Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil

Mário Steindel, Álvaro Menin, Tatiane Evangelista, Patrícia H. Stoco, Mariel A. Marlow, Renata C. Fleith, Celso Pilati and Edmundo C. Grisard

ABSTRACT.- Steindel M., Menin A., Evangelista T., Stoco P.H., Marlow M.A., Fleith R.C., Pilati C. & Grisard E.C. 2013. Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil. Pesquisa Veterinária Brasileira 33(4):490-496. Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva s/n, Córrego Grande, Bloco A, Campus Trindade, Florianópolis, SC 88040-900, Brazil. E-mail: mario.steindel@ufsc.br

The present study reports the first outbreak of autochthonous canine visceral leishmaniasis in Florianópolis, Santa Catarina, southern Brazil. Following the report of two cases of CVL, the Control Center of Zoonotic Diseases conducted a serological survey by ELISA and IFAT assays in seven districts of the Santa Catarina Island. Eleven seropositive dogs of autochthonous transmission were used in the present study. Infection by Leishmania sp. was confirmed by parasitological examination of bone marrow, liver, spleen and lymph nodes, culture in Schneider’s medium and PCR. Leishmania sp. isolates were characterized by PCR-RFLP and hybridization with specific probes, allowing for the identification of Leishmania infantum. Autochthonous transmission of this disease in an area with high tourist traffic presents a major public health concern and signifies the emergence of an important zoonosis in southern Brazil. Therefore, the implementation of surveillance and control measures is imperative to prevent the spread of the disease among the canine population as well as transmission to the human population.

INDEX TERMS: Canine visceral leishmaniasis, Leishmania infantum, zoonosis, neglected diseases, public health.

INTRODUCTION

Visceral leishmaniasis (VL) caused by Leishmania (Leishmania) infantum (syn. L. (L.) chagasi) is a zoonotic vector-
Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil

The situation of human cases presenting along side of outbreak of CVL has now occurred in the Rio Grande do Sul, the neighboring state of Santa Catarina. Already cutaneous leishmaniasis, another clinical form of leishmaniasis caused by different species of Leishmania, has emerged in Santa Catarina, with cases having been reported in the Island of Santa Catarina (Marlow et al. 2012). Floriánopolis is the state capital and a popular tourist destination, with thousands of tourists visiting the island during the summer season. Several Brazilian visitors which come from both known endemic areas and non-endemic areas for VL bring their dogs with them during the vacation season (December to February), which could potentially allow for further introduction of the parasite or even spreading of VL to other municipalities. Therefore, knowledge on the presence of CVL in this tourist destination and capital municipality is important for controlling the spreading of the disease across the state, as well as, in Brazil and other countries.

Thus, this study was conducted to investigate clinical-pathological features of infected dogs in the first outbreak of autochthonous CVL in the municipality of Floriánopolis, State of Santa Catarina, Brazil, as well as to conduct a parasitological characterization of Leishmania parasites isolated from these canines. Epidemiological implications of the outbreak are discussed.

MATERIALS AND METHODS

Sampling and diagnosis of positive canines

From July 2010 to October 2011, a canine serological survey using an enzyme linked immunosorbent assay (EIE/LVCI/Fiocruz, Brazil) was conducted in seven districts of the municipality of Florianópolis by the Control Center of Zoonotic Diseases (CCZD).
Positive dogs in the ELISA assay were confirmed by an indirect immunofluorescence antibody test (IFAT). The seropositive dogs were classified based on clinical signs of infection, in accordance with Mancianti et al. (1998). Briefly, the clinical status of dogs was classified by the following criteria: asymptomatic (AL), absence of clinical signs suggestive of infection; oligosymptomatic (OL), presenting up to three clinical signs suggestive of infection, including combinations of lymphadenopathy, opake bristles, localized alopecia, weight loss and/or dehydration; and symptomatic (SL), presenting characteristic clinical signs of LC, including cutaneous lesions, furraceous eczema, onycogryphosis, opake bristles, severe loss of weight, apathy, severe dehydration and keratoconjunctivitis. Following euthanasia of seropositive canines in accordance with guidelines set forth by the Brazilian Animal Experimental Collage (COBEA), Federal Law number 11794, clinical samples were collected and transported to the laboratory for complete pathological and parasitological examination.

