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ABSTRACT – This study aims to evaluate non-linear stem taper models for predicting the pre-commercial
diameter of eucalyptus trees and to analyze the effect of genotype on stem taper. The treatments comprise
three different genotypes of Eucalyptus sp. in a 3 × 3 m plantation spacing. Seventy sample trees aged 10
years were felled for each treatment. The outside bark diameter measurements were taken at 0.5 m; 1.0 m;
1.5 m; 2.0 m, and then at intervals of 2.0 m till the top of the stem. Four non-linear models were evaluated,
namely, the sigmoid model of Garay (1979), the variable exponent model of Kozak (1988), the segmented
model of Max and Burkhart (1976), and the compatible model of Demaerschalk (1972). The performance
of the models was assessed using the following statistical validation methods: correlation coefficient, standard
error of estimate, mean bias, bias variance, root mean squared error, and mean absolute deviation. Graphical
analysis of residues was used to evaluate the accuracy and precision of the estimates. Compared with other
models, the variable exponent model of Kozak (1988) best described the stem profile, and predicted the total
volume of the trees. The identity test showed that the stem profile is affected by the genotype.

Keywords: Regression analysis; Variable exponent model; Genotypes

AVALIAÇÃO DE FUNÇÕES DE AFILAMENTO NÃO-LINEARES PARA
ESTIMAÇÃO DE DIÂMETROS COMERCIAIS EM ÁRVORES DE EUCALIPTO

RESUMO – Este trabalho teve como objetivo a escolha de um modelo de afilamento para melhor estimar
o perfil médio de árvores de diferentes clones de eucalipto, verificando se uma mesma função pode ser empregada
para três genótipos distintos de eucalipto. Os tratamentos consistiram em diferentes clones de eucalipto plantados
sob o espaçamento de 3 x 3 m. Para cada tratamento foram abatidas cerca de 70 árvores-amostra aos 10
anos de idade. Os diâmetros das seções ao longo do fuste foram medidos a partir da base em 0.5 m; 1.0
m; 1.5 m; 2.0 m e, a partir daí, em intervalos de 2.0 m. Foram testados quatro modelos não-lineares: Garay
(1979), Kozak (1988), Max e Burkhart (1976) e Demaerschalk (1972). As estatísticas utilizadas para avaliar
os ajustes foram: coeficiente de correlação entre diâmetros observados e estimados, erro-padrão residual,
bias (média dos erros), variância do bias, raiz quadrada do erro quadrático médio e a média das diferenças
absolutas. O modelo escolhido para representar os tratamentos, pela melhor performance de ajuste, foi o
de Kozak (1988). Testes de identidade de modelo foram aplicados para verificar igualdade no formato do
fuste entre os tratamentos. Com base nos resultados, a hipótese de igualdade na forma do fuste dos genótipos
foi rejeitada, ao nível de 5% de significância. Assim, pôde-se concluir, que existe efeito do genótipo no afilamento
do fuste de eucalipto.

Palavras-Chave: Análise de Regressão; Equação expoente-forma; Genótipo.
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1.INTRODUCTION

The term ‘taper’ was defined by Husch et al. (1993)
to describe the rate of diameter decrease in the stem
of a tree. Taper equations or functions can predict the
narrowing rate or diameter along the bole, which make
them very useful techniques for wood assortments.
Höjer (1903) conducted the first studies on tree taper.
Thereafter, two noteworthy studies by Kozak et al.
(1969) and Demaerschalk (1972) were published. Research
on stem taper of trees in Brazil began in the early 1970s
in Pinus and eucalyptus forest plantations (Silva, 1974;
Campos and Ribeiro, 1982; Guimarães and Leite, 1992;
Schneider et al., 1996).

Predicting the diameter along the base of the stem
is one of the greatest challenges of taper functions
given the presence of geometric distortions in this
portion (Kozak, 2004; Souza et al., 2008). Based on
the variation of geometrical shapes, Max and Burkhart
(1976) proposed a model that divides the stem into
three sections expressed using three separate sub-
models, which together represent the global taper
equation. The same basic concept introduced a range
of segmented taper equations (Demaerschalk and Kozak,
1977; Parresol et al., 1987). Currently, there exist several
models that describe the stem form of trees, and they
are broadly categorized into two groups: segmented
and non-segmented taper equations. Non-segmented
taper equations are classified as polynomial, sigmoid,
compatible, or incompatible (Lima, 1986; Pereira et al.,
2005; Campos and Leite, 2013). They may also be defined
using multivariate analysis (Guimarães and Leite, 1992).

Compatible models show consistency between their
taper and volume predictions, where the taper equations
are the first derivative of the volume equations. Segmented
models consider the sectioning of the stem resulting in a
more detailed form description (Lima, 1986; Garcia et al.,
1993). The variable exponent (Kozak, 1988) and sigmoid
models include inflection points that enable them to outline
bole diameters that are near the ground more appropriately.
The variable exponent model of Kozak (1988) assumes one
inflection point (at 0.25 of the total height) and an exponential
pattern of decreasing diameter sizes from the tree bottom
to top. The sigmoid taper functions are based on biological
growth models so that they can describe the natural shape

of the tree trunks (Lima, 1986; Muhairwe, 1999).

