Dados experimentais dos compostos 3-16 isolados de folhas de *Pterodon pubescens*

\[\beta,\alpha\text{-Diidróxi-4(15)-eudesmeno (3):} \text{Óleo incolor. [}\alpha\text{]}_D^{20} +2,6 (\text{CHCl}_3; c. 0,16)\text{e Lit.} [\alpha\text{]}_D^{20} +2,6 (\text{CHCl}_3; c. 0,20). \text{RMN de } ^{1}\text{C (75 MHz, CDCl}_3) \delta_c: 79,0 (C-1), 31,8 (C-2), 35,1 (C-3), 146,2 (C-4), 55,8 (C-5), 67,0 (C-6), 49,3 (C-7), 18,1 (C-8), 36,3 (C-9), 41,6 (C-10), 26,0 (C-11), 21,3 (C-12), 16,2 (C-13), 11,6 (C-14), 107,8 (C-15).

Óxido de carioloifeno (4): Óleo incolor. [\alpha\text{]}_D^{20} -56,4 (\text{CHCl}_3; c. 0,20)\text{e Lit.} [\alpha\text{]}_D^{20} -57,7 (\text{CHCl}_3; c. 0,60). \text{RMN de } ^{1}\text{C (75 MHz, CDCl}_3) \delta_c: 63,7 (C-1), 30,2 (C-2), 29,7 (C-3), 151,8 (C-4), 48,7 (C-5), 39,7 (C-6), 50,7 (C-7), 27,2 (C-8), 39,2 (C-9), 59,8 (C-10), 34,0 (C-11), 21,6 (C-12), 29,8 (C-13), 112,7 (C-14), 16,9 (C-15).

α-Cadinol (5): Sólido branco amorfo. RMN de

- **Espatulenol (6):** Óleo incolor. [\alpha\text{]}_D^{20} +37,1 (\text{CHCl}_3; c. 0,9)\text{e Lit.} [\alpha\text{]}_D^{20} +37,1 (\text{CHCl}_3; c. 1,33). \text{RMN de } ^{1}\text{C (75 MHz, CDCl}_3) \delta_c: 54,3 (C-1), 26,7 (C-2), 41,7 (C-3), 80,9 (C-4), 53,4 (C-5), 29,9 (C-6), 46,6 (C-7), 22,6 (C-8), 42,1 (C-9), 72,4 (C-10), 26,0 (C-11), 21,5 (C-12), 15,1 (C-13), 20,7 (C-14), 23,8 (C-15).

β-Sitosterol (7): Sólido branco amorf. RMN de

Estatigaster (8): Sólido branco amorf. RMN de

Feofita A (9): Sólido esverdeado. RMN de

Luteolina (10): Sólido amarelo. RMN de

Quercetina (12): Sólido amarelo. RMN de

Quercetina-3-O-Gentiobiosido (14): Sólido amarelo. RMN de

Ratina (15): Sólido amarelo. RMN de

Ácido p-hidroxibenzoico (16): Sólido branco. RMN de

Mayker Lazaro Dantas Miranda, Fernanda Rodrigues Garcez, Alfredo Raúl Abot e Walmir Silva Garcez

1 Instituto de Química, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande – MS, Brasil

2 Universidade Estadual de Mato Grosso do Sul, Unidade Universitária de Aquidauana, 79200-000 Aquidauana – MS, Brasil

e-mail: walmir.garcez@ufms.br
Espectros dos compostos 1-16 isolados de folhas de *Pterodon pubescens*

Figura 1S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 2S. Espectro de RMN de 13C e experimentos de DEPT 135° e 90° (75 MHz, CDCl$_3$) do composto 1((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)
Figura 3S. Experimento HSQC (300/75 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 4S. Experimento HMBC (300/75 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)
Figura 5S. Experimento NOESY (300 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 6S. Experimento COSY (300 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)
Sesquiterpenos e outros constituintes das folhas de *Pterodon pubescens* Benth. (Leguminosae)

Figura 7S. Espectro de Massas do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 8S. Espectro de infravermelho do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)
Figura 9S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 2 (oplopanona)

Figura 10S. Espectro de RMN de 13C e experimentos DEPT 90° e DEPT 135° (75 MHz, CDCl$_3$) do composto 2 (oplopanona)
Figura 11S. Experimento HSQC (300/75 MHz, CDCl₃) do composto 2 (oplopanona)

