Pelvic floor muscle training protocol for stress urinary incontinence in women: A systematic review

Marlene Oliveira1, Margarida Ferreira2*, Maria João Azevedo2, João Firmino-Machado4, Paula Clara Santos5,6

1Physiotherapist, Camélia Hotel Sénior & Homes, Guimarães, Portugal
2Visiting Professor, Physiotherapy Department, CESPU – Instituto Politécnico de Saúde do Norte, Vale do Sousa e Vale do Ave, Portugal
3MD, Assistant Physiatrist, Hospital Senhora da Oliveira, Guimarães, Portugal
4MD, Department of Public Health, Porto, Portugal
5Lecturer, Department of Physiotherapy, Escola Superior de Tecnologia e Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
6Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, Universidade do Porto, Porto, Portugal

SUMMARY

Introduction: Strengthening exercises for pelvic floor muscles (SEPFM) are considered the first approach in the treatment of stress urinary incontinence (SUI). Nevertheless, there is no evidence about training parameters.

Objective: To identify the protocol and/or most effective training parameters in the treatment of female SUI.

Method: A literature research was conducted in the PubMed, Cochrane Library, PEDro, Web of Science and Lilacs databases, with publishing dates ranging from January 1992 to March 2014. The articles included consisted of English-speaking experimental studies in which SEPFM were compared with placebo treatment (usual or untreated). The sample had a diagnosis of SUI and their age ranged between 18 and 65 years. The assessment of methodological quality was performed based on the PEDro scale.

Results: Seven high methodological quality articles were included in this review. The sample consisted of 331 women, mean age 44.4±5.51 years, average duration of urinary loss of 64±5.66 months and severity of SUI ranging from mild to severe. SEPFM programs included different training parameters concerning the PFM. Some studies have applied abdominal training and adjuvant techniques. Urine leakage cure rates varied from 28.6 to 80%, while the strength increase of PFM varied from 15.6 to 161.7%.

Conclusion: The most effective training protocol consists of SEPFM by digital palpation combined with biofeedback monitoring and vaginal cones, including 12 week training parameters, and ten repetitions per series in different positions compared with SEPFM alone or a lack of treatment.

Keywords: training, pelvic floor, urinary stress incontinence, women.

INTRODUCTION

The International Continence Society (ICS) and the International Urogynaecological Association define urinary incontinence (UI) as a symptom, namely “the complaint of any involuntary loss of urine.”1 UI is classified according to the record of signs, symptoms and results from urodynamic study (UDS).1 Stress urinary incontinence (SUI) is “the complaint of involuntary urine loss on effort or physical exertion, or on sneezing or coughing.”1

Worldwide, SUI is predominant in females, and the mean prevalence in the various studies is 25%.2,3 It can, however, range from 10% in young women3 to 45% among the elderly.3

UI has a devastating effect on women’s quality of life in the physical, social, sexual and psychological spheres.4 Women restrict or diminish their activity and social participation, with serious implications.5

In SUI, there is an association between physical exertion and urinary loss.6 Increased intra-abdominal pressure triggered by physical exertion leads to increased intravesical pressure and, if it exceeds intraurethral pressure, in the absence of contraction of the detrusor muscle, the resulting urinary leakage is referred to as SUI.6,8 The pathophysiology underlying this condition follows two mechanisms: hypermobility of the urethra and bladder neck, and intrinsic deficiency of the urethral sphincter.7,9
The recommendations of the Agency for Health Care Policy and Research suggest that the first intervention in the treatment of SUI should be conservative. Pelvic floor rehabilitation includes behavioral modifications and advice on everyday life hygiene, intravaginal manual reeducation, strengthening exercises for pelvic floor muscles (SEPFM), electrical stimulation, biofeedback and vaginal cones.10 Rehabilitation of pelvic floor muscles (PFM) may be active and/or passive, but reeducation depends on a request of voluntary muscle contraction. Active exercises include SEPFM, intravaginal manual reeducation, vaginal cones and biofeedback, while passive exercise refers to electrical stimulation.20 Investigations11-13 demonstrated similar effectiveness of different SEPFM programs, but no evidence of a specific, standardized program. These investigations differ regarding the parameters used in the training programs: eight14-16 to forty repetitions;17 two15 to five series;16 submaximal14-16 to maximum contractions;15,16 duration of five weeks16 to six months;14 three times a week14 to daily;19 instruction on muscle contraction using digital palpation;16 biofeedback19 or perineal ultrasound;20 individual20 or group sessions;21 supervised training14 or home practice.10,19,22 In general, SEPFM is effective in the treatment of female SUI; however, there is a great heterogeneity of programs, not allowing identification of the most effective protocol.

