054 200 2000 265 270 1.89% 276.07 4.18%
61 299 200 1000 138 144 4.35% 150.47 9.03%
65 286 200 1000 161 171 6.21% 176.93 9.90%
a4 4296 300 3000 234 246 5.13% 254.40 8.72%
a5 4268 300 3000 236 240 1.69% 247.20 4.75%
b1 5466 300 3000 69 77 11.59% 81.73 18.45%
b5 5444 300 3000 72 75 4.17% 80.93 12.41%
c1 10108 400 4000 227 232 2.20% 242.73 6.93%
c5 10475 400 4000 215 224 4.19% 233.20 8.47%

clr10 29 511 210 25 30 20.00% 31.73 26.93%
clr11 132 1023 330 23 31 34.78% 32.33 40.58%

d1 13158 400 4000 60 65 8.33% 69.73 16.22%
d5 12564 400 4000 61 66 8.20% 71.73 17.60%
e1 34 50 500 5 6 20.00% 6.87 37.33%
e2 35 50 500 5 6 20.00% 6.87 37.33%
e3 36 50 500 5 6 20.00% 6.53 30.67%
e5 36 50 500 5 6 20.00% 6.80 36.00%

nre4 31434 500 5000 28 31 10.71% 33.53 19.76%
nre5 31369 500 5000 28 31 10.71% 32.93 17.62%
nrf1 45501 500 5000 14 16 14.29% 17.87 27.62%

Source: Authors (2019).
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The GAP values varied according to the test file type and the processing time grew exponentially
following the problem scale. For high-scale Beasley instances, the defined stopping criterion
(MAX ITER), directly dependent on the number of columns of the file, made the software run at
a low pace. The effect is easily noted for NRG and NRH files, which have 10,000 columns each,
reaching 150,000 iterations for the stopping criterion in each CRO execution.

The reference study, Yu et al. (2014), does not show the time required by the CRO algorithm to
reach the displayed results. Therefore, it cannot be used as a base to check the behavior. When
comparing computational times to Sundar & Singh (2012), that apply hybrid heuristic to solve
SCP problem, we notice that we need to improve our software efficiency. For instance 41 they
achieved the best known solution in 5.3s against 167s of our CRO and for nrf1 test file they were
able to reach the best known solution at 330.41s while we got a GAP of 14.29% at 45501s.

In order to identify how to improve our software, we performed some tests to evaluate the impact
of disturbance repeat loops and stopping criterion values in its behavior.

4.2.2 Disturbance Repeat Limits

First, the authors have decided to change the disturbance repeat rates for all chemical reaction.
Initially, if a solution could not be found in 100 disturbance attempts, the solutions of the initial
molecules were maintained.

eIf after a disturbance the solution of the molecule does not fit into the model restriction, it was
submitted again to the disturbance procedure. This process was repeated until a defined repeat
limit value was reached. The authors have tested 3 disturbances repeat limit values (10, 20, and
50 times) up to 100 times, with CRO parameters according to Table 7 - Defined CRO parameters
for SCP. The results are shown in Table 9.

Table 9 – Tests results for disturbance repeat limit values.

Instance Disturbance
Limit

Computational
time (s)

Best Known
Solution Yu et

al. (2014)

Best
Solution
Found

Error
(%)

Mean
Solution
Values

Mean
Error
(%)

42 10 111 512 2755 438.09 569.80 11.29
42 20 143 512 1587 209.96 559.60 9.30
42 50 209 512 530 3.52 555.40 8.48
65 10 116 161 178 10.56 819.50 223.91
65 20 147 161 171 6.21 982.70 288.42
65 50 236 161 173 7.45 184.10 14.35
e1 10 82 5 7 40.00 8269.30 3746.19
e1 20 88 5 7 40.00 6990.60 3151.44
e1 50 103 5 6 20.00 5471.30 2444.79

clr11 10 128 23 31 34.78 8925.20 14531.48
clr11 20 160 23 31 34.78 8750.80 14245.57
clr11 50 246 23 31 34.78 6667.80 10830.82
clr11 50 246 23 31 34.78 6667.80 10830.82

Source: Authors (2019).
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When analyzing the parametrization backgrounds a direct relation is noted: the higher the repeat
limit value the better is the solution found and, as a result, the lower is the error compared to
the best-known solution. In contrast, the worst is the computational time spent to reach a model
solution.

4.2.3 Stopping Criterion Tests

In order to avoid high running times, concurrently to disturbance repeat limits tests, MAX ITER
values have also been tested for each type of SCP. For these tests the disturbance repeat limit
was set to 50 and the applied CRO parameters were established according to Table 7. The results
can be seen at Table 10. In most cases, better results were reached for higher MAX ITER values,
when CRO is run more times.

Table 10 – Tests results for MAX ITER values.