Parasite culture and histopathological examination

For Leishmania sp. isolation, aspirates of bone marrow, liver, spleen and lymph nodes were seeded in Schneider medium supplemented with 5% of heat inactivated calf serum, 10U/mL of penicillin, 10 µg/mL of streptomycin and incubated at 26°C. Positive cultures were bulked in Schneider’s medium and parasites were cryopreserved in liquid nitrogen. A part of the biological samples were kept at -20°C for PCR amplification. Smears of bone marrow, liver, spleen and lymph nodes were fixed with methanol, Giemsa stained and examined for amastigote detection under light microscopy using a 100X objective. Samples of liver, spleen, kidney, lymph nodes and ear skin were fixed in 10% buffered formalin, Giemsa stained and examined for amastigote detection under light microscopy using a 100X objective. After ethanol precipitation, DNA was resuspended in 50µL ultra-pure water and incubated with RNase A (10 mg/ml) at 37°C for 1 h and stored at -20°C until use.

A 120 bp DNA fragment from the conserved region of Leishmania sp. mini-circle kDNA was PCR-amplified using primers 150 [5’-GGG (G/T) A GGG GCG TTC T(G/C)C GAA-3’] and 152 [5’-(G/C) (G/C) (A/T)CT AT(A/T) TTA CAC CAA CCC C-3’] (Volpini et al. 2004). Reactions containing no DNA or DNA from non-infected dog were used as negative controls and DNA of standard L. (V.) braziliensis (MHOM/BR/75/L-2904), L. (L.) amazonensis (IFLA/BR/67/PBH), L. (L.) infantum (LSC-D2) and the Leishmania sp. isolated from dogs was carried out using the standard phenol/chloroform method. After ethanol precipitation, DNA was resuspended in 50µL ultra-pure water and incubated with RNase A (10 mg/ml) at 37°C for 1 h and stored at -20°C until use.

PCR detection and molecular typing

DNA extraction from dogs tissue samples and culture of standard Leishmania (V.) braziliensis (MHOM/BR/75/L-2904), L. (L.) amazonensis (IFLA/BR/67/PBH), L. (L.) infantum (LSC-D2) and the Leishmania sp. isolated from dogs was carried out using the standard phenol/chloroform method. After ethanol precipitation, DNA was resuspended in 50µL ultra-pure water and incubated with RNase A (10 mg/ml) at 37°C for 1 h and stored at -20°C until use.

A 120 bp DNA fragment from the conserved region of Leishmania sp. mini-circle kDNA was PCR-amplified using primers 150 [5’-GGG (G/T) A GGG GCG TTC T(G/C)C GAA-3’] and 152 [5’-(G/C) (G/C) (A/T)CT AT(A/T) TTA CAC CAA CCC C-3’] (Volpini et al. 2004). Reactions containing no DNA or DNA from non-infected dog were used as negative controls and DNA of standard L. (V) braziliensis, L. (L.) amazonensis and L. (L.) infantum were used as positive controls.

Briefly, amplification was performed in a final volume of 20µL containing 1µM of each primer, 200µM of dNTPs, 1.0 U of Taq DNA polymerase (Invitrogen), 10mM of Tris-HCl pH 8.6, 50mM KCl, 1.5 mM MgCl₂, 10 ng of DNA template. Amplification was carried out in a Mastercycler thermocycler (Eppendorf) using a initial denaturation step at 95°C/5 min, followed by 29 cycles at 95°C/1 min, 55°C/30s, 72°C/10s and a final extension step of 5 min. Three µL of each amplification product were resolved in a 3% agarose gel, ethidium bromide stained and digitally recorded. Also, resolved PCR products were blotted onto nylon membranes (Sigma) and UV cross-linked for hybridization assays. PCR-RFLP was carried out according to Marcondes et al. (2009). Briefly, 5 µL of each PCR product was digested at 37°C with HaeIII and AvaI (New England Biolabs) restriction enzymes for 3h according to manufacturer’s instructions. Restriction fragments were then resolved in 12% polyacrylamide gels, stained with ethidium bromide and digitally recorded.

