Equine pythiosis in the eastern wetlands of Uruguay

Agustín Romero, Juan García, Sofía Balestié, Felipe Malfatto, Alejandra Vicentino, Elisa Simone V. Sallis, Ana Lucia Schild, and Fernando Dutra

Equine pythiosis is an ulcerative and granulomatous disease of the skin, caused by the oomycete Pythium insidiosum (Pythiaceae). The objective of this study was to describe seven cases of equine pythiosis that occurred from 2012 to 2017 in the eastern region of Uruguay. Six of the seven cases occurred in the eastern wetland ecosystems of the Merin basin, and the remaining case occurred in the wetland fluvial plains of the Tacuarembó River. Lesions consisted of a large, rapidly growing ulcerated tumor with abundant granulation tissue, serosanguineous secretion, and fistulous tracts containing large concretions or kunkers. The animals presented intense pruritus, claudication and loss of body condition, with death or euthanasia in extremis in six cases. The main histological lesions consisted of an eosinophilic and pyogranulomatous inflammatory process, with numerous foci of eosinophilic necrosis (kunkers), collagenolysis, and a Splendore–Hoeppli reaction. In all cases, silver coloration (Grocott) showed intralesional hyphae compatible with P. insidiosum, which was confirmed by immunohistochemistry in three cases. A horse in the terminal phase of the disease was treated with triamcinolone acetonide (50mg IM every 15 days), and fully recovered after 1 year. It is concluded that equine pythiosis is prevalent in the wetland ecosystems of eastern Uruguay and that treatment with triamcinolone is auspicious.

INDEX TERMS: Equine, Pythium insidiosum, pythiosis, eastern wetland, Uruguay, horses, pathology.
INTRODUCTION

Pythiosis, also known as “leeches” in the US, “swamp cancer” in Australia, “bursattee” (i.e. rainy season) in India, “hypomysis destruens” in southeast Asia, and “Mal dos Pantanos” in Brazil, is a lethal granulomatous cutaneous disease of horses, caused by the aquatic fungus-like oomycete Pythium insidiosum (kingdom Stramenopila, family Pythiaceae) (Santos et al. 2011, Grooters 2013). Pythiosis sporadically occurs in canines, cats, ruminants and humans, although it is not considered to be a disease with zoonotic potential (Gaastra et al. 2010, Mauldin & Peters-Kennedy 2015). The cutaneous/subcutaneous form of pythiosis is the most commonly described form in horses (Chaffin et al. 1995, White et al. 2008, Grooters 2013), although intestinal, nasal and pulmonary cases have also been reported (Goad 1984, Allison & Gillis 1990, Morton et al. 1991, Souto et al. 2016). The cutaneuos/subcutaneous form may also involve the regional lymph nodes, or may invade the underlying bone and cause osteomyelitis of the lower limbs (Alfaro & Mendoza 1990). No predilection of race, sex or age exists (Grooters 2013). The disease is found worldwide (especially in Australia, India, Thailand, and southern US), occurring with the highest incidence in tropical and subtropical regions associated with wetlands, dumps or swampy areas (Gaastra et al. 2010). In South America, an extensive series of cases has been reported in Colombia (Cardona-Álvarez et al. 2014), Venezuela (Márquez et al. 2010), and Brazil, particularly in the Pantanal Mato-Grossense (Pereira & Meirelles 2007, Santos et al. 2011) and in lowland areas adjacent to the Merín and Patos lagoons (Marcolongo-Pereira et al. 2012).