Instance Number
of nodes

CRO
Iteration
Number

Computational
time (s)

Best
Known
Solution
Yu et al.
(2014)

Best
Solution
Found

Error
(%)

Mean
Solution
Values

Mean
Error
(%)

51 1000 10000 272 253 608 140.32 2414.0 854.15
51 1000 15000 406 253 274 8.30 1618.4 539.68
51 1000 20000 516 253 277 9.49 819.5 223.91
51 1000 25000 649 253 278 9.88 982.7 288.42
65 2000 10000 159 161 174 8.07 184.1 14.35
65 2000 15000 232 161 175 8.70 180.0 11.80
65 2000 20000 319 161 175 8.70 180.0 11.80
65 2000 25000 402 161 166 3.11 178.8 11.06
a4 1000 10000 541 234 2675 1043.16 5855.8 2402.48
a4 1000 15000 835 234 2226 851.28 5854.0 2401.71
a4 1000 20000 1133 234 1963 738.89 4644.1 1884.66
a4 1000 25000 1379 234 241 2.99 1874.6 701.11
e1 4000 10000 67 5 6 20.00 7.4 48.00
e1 4000 15000 102 5 6 20.00 6.9 38.00
e1 4000 20000 137 5 6 20.00 6.8 36.00
e1 4000 25000 171 5 6 20.00 6.6 32.00

clr11 500 10000 162 23 31 34.78 31.9 38.70
clr11 500 15000 245 23 31 34.78 32.3 40.43
clr11 500 20000 327 23 31 34.78 32.0 39.13
clr11 500 25000 410 23 31 34.78 31.6 37.39

Source: Authors (2019).

4.3 Discussion

Despite reaching GAPs lower than 10% for some Beasley OR-Library tests, developed software
needs to be improved to SCP problems. The results are likely to show an inverse relation between
GAP values and higher CRO stopping criterion values, resulting in impractical computational
times. Sundar & Singh (2012) achieved the best known solutions at better computation times.

Both Yu et al. (2014) and Sundar & Singh (2012) use a solution representation based in Real
numbers vector, indicating the numbers of the selected sub-sets. At this paper the solution is a
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Boolean vector where each position corresponds to a sub-set that will cover part of the search
space. If the vector position is set to 1, the sub-set is selected, and if 0, otherwise. This de-
sign leads to high processing times, specially at constraints verification where time complexity
reaches O(n2), with n as the problem scale (nodes number).

More tests, as a new solution representation, are required to evaluate CRO optimization method
efficiency to solve SCP problem. By the current results, this heuristic would not fit the problem.

5 CONCLUSION AND FINAL REMARKS

The results obtained for the OPP problem with the CRO algorithm applied to the IEEE test sys-
tems of 14, 30, 57, and 118 bus achieved the best known solution values, as presented in this
paper. The results show a higher occurrence of CRO elementary reactions that perform intensi-
fication, or local-search, specially “on-wall ineffective collision”. This is adherent to a version
of CRO algorithm (SCRO) from Xu et al (2013) that sustains the use of this single reaction.
The computational time is considered acceptable and irrelevant in order of seconds. Computa-
tional results were also considered satisfactory in non-unitary populations, unlike than that was
proposed by Xu et al (2013).

The application of the developed CRO algorithm to SCP problem aimed to check its performance
in large scale problems. However, the results suggest that the CRO is not the best heuristic to be
used for this problem optimization with the number of iterations described in Table 8.

On the other hand, CRO performance to the SCP problems was reasonable for some large size
instances (1000 to 2000 columns). We suggest running more tests using CRO to solve SCP
problem, particularly regarding solution structures, using Real vectors instead of Boolean ones
to reduce computational times.

The probability of PMUs placement in an electrical system of the magnitude of Beasley OR-
Library for SCP problems, where system bus number would be larger than 2000 buses, is rela-
tively low. For this reason, CRO is still regarded as a great optimization method for OPP because
it determines a minimum number of PMUs placement required in a power system.

Acknowledgements

The authors would like to thank the reviewer for the constructive feedback. The authors also
acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES).

References

[1] AHMADI A, ALINEJAD-BEROMI Y & MORADI M. 2011. Optimal PMU placement
for power system observability using binary particle swarm optimization and consid-
ering measurement redundancy. Expert Systems with Applications, 38(6): 7263—7269.
Available at: https://doi.org/10.1016/j.eswa.2010.12.025

Pesquisa Operacional, Vol. 41, 2021: e231454



AILEEN CARNIEL and MARIO MESTRIA 23

[2] BALDWIN TL, MILI L, BOISEN MB & ADAPA R. 1993. Power System Observability
with Minimal Phasor Measurement Placement. IEEE Transactions on Power Systems,
8(2): 707—715. Available at: https://doi.org/10.1109/59.260810

[3] BEASLEY JE. 1990. OR-Library for Set Covering test data sets. Available at: http:
//people.brunel.ac.uk/∼mastjjb/jeb/orlib/scpinfo.html. Accessed at: 03/14/2018.

[4] BEDEKAR PP, BHIDE SR & KALE VS. 2011. Optimum PMU placement considering
one Line/ One PMU outage and maximum redundancy using genetic algorithm. The
8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information
Technology (ECTI) Association of Thailand - Conference 2011, p. 688–691. Available at:
https://doi.org/10.1109/ECTICON.2011.5947933
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