The ~120 bp amplions from standard L. infantum, L. amazonensis and L. braziliensis strains were isopropanol precipitated, labeled with horseradish peroxidase using the ECL Direct Labeling kit (GE Healthcare) and used as probes in hybridization assays. Southern blot hybridizations were carried out overnight at 42°C in gold hybridization buffer (GE Healthcare). Membranes were washed three times in 0.1×SSC/0.4% SDS/6M urea at 42°C and twice in 2×SSC at room temperature. Hybridization signals were detected using the ECL Western Blotting Substrate (Pierce) and exposure of the membranes to radiographic films.

RESULTS

From July 2010 to October 2011, a canine serological survey conducted in the Santa Catarina Island identified 29 autochthonous seropositive dogs among 2,124 canines examined. All positive cases were from districts of Canto dos Araçás, Lagoa da Conceição, Costa da Lagoa, Rio Tavares, Campeche and Rio Vermelho (Fig.1). From these 29 seropositive dogs, 11 were further studied and the results are presented in this work. Clinical and diagnostic aspects of canine leishmaniasis cases were presented in (Table 1). At necropsy, one or more of the characteristic symptoms of VL (hepateomyalgia with red-brown surface and congested liver parenchyma, splenomegaly, lymphadenopathy and gromulonephritis) were observed for all dogs. In addition, ulcerative dermatitis with crusted lesions alopecia, onycogyphosis and keratoconjunctivitis was observed in three symptomatic dogs as well.

Leishmania sp. detection by microscopic examination of Giemsa-stained imprints, culture and/or PCR in different biological samples are shown in Table 1. All dogs presented Leishmania biinfected in bone marrow smears (Fig.2A-B). Culture positivity varied from 63.6% in spleen to 100% in bone marrow samples and PCR positivity varied from
Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil

Histopathological analysis of skin showed perivascular and perifollicular granulomatous exfoliative/ulcerative dermatitis with an intense lymphohistiocytic infiltrate in the superficial and deep dermis and epidermal hyperkeratinization. Lymphoid tissue, including mandibular, parotid, retropharyngeal, tracheobronchial, mediastinal, iliac, sciatric, pre-scapular and pre-crural lymph nodes and spleen presented a diffuse mononuclear inflammation and hyperplasia of lymphoid follicles with predominance of plasmocytes. Moreover, red pulp and follicular hyperplasia with high macrophage proliferation and presence of megakaryocytes in the spleen were observed as well. A diffuse lymphohistoplasmocytic mononuclear infiltrate with greater intensity in the portal spaces, vascular degeneration of the hepatocyte cytoplasm, and hyperplasia and hypertrophy of Kupffer cells was observed in the livers. Mesangio proliferative and membranoproliferative glomerulonephritis and tubular degeneration were observed in the kidneys.

All isolated strains were positive for specific PCR amplification of the *Leishmania* sp. kDNA minicircle fragment (~120 bp). *HaeIII* digestion of the PCR product from *L. (V.) braziliensis* resulted in two fragments (80 and 40 bp), four fragments for *L. (L.) infantum* (120, 80, 60 and 40 bp) and no digestion for *L. (L.) amazonensis*. Digestion of the *L. (L.) amazonensis* amplicon with *AvaI* resulted in two fragments (80 and 40 bp in size), while *L. (L.) braziliensis* and *L. (L.) infantum* products remained uncut. Comparative analysis of the restriction profile obtained for all *Leishmania* sp. isolated from dogs with the profiles of the reference strains allowed for the identification of the isolates as *L. (L.) infantum* (Fig.3A). This result was further confirmed by Southern blot hybridization, using *L. amazonensis*, *L. braziliensis* and *L. infantum* specific probes (Fig.3B).