The objective of our review was to identify the most effective protocol and/or PFM training parameters to treat female SUI.

METHOD

The structural and content organization of our systematic review was based on the recommendations of the PRISMA statement.23,24 Eligible studies were of an experimental nature comparing SEPFM to placebo, usual treatment or lack of treatment. They presented high methodological expressiveness (score ≥ 5 on the PEDro scale) and were written in English.

The participants were female, aged between 18 and 65 years, diagnosed with SUI based on subjective perception (symptom) and/or clinical evaluation (signal) and/or UDS (uroflowmetry and cystometry). Exclusion criteria included diagnosis of SUI triggered by factors external to the lower urinary tract (neurological pathologies, cognitive deficits), pregnant and postpartum women, ≥ stage 2 prolapse in the Pelvic Organ Prolapse Quantification (POP-Q), and other types of UI (mixed and urgent).

Search strategy

The search covered five databases: PubMed (Medline), Cochrane Library, PEDro, Web of Science and Lilacs. In addition, we conducted a manual survey from the bibliography of the articles, systematic reviews and meta-analyses included, as well as on the ICS website, in order to reduce publication bias.25 Studies included were published between January 1992 and March 2014. The Medical Subject Headings (MeSH) of the National Library of Medicine enabled the identification and the combination of keywords pertaining to: the pathology (urinary stress incontinence), interventions (pelvic floor muscle training; pelvic floor muscle exercise; physical therapy; program; protocol; rehabilitation), population (women; female), and study design (randomized controlled trial; controlled clinical trial; comparative study; research design).

The final search choice included the following keywords: (pelvic floor muscle) AND (“education” OR “training” OR “education”[MeSH Terms] OR “training”) OR (pelvic floor muscle exercise) AND physical therapy OR physiotherapy OR program OR protocol OR rehabilitation AND (stress urinary incontinence) AND women AND female AND (randomized controlled trial OR controlled clinical trial OR comparative study OR research design) NOT (pregnancy OR animals).

Methodological quality

The methodological quality of the studies was analyzed by three independent researchers using the PEDro scale. This assessment tool has 11 items, with a maximum score of 10 points.26 For each criterion presented in the scale (except for the first one), a score of 1 or 0 points can be attributed.26 The PEDro scale was created by Moseley et al. in 1999 based on the Delphi List, and was translated and adapted for the Portuguese population by Costa in 2011.

RESULTS

Search strategy results

The search in the databases led to the identification of 591 potentially relevant studies (Figure 1).

Methodological quality results

The mean score for methodological quality evaluation was $5.7±1.28$ (min/max: 5/8) out of 10 points (Table 1).

The items that most contributed for the decrease of the total score were the 5 (blind study regarding the participants) and 6 (blind study regarding therapists) (Table 1).

Description of the studies

Our systematic review identified seven experimental studies. The studies were conducted between 1996 and 2013, with a total sample of 331 women.
FIGURE 1 Study selection flowchart.

TABLE 1 Classification of the methodological quality of studies according to the PEDro scale.