Environmental conditions are the most influential factors for the occurrence of equine pythiosis. Pythium insidiosum requires a warm-water environment (30-40°C) and an organic substrate of decaying vegetation in order to survive and reproduce (Gaastra et al. 2010). Zoospores show chemotaxis to decomposing plants, as well as to animal hair or damaged tissues. Once in the host, zoospores lose their flagella, encyst, develop germinal tubes, and invade tissues with the help of proteolytic enzymes (Mendoza et al. 1996). The lesions are usually located in the body parts most often in prolonged contact with contaminated water, such as the distal extremities, the ventral aspect of the thoraco-abdominal wall and the face (Grooters 2013, Mauldin & Peters-Kennedy 2015). Lesions begin as small ulcerations that rapidly enlarge to become large tumor-like masses, with multiple fistulous tracts and pale yellow concretions similar to coral, called “kunkers” or “leeches” (Mauldin & Peters-Kennedy 2015). The kunkers, a unique pathological finding of the equine species, exist microscopically in areas of necrosis with large numbers of degranulated eosinophils, collagenolysis, fibrosis, and a Splendore–Hoepli reaction around P. insidiosum hyphae (Miller & Campbell 1984, Martins et al. 2012). Hyphae are difficult to visualize histologically with hematoxylin and eosin (HE) and periodic acid–Schiff (PAS) staining, but are strongly positive to Grocott’s methenamine silver (GMS), and can be confirmed with immunohistochemistry (Brown et al. 1988, Martins et al. 2012) or molecular methods (Azevedo et al. 2012).

The treatment of pythiosis is controversial. Surgically removing all affected tissue with a safety margin to avoid recurrences is often hampered in field horses by the size of the lesion, the risky anatomical regions that are typically involved and the high cost of the surgery (Grooters 2013). Surgery followed by immunotherapy is reported to be 70% effective (Pereira & Meirelles 1997, Mendoza & Newton 2005). Antimycotic chemotherapy with potassium iodine or amphotericin B generally fails because P. insidiosum is not a fungus and hence does not have ergosterol in its cytoplasmic membranes (Mendoza et al. 1996). Some authors point to the high efficacy of the use of amphotericin B in a 10% solution of dimethylsulfoxide by means of the intravenous distal regional perfusion technique (Dória et al. 2015). An earlier report of several horses cured following the use of the synthetic corticosteroid triamcinolone acetonide intramuscularly (Cuero-Castilla & Mendoza-Espinoza 1985) was recently confirmed in a case-control study with 100% efficacy in 12 affected horses (Cardona-Álvarez et al. 2016, 2017).

Although Uruguay has favorable ecological conditions for the circulation and transmission of Pythium insidiosum (Machado et al. 2018), studies of this disease in Uruguay are scarce and limited to laboratory reports (Dutra et al. 2012, 2014). The objective of the present study was to describe the clinical, pathological and geographical distribution of a series of seven cases of equine pythiosis diagnosed in the eastern region of Uruguay from 2012 to 2017. The successful treatment of a case was also reported.

MATERIALS AND METHODS

A retrospective study of seven cases of pythiosis in horses diagnosed from 2012 to 2017 at the East Regional Laboratory of the DILAVE Miguel C. Rubino, Treinta y Tres, Uruguay, was conducted. Clinical, epidemiological and management data were collected during visits to the farms. Biopsies from the seven horses were fixed in a 4% aqueous solution of buffered formaldehyde, dehydrated in graded alcoholic solutions and stored in a 10% buffered formaldehyde solution of 4% dimethyl sulfoxide by means of the intravenous distal regional perfusion technique (Dória et al. 2015). Immunohistochemistry (IHC) was performed with streptavidin-peroxidase complex and chromogen 3,3 diaminobenzidine (DAB) (Brown et al. 1998). Immunohistochemistry (IHC) was performed with a polyclonal anti-<i>P. insidiosum</i> antibody produced in rabbits, using the...
RESULTS

Case description

Table 1 shows the clinical and epidemiological data of the seven cases of equine pythiosis diagnosed in the Departments of Treinta y Tres, Durazno and Rocha. All cases occurred from March to June (late summer and autumn). Most of the horses were female (5/7), of the Criollo breed (6/7 cases) and adults (6/7 cases; 5-19 years), although an Arabian mare (Case 2) and a 7-month-old filly (Case 6) were also diagnosed. Two rice-livestock farms had a history of similar cases in previous years.