DISCUSSION

Here we report the first outbreak of CVL in the Santa Catarina Island, Florianópolis municipality where a seroprevalence of 1.4% for *Leishmania infantum* was confirmed among 2,124 examined dogs. The usually high rate of seropositivity in dog population varies across the different regions in Brazil, with seroprevalences ranging from 4.2%

Table 1. Clinical and diagnostic aspects of canine leishmaniasis cases from the first LCV outbreak in Florianópolis, Santa Catarina State, Brazil. The clinical groups, parasitological and PCR detection of *Leishmania infantum* in different tissue samples are shown

<table>
<thead>
<tr>
<th>Dog</th>
<th>Breed</th>
<th>Clinical group</th>
<th>Leishmania sp. detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixed</td>
<td>Oligosymptomatic</td>
<td>+ + - - + + + + - + + + + +</td>
</tr>
<tr>
<td>2</td>
<td>Mixed</td>
<td>Asymptomatic</td>
<td>+ - - + - + - + + - - + - -</td>
</tr>
<tr>
<td>3</td>
<td>Mixed</td>
<td>Oligosymptomatic</td>
<td>+ - + - - + - + + + - - + +</td>
</tr>
<tr>
<td>4</td>
<td>Pitt bull</td>
<td>Asymptomatic</td>
<td>+ - + - + - + - - - - - - +</td>
</tr>
<tr>
<td>5</td>
<td>Mixed</td>
<td>Symptomatic</td>
<td>+ + - + - + - - - + - - - +</td>
</tr>
<tr>
<td>6</td>
<td>Mixed</td>
<td>Oligosymptomatic</td>
<td>+ - - + - + - - + - - - + +</td>
</tr>
<tr>
<td>7</td>
<td>Rottweiler</td>
<td>Asymptomatic</td>
<td>+ + - + + + + + + + - - +</td>
</tr>
<tr>
<td>8</td>
<td>Mixed</td>
<td>Symptomatic</td>
<td>- - - + + - + - - + + - - +</td>
</tr>
<tr>
<td>9</td>
<td>Dachshund</td>
<td>Oligosymptomatic</td>
<td>+ - - - + - - - + - - - + +</td>
</tr>
<tr>
<td>10</td>
<td>Mixed</td>
<td>Symptomatic</td>
<td>+ + - - + - + - + + + - + +</td>
</tr>
<tr>
<td>11</td>
<td>Mixed</td>
<td>Asymptomatic</td>
<td>- - - + - + - + - + + + - +</td>
</tr>
</tbody>
</table>

Bm = Bone marrow, Lv = Liver, Sp = Spleen, Ln = Lymph nodes, Skin = H&E, + = Positive, - = Negative.
in Paracatu, Minas Gerais (Dias et al. 2011), 3.4% to 8.4% in Cuiabá, Mato Grosso (Almeida et al. 2009, Mestre & Fontes 2007), 9.7% in Montes Claros, Minas Gerais (França-Silva et al. 2003), 11.3% in Rio Grande do Norte (Queiroz et al. 2009) to 20.8% in municipalities of the western region of Rio Grande do Sul (Tartarotti et al. 2011) and 40.3% in municipalities of the eastern region of Mato Grosso (Gontijo & Melo 2004, Oliveira et al. 2010, Lima et al. 2010). In this study, parasitological examination showed the presence of amastigotes in bone marrow (100%), spleen and liver (54.5%), lymph nodes (45.4%) and skin (90.9%) in all asymptomatic dogs. This high parasitism of skin may facilitate the sandfly infection and therefore improve Leishmania sp. transmission. A comparison of parasite macrophage load from various tissues including skin, lymph nodes, liver and spleen of asymptomatic and symptomatic dogs did not show differences as formerly reported (Lima et al. 2010). Moreover, infection rates of Lu. longipalpis which fed on asymptomatic, oligosymptomatic and symptomatic dogs did not show statistical differences, but when sandflies were fed on symptomatic dogs a higher vector infection rate (5x) was found (Michalsky et al. 2007). Asymptomatic dogs are not detected by clinical examination and therefore may be stay for long periods undiagnosed. This fact may be relevant for VL maintenance in endemic areas, as well as in the spreading of the disease to non-endemic areas by companion dogs, especially if competent sand flies species are present.