<table>
<thead>
<tr>
<th>Studies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glavind et al.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Arvonen et al.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Aksac et al.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Zanetti et al.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Felicissimo et al.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Sriboonreung et al.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Kamel t al.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: 1. Eligibility criteria have been specified; 2. Participants were randomly assigned to groups; 3. The distribution into groups was blinded; 4. The groups were initially similar in relation to the most important prognostic indicators; 5. Blind study regarding the participants; 6. Blind study regarding therapists; 7. Blind study regarding evaluators who measured at least one key result; 8. Measurements of at least one key outcome were performed on more than 85% of participants initially allocated to groups; 9. All participants for whom outcome measures were presented received treatment or control intervention as planned or, whenever this was not the case, data were analyzed for at least one of the key outcomes by “intention to treat”; 10. The results of the inter-group statistical comparisons were described for at least one outcome; 11. The study presents measurement points and variation measurements for at least one key result.
Characteristics of the studies
Sample size varied between 30 and 68 women, with a mean age of 48.8 ± 5.51 years, ranging from 25 to 65 years. The mean duration of urine loss was 64 ± 5.66 months with severity ranging from mild to severe (even though the definition of the severity of UI is not expressed).

The diagnosis of SUI was demonstrated through subjective evaluation/symptoms (questionnaire, interview), physical examination/signs (pad test, gynecological evaluation) and/or UDS. Characteristics of the studies

Interventions
In most studies, the program began with instructions for PFM. Methods most often used were digital palpation and teaching of the anatomy and function of PFM. Only one study used biofeedback, while two omitted the teaching of contraction.

Two studies combined SEPFM and biofeedback, one combined the exercises with vaginal cones, two compared SEPFM supervised or not, and two compared the exercises with and without the activation of abdominal muscles. SEPFM program parameters included length of contractions, which ranged from 1 s to 20 s, length of rest from 1 s to 20 s, and number of series, ranging from 2 to 40.

Three studies used maximum contractions and two applied a combination of submaximal and maximum contractions. As for training positions, the one most often used was supine, followed by standing, seated and lateral decubitus position. Two studies, however, did not specify a training position.

Regarding the frequency of sessions, the minimum applied was two sessions per week, while daily treatment was the most frequent.

The analyzed programs lasted between 8 and 16 weeks, and most opted for a 12-week duration.

Instruments used to measure outcomes
Almost all of the studies (6 out of 7) assessed the amount of urine leakage based on 1-hour and 24-hour pad tests. PFM strength was assessed by digital palpation and perineometry (vaginal squeeze pressure) while intrinsic sphincter was assessed by UDS. Other outcomes included subjective evaluation based on a visual analogue scale, quality of life scales (QV-I-QOL, QV-ICIQ-SF) and voiding diaries.

Cure rate results
Six studies displayed their assessments of cure rates measured by pad test ranging between < 1 g and < 2 g. The results of cure rate according to the type of intervention were: 50% (cones) versus 26% (PFMT), 36.6% (supervised PFMT) versus 34.5% (unsupervised), 58% (PFMT + biofeedback) versus 20% (PFMT), 48% (PFMT + supervision) versus 9.5% (unsupervised), 75% (PFMT + palpation) versus 80% (PFMT + biofeedback) versus 0% (no treatment). For intervention periodicity, cure rates were 28.6% (daily PFMT) versus 21.2% (PFMT three times weekly) versus 20% (abdominal training).

On perineometry, PFM strength increased to 84.7% (PFMT + palpation) versus 161.7% (PFMT + biofeedback) versus 7% (no treatment), 15.6% (SEPFM) versus 4.7% (abdominal muscle strength) and 63.4% (daily) versus 48.4% (three times weekly) versus 59.7% (SEPFM + abdominal, three times weekly). On digital palpation, PFM strength reached 37.5% (digital palpation) versus 48.9% (biofeedback) versus 0% (no treatment); 33% (SEPFM) versus 0% (vaginal cones); and 50% (supervised) versus 50% (unsupervised).