Clinical signs and pathology

All the affected animals showed rapid deterioration, extensive multifocal alopecia, pain, claudication, and severe pruritus in the affected areas. Lesions were located on the lower lip and chin (Case 1), upper lip and left nostril (Case 2), ventral abdomen (Case 5), distal forelegs (Case 3 and 6), and distal hindlegs (Case 4 and 7). The lesions appeared as large ulcerated masses, 15 to 40 cm or more, with an irregular surface and draining tracts that discharged thick strands of a serosanguineous fluid (Fig. 1). Yellowish-white concretions, either embedded in the tissue or detached into sinus cavities, were found in all cases (Fig. 2). Smaller satellite lesions were observed in horses with large limb lesions.

Histologically, in all horses, the epidermis was extensively ulcerated and covered by dried fibrin, bacteria and cellular debris. In the dermis and subcutaneous panniculus, there was extensive fibroplasia, with multifocal to coalescing areas of eosinophilic necrosis containing karyorrhectic cellular debris, occasional clear hyphal-ghost spaces, and numerous degranulating eosinophils encrusted on degenerating collagen fibers (collagenolysis) (Fig. 3). Eosinophils, neutrophils, mast cells and macrophages surrounded these necrotic foci (Fig. 4). Occasionally, there were giant cells and foci of Splendore–Hoeppli reaction. With GMS staining, a variable amount of irregular, sparsely septate hyphae with thick, parallel cell walls and branched at 90° angles, was observed (Fig. 5).

Pythium insidiosum was confirmed by IHC in three of the seven cases (Case 2, 5 and 6). PAS staining was inconclusive or negative in all cases.

Evolution and treatment of a case

In six of the seven cases, the lesion extended rapidly over several weeks until death or euthanasia in extremis; none had responded to previous antibiotic or antifungal treatment. Horse treated with triamcinolone acetonide (Case 7) had a large lesion in the right hind limb, anemia (11% microhematocrit), and a very poor body condition previous to first dosing (Fig. 6A). By 2 weeks after the first dosing, pruritus, bloody secretion and satellite lesions had disappeared, ulceration progressively regressed, the surface became smooth and pink, hematocrit increased to 28%, and

Table 1. Cases of equine pythiosis in the eastern region of Uruguay (2012–2017)

<table>
<thead>
<tr>
<th>Case</th>
<th>Category</th>
<th>Breed</th>
<th>Age</th>
<th>Department</th>
<th>Place</th>
<th>Lesion location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mare</td>
<td>Criollo</td>
<td>19 years</td>
<td>Treinta y Tres</td>
<td>Merin wetland</td>
<td>Lower lip, chin</td>
</tr>
<tr>
<td>2</td>
<td>Mare</td>
<td>Arab</td>
<td>5 years</td>
<td>Treinta y Tres</td>
<td>Merin wetland</td>
<td>Upper lip, nostrils</td>
</tr>
<tr>
<td>3</td>
<td>Stallion</td>
<td>Criollo</td>
<td>4 years</td>
<td>Treinta y Tres</td>
<td>Merin wetland</td>
<td>Left forelimb, fetlock</td>
</tr>
<tr>
<td>4</td>
<td>Stallion</td>
<td>Criollo</td>
<td>9 years</td>
<td>Rocha</td>
<td>Merin wetland</td>
<td>Right hindlimb, pastern</td>
</tr>
<tr>
<td>5</td>
<td>Mare</td>
<td>Criollo</td>
<td>12 years</td>
<td>Treinta y Tres</td>
<td>Merin wetland</td>
<td>Ventral abdomen</td>
</tr>
<tr>
<td>6</td>
<td>Filly</td>
<td>Criollo</td>
<td>7 months</td>
<td>Durazno</td>
<td>Negro River wetland</td>
<td>Right forelimb, cannon</td>
</tr>
<tr>
<td>7</td>
<td>Mare</td>
<td>Criollo</td>
<td>7 years</td>
<td>Treinta y Tres</td>
<td>Merin wetland</td>
<td>Right hindlimb, pastern and fetlock</td>
</tr>
</tbody>
</table>
the margins of the wound showed a rapid re-epithelization (Fig.6B,C). After 1 year, the wound was almost completely healed by secondary intention and the animal was discharged in very good body condition (Fig.6D).

