RESUMO.- [Teste lacrimal de Schirmer modificado e tonometria de rebote em papagaio-verdadeiro (Amazona aestiva).] O objetivo deste estudo foi descrever o teste lacrimal de Schirmer modificado (TLSm), a pressão intraocular (PIO) pela tonometria de rebote e o comprimento da fissura palpebral (FP) do papagaio-verdadeiro (Amazona aestiva). Foram avaliados 35 papagaios adultos e saudáveis, provenientes de um Criadouro Conservacionista do Brasil. Após avaliação clínica e laboratorial, as aves foram fisicamente contidas para aferição, em ambos os olhos, do TLSm, da PIO pela tonometria de rebote e do comprimento da FP, utilizando-se um paquímetro digital. Valor médio do TLSm foi 6.2±0.1 mm/min e da PIO foi 6.4±0.1 mmHg, enquanto a aferição da FP foi 10.1±0.1 mm. Uma correlação modesta foi observada entre TLSm e a FP para olho direito (OD) (ρ=0.14) e olho esquerdo (OE) (ρ=0.20). Os resultados podem servir como valores de referência para testes oftalmicos para A. aestiva.

TERMOS DE INDEXAÇÃO: Teste lacrimal de Schirmer modificado, tonometria, papagaio-verdadeiro, Amazona aestiva, aves, produção lacrimal, pressão intraocular, comprimento da fissura palpebral, animais silvestres.

INTRODUCTION

The blue-fronted Amazon parrot (Amazona aestiva) measures 35-37 cm in length and weighs approximately 400 g, reaching sexual maturity of age at five years. Individuals of this species have a predominant green color, yellow head with blue forehead, and black feet and beak (Forshaw 2010). Because of their vocalization skills similar to speech and interaction with humans, it is bred as a pet (Godoy 2007). Birds are considered animals with great visual acuity, which are important factors for breeding, feeding and flight (Hart 2002, Reuter et al. 2011, Williams 2012, Rauscher et al. 2013). The ophthalmic reference values used for the mSTT and rebound tonometry in these animals lack inter- and intraspecies information.

Due to the lack of specific data for A. aestiva, we aimed to establish normal parameters for modified Schirmer tear test (mSTT), intraocular pressure (IOP), and palpebral fissure length (PFL). Also, to verify any correlation among mSTT and PFL.

ABSTRACT.- Falcão M.S.A., Monteiro R.V., Oriá A.P. & Galera P.D. 2017. Modified Schirmer tear test and rebound tonometry in blue-fronted Amazon parrot (Amazona aestiva). Pesquisa Veterinária Brasileira 37(8):871-873. Departamento de Cirurgia de Pequenos Animais, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Avenida L4 Norte, Asa Norte, Brasília, DF 70910-900, Brazil. E-mail: dra.paulagalera@gmail.com

The aim of this study was to describe the modified Schirmer tear test (mSTT), intraocular pressure (IOP) by rebound tonometry and palpebral fissure length (PFL) in blue-fronted Amazon parrots (Amazona aestiva). Thirty-five healthy adult animals from a conservation breeding center in Brazil were used in this study. Modified Schirmer tear test, rebound tonometry and PFL measurements were performed in both eyes, with birds under physical restraint. Mean mSTT was 6.2±0.1 mm/min and mean IOP was 6.4±0.1 mmHg, while PFL was 10.1±0.1 mm. A moderate correlation was seen between mSTT and PFL for OD (ρ=0.14) and OS (ρ=0.20). The results provide ophthalmic tests reference values for A. aestiva. INDEX TERMS: Schirmer tear test, tonometry, Amazon parrot, Amazona aestiva, birds, lacrimal production, intraocular pressure, palpebral fissure length, wild animals.

1 Received on June 16, 2016. Accepted for publication on November 18, 2017.
2 Departamento de Cirurgia de Pequenos Animais, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Avenida L4 Norte, Asa Norte, Brasília, DF 70910-900, Brazil. *Corresponding author paulaeye@unb.br
3 Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Avenida Adhemar de Barros 500, Ondina, Salvador, BA 40170-110, Brazil

871
MATERIALS AND METHODS

Ethics statements. The study was approved by the Ethics Committee for Animal Use of the University of Brasília (44763/2014). In addition, it was conducted in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Animals. Thirty-five blue-fronted Amazon parrots (70 eyes), adults of undetermined sex, from a conservation breeding center accredited by IBAMA (Brazilian Institute of the Environment and Renewable Natural Resources), in the Central-West region of Brazil, were used in this research. The animals were phenotypically similar, with an average weight of 400 g (300-420 g).