On UDS, intraurethral pressure increased 16% (abdominal muscle strength) versus 9.1% (SEPFM) reaching 37.5% (digital palpation) versus 48.9% (biofeedback) versus 0% (no treatment); 33% (SEPFM) versus 0% (vaginal cones); and 50% (supervised) versus 50% (unsupervised).

Subjective perception of cure increased from 23.8% to 75%.

Discussion
Our systematic review confirmed the diversity in study designs, measurement instruments, cure rate definitions, and intervention outcomes.

Zanetti et al. found that supervised SEPFM were more effective than unsupervised SEPFM, unlike another study which demonstrated the equal efficacy of both. The heterogeneity of the results may derive from the different manners of measuring the pad test (24-h and 1-h) and the duration of the interventions (8 and 12 weeks), respectively. The pad test is an instrument that reveals the amount of urinary leakage in grams, in addition to being inexpensive and non-invasive. According to Jørgensen et al., the correlation coefficient varies between 0.68 and 0.93. The investigations are inconsistent regarding pad test application duration (1-h or 24-h), although some guidelines recommend the long-duration pad test (24 hours) as it allows the reproduction of urine losses during daily activities according to an individual’s bladder capacity, compared with the 1-hour pad test, which requires a standardized bladder volume and provokes urine leakage in distinct physical activities.

In our review, combined therapy with SEPFM and abdominal muscle strengthening training significantly increased PFM strength, as proven by perineometry (p < 0.05). However, there were no statistically significant differences in reducing the amount of urine leakage.
<table>
<thead>
<tr>
<th>Study</th>
<th>Groups</th>
<th>Severity</th>
<th>Outcomes</th>
<th>Results</th>
<th>Inter-groups</th>
<th>Definition of cure</th>
<th>Rate of cure</th>
<th>Main conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glavind et al.</td>
<td>G1: SEPFM + biofeedback</td>
<td>Mild to severe</td>
<td>Pad test 1h (g)</td>
<td>G1: 9.0 (5-22); G2: 12.8 (9-44)</td>
<td>p=0.02</td>
<td>≤ 1 g</td>
<td>G1: 58%; G2: 20%</td>
<td>Combined treatment of biofeedback with SEPFM showed a significant reduction of urinary loss compared to SEPFM alone.</td>
</tr>
<tr>
<td></td>
<td>G2: SEPFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arvonen et al.</td>
<td>G1: SEPFM</td>
<td>NR</td>
<td>Pad test 1h (g)</td>
<td>G1: 20; G2: 30</td>
<td>p=0.03</td>
<td>< 2 g</td>
<td>G1: 26%; G2: 50%</td>
<td>Treatment with vaginal cones has significantly reduced the amount of urinary loss compared to SEPFM.</td>
</tr>
<tr>
<td></td>
<td>G2: Vaginal cones</td>
<td></td>
<td>Digital palpation (0-5)</td>
<td>G1: 3; G2: 3</td>
<td>p=0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subjective assessment of cure (0-100%)</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aksac et al.</td>
<td>G1: SEPFM via digital palpation</td>
<td>Mild and moderate</td>
<td>Pad test 1h (g)</td>
<td>G1: 19.9±2.5; G2: 20.5±0.7; G3: 29.1±3.2</td>
<td>p<0.001</td>
<td>≤ 1 g</td>
<td>G1: 7.5%; G2: 80%; G3: 0%</td>
<td>SEPFM combined with digital palpation or biofeedback are effective compared to the untreated group.</td>
</tr>
<tr>
<td></td>
<td>G2: SEPFM via biofeedback</td>
<td></td>
<td>Perineometry (cmH\textsubscript{2}O)</td>
<td>G1: 20.3±6.2; G2: 19.1±4.8; G3: 18.7±4.9</td>
<td>p<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3: no treatment</td>
<td></td>
<td>Digital palpation/Oxford scale (0-5)</td>
<td>G1: 3.5±0.5; G2: 3.3±0.4; G3: 3.3±0.4</td>
<td>p<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subjective assessment – VAS (0-10 points)</td>
<td>NA</td>
<td>G1: 7.5±1.2; G2: 8.1±0.8; G3: 3.6±0.6</td>
<td>p<0.001</td>
<td>G1: 48%; G2: 9.5%</td>
<td>The supervised SEPFM group improved significantly compared to the unsupervised SEPFM group.</td>
</tr>
<tr>
<td>Zanetti et al.</td>
<td>G1: Supervised SEPFM</td>
<td>NR</td>
<td>Pad test 1h (g)</td>
<td>G1: 20.1; G2: 24.7</td>
<td>p<0.002</td>
<td>< 2 g</td>
<td>G1: 48%; G2: 9.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: Unsupervised SEPFM</td>
<td></td>
<td>QV-I-QoL</td>
<td>G1: 69.0; G2: 82.0</td>
<td>p<0.046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voiding diary</td>
<td>G1: 7.0; G2: 1</td>
<td>p<0.0002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subjective assessment</td>
<td>NA</td>
<td>G1: 66.7%; G2: 23.8%</td>
<td>p<0.001</td>
<td>G1: 48%; G2: 9.5%</td>
<td></td>
</tr>
</tbody>
</table>