Geographic pattern

The superposition of the topographic layer showed that six of the seven cases were located in the lower plains of the Merín lagoon basin in the departments of Cerro Largo, Treinta y Tres and Rocha, in eastern Uruguay, and the remaining case was in the Negro River fluvial plains, on the other side of the Cuchilla Grande hill range (200-500 m altitude) that defined the western limit of the basin (Fig.7A). The soils corresponded to the Vergara (1 case), Río Branco (2 cases), Rincón de Ramírez (2 cases), San Luis (1 case) units in the eastern plains, and the Río Tacuarembó unit (1 case) on the coasts of the Tacuarembó River. The drainage and inundation geographic layers (Fig.7B,C) showed that all these areas are characterized by poor or very poor natural drainage (Classes 6, 7 and 8) and are annually exposed to long or very long flooding, or remain flooded most of the year (Molfino & Califra 2004).

DISCUSSION

The epidemiology and the clinical, gross and histopathological findings in the seven studied horses were highly suggestive of *Pythium insidiosum* infection, which was confirmed by IHC in three animals. This technique is an effective and advantageous method when culture or isolation of the agent cannot be performed (Pedroso et al. 2009, Grooters 2013), but has the disadvantage that, because the hyphae are only found within the kunkers or into Splendore-Hoeppli foci (Mendoza et al. 1996), tissue sampling must be thorough. It had been observed that, in advanced stages of the disease, the exuberant formation of fibroplasia and granulation tissue made focal areas of necrosis distant from one another, making it difficult to obtain biopsies containing a sufficient quantity of kunkers for IHC diagnosis (Mendoza et al. 1996, Reis & Nogueira 2002). This is the reason for recommending the collection of several biopsies at different locations in the damaged tissue (Reis & Nogueira 2002). Thus, the absence of IHC-positive hyphae in some cases in the present study may be explained by the occurrence of an excessive proliferation of scar tissue in horses sampled in an advanced stage of the disease or, as samples came from routine material, biopsies did not include enough areas of necrosis where the hyphae are mostly visualized.
In the differential diagnosis, cutaneous zygomycosis such as basidiobolomycosis (*Basidiobolus ranarum*) and conidiobolomycosis (*Conidiobolus* spp.), which cause cutaneous granulomatous lesions similar to equine pythiosis, should be mainly considered (Grooters 2013, Mauldin & Peters-Kennedy 2015). Differentiation is important because the treatments and prognoses are different. In basidiobolomycosis, granulomatous lesions are most often found on the lateral aspects of the body due to the higher likelihood of these areas coming into contact with spore-containing soil or organic material when the animal lies on the ground, whereas conidiobolomycosis is mostly a nasopharyngeal infection, with or without dissemination to the external nares and face (Grooters 2013). In both diseases, kunkers are present, but are typically smaller (<2mm) and lack the discrete, branched corallike shape of pythiosis (Miller & Campbell 1984, Mauldin & Peters-Kennedy 2015).

Microscopically, the diameter of the hyphae is significantly larger in *Basidiobolus* sp. and *Conidiobolus* sp. than in *P. insidiosus*, making them easily located on HE and PAS-stained histological sections (Miller & Campbell 1984). In addition, right-angled hyphae are considered typical of *P. insidiosum* (Mendoza et al. 1996). Thus, the pathological and histopathological findings of the present cases are all indicative of *Pythium insidiosum* infection.