The birds were captured with the help of nets and kept under physical restraint. The evaluations were performed on different animals per week, between 08:30 and 16:30 h, with an average temperature of 28°C (18-29°C), and relative humidity of 62% (source: Clima Tempo). The parrots underwent clinical and laboratory evaluation (hematology and serum chemistry), followed by ophthalmic examination. Animals with visually detectable ocular abnormalities or clinical changes were not included in the study. The animals were subjected to inspection of the ocular surface and anterior segment structures by slit-lamp biomicroscopy (Kowa-SL®; Kowa, Tokyo, Japan).

Ophthalmic parameters. All ophthalmic parameters were determined by the same investigator; in both eyes. The lacrimal production was measured by modified STT (mSTT) (Schirmer Tear determined by the same investigator, in both eyes. The lacrimal length), and the lids were kept closed during measurement. The eyelid from lateral to medial commissure (palpebral fissure length), and the lids were kept closed during measurement.

Modified STT was carried out using standardized strips cut in half, reducing the width of the 5mm strip to 2.5 mm. The modified strips were placed into the lower conjunctival sac and kept for 60 seconds. The wetted length was immediately recorded. Tonometry was performed with the bird held in a vertical position, avoiding excessive pressure to the cervical region, to prevent iatrogenic IOP changes. Tono Vet® measurements were obtained once in each bird with the P setting, and only readings with no filter paper and the ocular surface (Meekins et al. 2015), and should be considered in the interpretation of the findings, besides anatomic and physiologic characteristics of the species studied. One can also consider that using a narrower strip means a smaller contact surface between the filter paper and the ocular surface (Meekins et al. 2015), resulting in less moistening. It should be noted that the A. aestiva sample studied was phenotypically similar, and a substantial number of animals were assessed for this species, enhancing the reliability of the results.

DISCUSSION

Prior to conducting this research, a pilot study was performed. It was not feasible to use the standard STT strip in the conjunctival sac of the lower eyelid, although Storey et al. (2009) have been successful using this method in assessing the parrot species A. ventralis. Even after inserting the strip into the conjunctival sac, the birds did not allow the strip to remain for the time required for tear measurement, probably due to the discomfort caused by the standard-sized test strip. It was found that the modified strip, as previously described (da Silva et al. 2013), was tolerated by the animals, without causing excessive stress. The STT has shown restrictions when used in small eyes (Willis & Wilkie 1999, Müller et al. 2010, Beckwith-Cohen et al. 2015) which also was observed in the present study (Lange et al. 2012, Da Silva et al. 2013). According to Williams (2012), the use of a modified strip (cut in half with width of 2.5 mm) is a viable option in species of birds with small eyes.

Meekins et al. (2015) utilized the mSTT strip in flamingo eyes, inserting it in the temporal canthus with the help of palpebral forceps, because they had difficulties placing the standard strip in the bottom of the conjunctival sac. The values found by these authors were higher (12.3±4.5 mm/min) compared to parrots.

Storey et al. (2009) described values of 7.9±2.6 and 5.1±3.3 mm/min for STT-1 and STT-2, respectively, evaluating A. ventralis parrots, where the values obtained for STT-1 were above those measured for A. aestiva. Methodological modifications certainly affect the results obtained and should be considered in the interpretation of the findings, besides anatomic and physiologic characteristics of the species studied. One can also consider that using a narrower strip means a smaller contact surface between the filter paper and the ocular surface (Meekins et al. 2015), resulting in less moistening. It should be noted that the A. aestiva sample studied was phenotypically similar, and a substantial number of animals were assessed for this species, enhancing the reliability of the results.

Fluctuations in tear production are documented to be influenced by age, time of year, time of day and environment.
Modified Schirmer tear test and rebound tonometry in blue-fronted Amazon parrot (*Amazona aestiva*)

873