(continues)
TABLE 2 (cont.) Summary of the description of the studies according to intervention, results and conclusions.

<table>
<thead>
<tr>
<th>Study</th>
<th>Groups</th>
<th>Severity</th>
<th>Outcomes</th>
<th>Results</th>
<th>Inter-groups</th>
<th>Definition of cure</th>
<th>Rate of cure</th>
<th>Main conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felícissimo et al.</td>
<td>G1: Supervised SEPFM</td>
<td>NR</td>
<td>Pad test 24h</td>
<td>G1: 4.5 (3.0-15.7); G2: 9.3 (3.3-36.1)</td>
<td>p=0.78</td>
<td>G1: 3.2 (1.2-8.0); G2: 2.8 (1.5-8.5)</td>
<td>p=0.78</td>
<td>Supervised and unsupervised SEPFMs were equally effective, with prior teaching of the correct contraction of PFM.</td>
</tr>
<tr>
<td></td>
<td>G2: Unsupervised SEPFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pad test < 2 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digital palpation/Oxford scale (0-5)</td>
<td>G1: 2.0 (2.0-3.0); G2: 2.0 (2.0-3.0)</td>
<td>p=0.20</td>
<td>G1: 3.0 (3.0-4.0); G2: 3.0 (2.0-4.0)</td>
<td>p=0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QV-ICIQ-SF (0-21)</td>
<td>G1: 14.0 (9-16); G2: 14.0 (10-16)</td>
<td>p=0.76</td>
<td>G1: 8.0 (6-12); G2: 8.0 (5-13)</td>
<td>p=0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subjective assessment of cure (0-100%)</td>
<td>NA</td>
<td></td>
<td>G1: 69%; G2: 70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sriboonreung et al.</td>
<td>G1: Daily SEPFM</td>
<td>NR</td>
<td>Pad test 1h (g)</td>
<td>G1: 4.0±0.9; G2: 4.0±1.5; G3: 4.7±1.6</td>
<td>p>0.05</td>
<td>G1: 1.4±0.7; G2: 1.7±0.7; G3: 4.7±1.6</td>
<td>p>0.05</td>
<td>Daily SEPFM significantly increased PFM strength compared to the three times weekly frequency group and the abdominal training group.</td>
</tr>
<tr>
<td></td>
<td>G2: SEPFM, three times weekly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pad test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3: SEPFM + abdominal muscle strength, three times weekly</td>
<td></td>
<td>Perineometry (cmH2O)</td>
<td>G1: 29.0±10.2; G2: 28.7±13.1; G3: 29.0±7.4</td>
<td>p<0.001</td>
<td>G1: 47.4±9.6; G2: 42.6±12.4; G3: 46.3±8.2</td>
<td>p<0.001</td>
<td>However, all groups reduced the amount of urine leakage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subjective assessment of cure (0-100%)</td>
<td>NA</td>
<td></td>
<td>G1: 75%; G2: 68.4%; G3: 66.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamel et al.</td>
<td>G1: Abdominal muscle strength</td>
<td>Mild</td>
<td>Perineometry (cmH2O)</td>
<td>G1: 49.9±4.88; G2: 50.3±6.06</td>
<td>p>0.05</td>
<td>G1: 57.7±6.39; G2: 52.6±7.60</td>
<td>NR</td>
<td>Abdominal training significantly increased PFM strength compared to SEPFM.</td>
</tr>
<tr>
<td></td>
<td>G2: SEPFM</td>
<td></td>
<td>Valsaka LPP (cmH2O)</td>
<td>G1: 80.00±5.52; G2: 78.00±4.49</td>
<td>p=0.058</td>
<td>G1: 92.80±13.57; G2: 87.33±9.07</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>
According to Sapsford et al., training of deep abdominal muscles triggers the co-contraction of PFM, causing an increase in the strength of PFM and an improvement in urinary continence. A systematic review by Kari Bø et al. concluded that the results are ambivalent because, to date, there is no strong clinical evidence of benefit with abdominal muscle training in women with UI.