Although four seropositive dogs were asymptomatic at clinical inspection, at necropsy, all dogs showed gross pathology of the disease, including lymphadenopathy, hepatomegaly, splenomegaly and glomerulonephritis. In symptomatic cases, pulmonary edema and petechiae in the renal cortex were observed at necropsy as well. Histopathological examination revealed an intense infiltrate of macrophages in different organs and tissues with a variable number of amastigotes in the macrophage cytoplasm, particularly in the bone marrow, spleen, lymph nodes, skin and liver. All infected dogs were adult with age varying from two to 10 years. However, the severity of histopathological lesions and parasite load in skin and bone marrow of CVL cases in this study, particularly those from asymptomatic animals, is important due to a higher transmissibility of the parasite. Asymptomatic cases may represent stabilized forms or cases in which there is control of infection by an efficient host immune response (Pinelli et al. 1994, Martinez-Moreno et al. 1995, Natami et al. 2000, Madeira et al. 2004). Our findings are similar to those previously observed in other studies in endemic areas for CVL in Brazil (Gontijo & Melo 2004, Oliveira et al. 2010, Lima et al. 2010) and others countries (Natami et al. 2000, Faye et al. 2010).
Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil

The high frequency of asymptomatic *L. infantum* carriers and fast dog replacement makes control of VL difficult. In Araraquara municipality, São Paulo from August 2002 to July 2004 a total of 578 seropositive dogs were eliminated; however, a mean interval of 38.8% dog replacement in four months was observed (Nunes et al. 2008). According to this study, in a 2.5 years interval, half of the replaced dog population became positive, suggesting the maintenance of VL in the area. The fast dog population turnover, especially by puppies which are more susceptible to the parasite, may make the control of VL transmission difficult. Since the Santa Catarina Island is a highly frequented holiday destination for both Brazilian and international tourists, a permanent monitoring program for CVL needs to be implemented. No data concerning dog replacement in the focus area exists presently. Additionally, as not all localities were investigated, the presence of positive animals in other regions of the Island is unknown. Mapping of cases in this study has already demonstrated CVL is distributed across the Island and not focused to any specific area. The high prevalence of positive animals with high cutaneous parasite load is of utmost importance, since these animals could be act as silent reservoirs, which remain for longer periods in the transmission cycle. On the other hand, a more detailed composition of the phlebotomine fauna is necessary in order to identify potential species for *L. infantum* transmission. VL outbreaks in the canine population are known to precede the occurrence of disease in humans (Deboni et al. 2011). To date, no transmission of VL to humans related to this CVL outbreak in the Santa Catarina Island has been confirmed.

Visceral leishmaniasis is a growing public health problem in Brazil, where twenty-one out of twenty-seven states present active transmission (Ministério da Saúde 2012). It is well established that dogs play a central role in the maintenance and expansion of *L. infantum* infection and transmission depending on several ecological and epidemiological features, especially on the presence of competent vector species and susceptible mammalian hosts. This work confirms and provides an evaluation of the clinical and histopathological features of the first outbreak of CVL Santa Catarina Island, Santa Catarina, Brazil. The presence of CVL in an area with high tourist traffic is of concern for resident dog owners, veterinarians, and public health officials alike. The availability of data only from a limited study area and the presence of asymptomatic cases indicate the need for a complete active surveillance program. Additionally, the lack of an incriminated vector makes the control of the disease spreading increasingly difficult. Controlling of the CVL situation in the municipality is imperative for preventing the spread of the disease to humans.

Acknowledgments.- The authors would like to thank CCZ/DIVE for allowing to collect the samples used in this study, and C.N. Yamanaka and A. Fernandes for their technical assistance. P.H.S. M.M. and R.C.F. are recipients of CNPq and CNPq Scholarships (Brazilian Government Agencies). The study was funded by CNPq, CAPES and FINEP (Brazilian Government Agencies). Funders have no role on study design, data generation and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

Lainson R., Dye C., Shaw J.J., MacDonald D.W., Courtenay O., Souza A.A.A. & Silveira F.T. 1990. Amazonian visceral leishmaniasis-distribution of the vector *Lutzomyia longipalpis* (Lutz et Neiva) in relation to the fox *Cer-
docyn thous (Linn.) and the efficiency of this reservoir host as a source of infection. Mem. Inst. Oswaldo Cruz 99(2):135-137.

Marlow MA, Mattos MS, Makowiecky ME, Eger I, Rossetto AL, Grisard EC & Steineld M. 2013. Divergent profile of emerging cutaneous leishmaniasis in subtropical Brazil: new endemic areas in the southern frontier. Plos One (Accepted for publication)