Figura 12S. Experimento HMBC (300/75 MHz, CDCl₃) do composto 2 (oplopanona)
Figura 13S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 3 (Eudes-4(15)-eno-lβ.6α-diol)

Figura 14S. Espectro de RMN de 13C e experimentos DEPT 90° e 135° (75 MHz, CDCl$_3$) do composto 3 (Eudes-4(15)-eno-lβ.6α-diol)
Sesquiterpenos e outros constituintes das folhas de *Pterodon pubescens* Benth (Leguminosae)

Figura 15S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 4 (Óxido de Cariofileno)

Figura 16S. Espectro de RMN de 13C e experimentos DEPT 90$^\circ$ e 135$^\circ$ (75 MHz, CDCl$_3$) do composto 4 (Óxido de Cariofileno)
Figura 17S. Espectro de RMN de \(^1\text{H}\) (300 MHz, CDCl\(_3\)) do composto 5 (α-Cadinol)

Figura 18S. Espectro de RMN de \(^{13}\text{C}\) e experimentos DEPT 135° e 90° (75 MHz, CDCl\(_3\)) do composto 5 (α-Cadinol)
Figura 19S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 6 (Epatulenol)

Figura 20S. Espectro de RMN de ^{13}C e experimento DEPT 135° (75 MHz, CDCl$_3$) do composto 6 (Epatulenol)
Figura 21S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 7 e 8 (β-sitosterol e Estigmasterol)

Figura 22S. Espectro de RMN de 13C e DEPT 135° (75 MHz, CDCl$_3$) do composto 7 e 8 (β-sitosterol e Estigmasterol)
Sesquiterpenos e outros constituintes das folhas de *Pterodon pubescens* Benth (Leguminosae)

Figura 23S. Espectro de RMN de 1H (300 MHz, CDCl$_3$) do composto 9 (Feofitina A)

Figura 24S. Espectro de RMN de 13C e DEPT 135° (75 MHz, CDCl$_3$) do composto 9 (Feofitina A)
Figura 25S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 10 (Luteolina)

Figura 26S. Espectro de RMN de 13C e experimento DEPT 135° (75 MHz, CD$_3$OD) do composto 10 (Luteolina)
Figura 27S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 11 (Kaempferol)

Figura 28S. Espectro de RMN de 13C (75 MHz, CD$_3$OD) do composto 11 (Kaempferol)
Figura 29S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 12 (Quercetina)

Figura 30S. Espectro de RMN de 13C (75 MHz, CD$_3$OD) do composto 12 (Quercetina)
Figura 31S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 13 ((+)-catequina)

Figura 32S. Espectro de RMN de 13C (75 MHz, CD$_3$OD) do composto 13 ((+)-catequina)
Figura 33S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 14 (Quercetina-3-O-α-L-rhamnopyranosídeo)

Figura 34S. Espectro de RMN de 13C e experimento DEPT 135° (75 MHz, CD$_3$OD) do composto 14 (Quercetina-3-O-α-L-rhamnopyranosídeo)
Sesquiterpenos e outros constituintes das folhas de *Pterodon pubescens* Benth (Leguminosae)

Figura 35S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 15 (Rutina)

Figura 36S. Espectro de RMN de 13C e experimento DEPT 135° (75 MHz, CD$_3$OD) do composto 15 (Rutina)
Figura 37S. Espectro de RMN de 1H (300 MHz, CD$_3$OD) do composto 16 (Ácido p-hidroxbenzoico)

Figura 38S. Espectro de RMN de 13C (75 MHz, CD$_3$OD) do composto 16 (Ácido p-hidroxbenzoico)
Fracionamento do extrato etanólico das folhas de *Pterodon pubescens* - obtenção dos compostos 1-16

*a) Fluxograma da partição do extrato etanólico e obtenção dos resíduos orgânicos das folhas de *P. pubescens*.*

![Fluxograma da partição do extrato etanólico e obtenção dos resíduos orgânicos das folhas de *P. pubescens*.](image)

*b) Fluxograma do fracionamento cromatográfico realizado com as frações obtidas da fase hexânica do extrato etanólico das folhas de *Pterodon pubescens*.**

![Fluxograma do fracionamento cromatográfico realizado com as frações obtidas da fase hexânica do extrato etanólico das folhas de *P. pubescens*.](image)
c) Fluxograma do fracionamento cromatográfico realizado com as frações obtidas da fase acetato de etila do extrato etanólico das folhas de Pterodon pubescens.