In the studies included in the review, PFM training programs including adjuvant therapies such as biofeedback, digital palpation and vaginal cones reach high rates of cure (80, 50 and 58%, respectively). A systematic review by Neumann et al. demonstrated that SEPFM combined with adjuvant therapies were effective in the treatment of SUI, reaching a cure rate of 73%. These PFM strengthening techniques allow identification, awareness of correct muscle contraction, and inhibition of synergistic muscles, enhancing results.

The PFM training programs differed in the following parameters: type of muscle contraction, number of repetitions and series, rest time between each contraction, time of contraction and progressivity of the exercises. Nevertheless, most of the studies that were analyzed showed consistency in the repetition frequency parameter (ten initial repetitions), except for the study by Kamel et al., who initiated the SEPFM program with 15 repetitions. This parameter corroborates the parameters of strength training to obtain muscular hypertrophy advocated by the American College of Sports Medicine, which recommends 8 to 12 contractions per series.

The frequency of SEPFM was predominantly intensive (one to three times per day), but the study by Sriboonreung et al. failed to verify significant differences in reducing the amount of urine leakage by using different frequencies of SEPFM. The current evidence for the principles of strength training recommends that the frequency of three times weekly is sufficient for muscle hypertrophy.

In most studies, the training program duration was 12 weeks, except for two studies that applied SEPFM for 8 weeks. According to the recommendations of the American College of Sports Medicine, strength training programs should last at least 15-20 weeks. PFM are skeletal muscles and, therefore, the recommendations of strength training are not different from other skeletal muscles. In the first 8 weeks of training, the changes are essentially neural (increased number and frequency of motor unit activation), followed by muscle hypertrophy due to increased volume and number of myofibrils, essential for morphological or structural adaptations.

In our systematic review, training programs of 8 to 12 weeks seem to reduce the amount of urine leakage, and/or to increase PFM strength, inferring that short-term training is equally effective in the treatment of SUI. However, these results should be analyzed with caution, because the gain of muscular strength in this period was sustained by an increase in number and synchronism of the motor units, without any mention of patient follow-up after training, in addition to the fact that the studies included in the analysis used different designs, eligibility criteria and measuring instruments. Also, some of the studies in our review demonstrated that increasing the strength of PFM in this short period of time may not be related to a significant reduction in the amount of urine loss. This suggests that the increase in PFM strength and urethral resistance does not seem to guarantee the mechanism of urinary continence.

We found in our review that five studies used different positions to perform the exercises, so that the most commonly applied ones were the standing, seated and lateral decubitus positions. One of the ways to promote the progression of the exercises is to create different levels of difficulty (without and against gravity). According to some authors, coordination between early contraction of PFM and increased intra-abdominal pressure may be the most relevant factor in reducing urine leakage compared to the strength gain of PFM, which may justify the positive results of short training programs.