The successful use of triamcinolone acetonide has previously been reported in the treatment of equine cutaneous pythiosis (Cuero-Castilla & Mendoza-Espinoza 1985 apud Mendoza et al. 1996, Cardona-Alvarez et al. 2016). Our experience with only one horse in the final phase of the disease confirmed these results. As surgical removal would be ineffective and pythiosis vaccines have not yet been approved in Uruguay, we decided to administer 50 mg IM triamcinolone acetonide biweekly,
as previously reported (Cardona-Álvarez et al. 2016). The treatment began practically in the final phase of the disease when the animal was cachectic and very weak, and despite the large granulomatous ulceration around a distal leg, re-epithelization practically closed the wound after 1 year. The reasons for this potent curative effect of triamcinolone acetonide in the case of equine cutaneous pythiosis are uncertain. Unfortunately, we did not histologically follow the healing process. Triamcinolone acetonide inhibits eosinophil migration, reduces blood and tissue eosinophilia, and significantly enhances spontaneous eosinophil apoptosis (Zhang et al. 2000, Kankaanranta et al. 2005). In horses, triamcinolone is commonly used for the relief of itching and inflammation associated with a wide variety of eosinophilic skin conditions, such as eosinophilic granuloma, insect bite hypersensitivity, eosinophilic axillary nodular necrosis, habronemiasis, and even mastocytoma, among others (Scott & Miller Junior 2011). It has been proposed that exoantigens of P. insidiosum trigger a TH2 immune response as an evolutionary strategy for recruiting eosinophils and mast cells; these may worsen inflammation and secure the proliferation and survival of hyphae inside the eosinophilic necrosis foci (kunkers). On the other hand, cytoplasmic immunogens stimulate a protective TH1 response and the recruitment of macrophages and lymphocytes, which may result in death of the organisms and clinical remission (Mendoza & Newton 2005). Therefore, the high efficacy of triamcinolone for P. insidiosum infection in horses could be explained by its ability to modulate the immune response or inhibit the overwhelming number of degranulated eosinophils, limit the eosinophil-mediated tissue necrosis, decrease hyphae viability, and promote a rapid resolution of the eosinophilic inflammation. Other therapeutic studies are necessary, but our results suggest that an early histological diagnosis and treatment with triamcinolone acetonide would prevent the death of many horses in the endemic area.

In the present study, almost all cases of pythiosis occurred in the lower plains of the Merín lagoon basin, the largest wetland area in Uruguay (wetlands represent 4.5% of Uruguay’s area), which is transboundary with the counties of Río Grande do Sul, Brazil, where equine pythiosis is clinically and serologically highly prevalent (Marcolongo-Pereira et al. 2012, Weiblen et al. 2016). Agroecologically, the eastern wetland is characterized by spring-summer growing grassland, rice-growing or rice-livestock farming systems, a high density of grazing horses (>3.08/sq km; OIE 2017), a humid subtropical climate and a dense network of rivers and small streams where soil humidity is permanent during a large part of the year and hydrophilic vegetation has adapted to recurrent or permanent flooding (Clara & Maneyro 1999); these environmental conditions are all ideal for the occurrence of equine pythiosis. Pythium insidiosum is a generalist pathogen, and ecological niche models predict its potential circulation through large areas in Río Grande do Sul, Brazil, and Uruguay (Machado et al. 2018). In the present study, one case occurred in the fluvial wetlands of the Negro/Tacuarembó Rivers, but the disease might occur in other riverine wetlands of the country, such as the Carrasco/Santa Lucía plains (south of the country), lower reaches of the Uruguay River (Farrapos wetlands, southwest), or Queguay, Arapéy and Dayman Rivers (northwest; Dr. Deborah César & Rodolfo Rivero, pers. comm. 2018), although horse density is much lower in these areas (<1.05/sq km; OIE 2017). Thus, the eastern wetlands appear to be the endemic ecological niche of equine pythiosis in Uruguay, although sporadic cases may occur in marshes and river plains in other parts of the country.

CONCLUSION

Pythiosis by Pythium insidiosum is an endemic disease of grazing horses in the wetland ecosystem of eastern Uruguay. Early treatment with triamcinolone acetonide is promising, but requires more research.

REFERENCES

Equine pythiosis in the eastern wetlands of Uruguay