We found in our review that five studies used different positions to perform the exercises, so that the most commonly applied ones were the standing, seated and lateral decubitus positions. One of the ways to promote the progression of the exercises is to create different levels of difficulty (without and against gravity). According to some authors, coordination between early contraction of PFM and increased intra-abdominal pressure may be the most relevant factor in reducing urine leakage compared to the strength gain of PFM, which may justify the positive results of short training programs.

According to recent studies, the PFM contraction reflex to increased intra-abdominal pressure may be inherent to the mechanism of urinary continence, but coordination of the different patterns may be acquired as a learned behavior and is currently considered complementary to SEPFM, a determining factor in any PFM reeducation protocol.

The literature cites cure rates ranging from 44 to 70%, while the objective cure rate varied between 20% and 75%, while the subjective cure rate ranged between 23.8% and 75%. The low cure rate can be justified by different definitions of cure using pad test (< 1 g or < 2 g). On the other hand, variations in cure rates also depend on different levels of severity of SUI, training program duration, initial PFM strength and patient adherence to treatment.

Conclusion

SEPFM combined with digital palpation, biofeedback and vaginal cones, as well as 12-week duration training
Pelvic floor muscle training protocol for stress urinary incontinence in women: a systematic review

parameters, with ten repetitions per series and in distinct positions seemed more effective to reduce the amount of urine leakage, also providing a subjective perception of cure compared with SEPFM alone or a lack of treatment. The limited number of studies and the heterogeneity of the intervention protocols did not allow us to identify the most effective PFM training protocol.

Conflict of Interest

The authors declare no conflict of interest.

Resumo

Protocolo de treino dos músculos do pavimento pélvico em mulheres com incontinência urinária de esforço: revisão sistemática

Introdução: Os exercícios de fortalecimento dos músculos do pavimento pélvico (EFMPP) são considerados a primeira intervenção no tratamento da incontinência urinária de esforço (IUE); porém, não existe evidência sobre os parâmetros de treino.

Objetivo: Identificar o protocolo e/ou os parâmetros de treino mais eficazes no tratamento da IUE feminina.

Método: A pesquisa bibliográfica foi realizada entre janeiro de 1992 e março de 2014 nas bases de dados PubMed, Cochrane Library, PEDro, Web of Science e Lilacs. Os artigos incluídos eram de língua inglesa, estudos experimentais, comparando EFMPP com tratamento placebo, usual ou sem tratamento, com idade compreendida entre 18 e 65 anos e diagnóstico de IUE. A avaliação da qualidade metodológica foi realizada por meio da escala PEDro.

Resultados: Sete artigos de elevada qualidade metodológica foram incluídos na presente revisão. A amostra foi constituída por 331 mulheres, com idade média de 44,4±5,1 anos, duração média das perdas urinárias de 64±5,66 meses e gravidade da IUE variando entre ligeira e grave. Os programas de EFMPP eram distintos relativamente aos parâmetros de treino dos MPP. Alguns estudos incluíram treino abdominal e técnicas adjuvantes. A taxa de cura da quantidade de perda urinária variou entre 28,6 e 80%, enquanto o aumento da força dos MPP variou de 15,6 a 161,7%.

Conclusão: O protocolo de treino mais eficaz consiste nos EFMPP por palpação digital e supervisão combinados com biofeedback e cones vaginais, incluindo os parâmetros de treino de 12 semanas de duração, dez repetições por série e em distintas posições comparados com os EFMPP isolados ou sem tratamento.

Palavras-chave: treinamento, assoalho pélvico, incontinência urinária de esforço, mulheres.

References

35. Be K, Herbert R. There is not yet strong evidence that exercise regimens other than pelvic floor muscle training can reduce stress urinary incontinence in women: a systematic review. J Physiother. 2013; 59(1):159-68.