Present studies have explored a range of taper
functions having significant variation in their

performances and results when applied on empirical
data. There exist unique functions that, for a particular
genotype, outperform the different models, but these
yield biased predictions in other instances (Morley
and Little, 2012) and thus cannot be universally applied.
Several taper functions can generate satisfactory results
for most cases in terms of prediction accuracy (Andrade,
2014), which makes assessment a complex task.

Two desirable properties are required in a taper
model: the diameter at the maximum height should be
null, and the diameter at 1.3 m should be equal to the
field measurements of the diameter at breast height
(DBH) (Campos and Leite, 2013). Weiskittell et al. (2011)
highlighted that comparative studies of taper functions
based only on modeling performances are not justifiable,
and a biological explanation for the phenomena is
important in selecting the appropriate equation. The
present study explored well-established taper models
that could provide a biological explanation. Therefore,
we aimed to compare the non-linear taper models in
predicting the pre-commercial diameter of eucalyptus
trees, and verify if the same taper model could be
employed for three distinct eucalyptus genotypes.

2.MATERIAL  AND  METHODS

The dataset used in this study comprises trees
sampled from eucalyptus stands located at the Bahia
state in Brazil. Seventy sample trees (aged 10 years)
of each genotype were harvested, constituting three
treatments: genotype 1 (G1), genotype 2 (G2), and genotype
3 (G3). The plantation spacing was similar (3 × 3 m) for
all treatments. The sampled trees presented a minimum
and maximum DBH of 6 cm and 30 cm, respectively, and
the total height ranged between 12–42 m.

The four non-linear taper models tested in each
genotype were as follows: the sigmoid model of Garay
(1979), the Kozak (1988) variable exponent model, the
segmented model of Max and Burkhart (1976), and the
compatible model of Demaerschalk (1972). These models
are given below.

Garay (1979):

d = DBH {
0
[1+

1
1n(1-

2
h

1
3H-3)]}+

Kozak (1988):

EQ2

EQ1
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Max and Burkhart (1976):EQ3

Demaerschalk (1972): EQ4

Here, d denotes the estimated diameter (cm) at
hi height; H denotes the total tree height (m); DBH
denotes the diameter (cm) at 1,3 m; 0, 1, 2, 

0
,


1
, 

2
, 

3
, 

4
, 

5
 denote the model parameters to be

estimated;  Z = hi/H, p = 0.25, e denotes the Napier's
constant;  denotes the random error, which is  ~
N(0,²);  and I1 and I2 denote conditional variables
where:

I1 = 1, if 
1
-Z > 0;

I1 = 0, if 
1
-Z < 0;

I2 = 1, if 
2
-Z > 0;

I2 = 0, if 
2
-Z < 0.

The models were fitted using the quasi-Newton
optimization algorithm implemented in STATISTICA
12.0 (2014) software. For each fitted model, the following
statistics were calculated: correlation coefficient between
the observed and predicted values (r

YY
), standard deviation

(s
yx

), bias, bias variance (s2
bias

), root mean squared error
(RMSE), and mean absolute deviation (MAD) (Islam
et al., 2009; Campos and Leite, 2013):

Here, n denotes the number of observations; p
denotes the number of coefficients or parameters;
Y

i
 denotes the ith observed value; Y

i
 denotes the ith

estimated value; Y denotes the mean of the observed
values, and Ym denotes the mean of the estimate Y

i
.

The assessment of the fitted models compared
their ability to estimate the diameter along the stem
using fit statistics and graphical residual analysis.
The models were further tested for their ability to
predict individual tree volumes in different DBH
classes.

Given that the parameters of the outperformed
model were obtained for each genotype, they were
compared based on the model identity test proposed
by Regazzi and Silva (2004). This method verified if
different non-linear regression lines could be combined
based on the following definitions:EQ6

                                    (Complete Model)

                                    (Reduced Model)

Here, y denotes the d vector of the dependent
or response variables; x denotes the vector of the
explanatory variables of the complete and reduced
models; ƒ denotes the non-linear function; q

i
 denotes

the vector of the unknown parameters to each i
treatment; h represents the number of equations
(comparative cases); D

i
 = 1 and D

i
 = 0, to each treatment

i = {1, …, h}, i’ = {1, …, h} being i   i’; q denotes
the vector of the unknown parameters of the reduced
models (combined data) tested under the normality

SQ
R(H0)

 = SQ
Par

(R) – SQ
Par

(C);

SQ
Par

(C) =  y
i
2 – (y

h
 – w

h
)2

SQ
Par

(R) = y
r
2 – (y

r
 – w

r
)2

GL
R(H0)

 = GL
C
 – GL

R

GL
Res

 = n – p.H

F
tab

 = F(GL
R(H0)

; GL
Res

)

Here, SQ
R(H0)

 denotes the squared sum of reduction
because of the null hypothesis (H

0
); SQ

Par
(C) denotes the

squared sum of parameters of the complete model; SQ
Par

(R)
denotes the squared sum of parameters of the reduced model;
SQ

Res
(C) denotes the squared sum of residues of the complete

model;  denotes the significance level; GL
R(H0)

 denotes
the degrees of freedom of reduction because of the H

0
hypothesis; and GL

Res
 denotes the degrees of freedom of

residues. If F > F
tab

, a significant difference exists among
the stem form of the compared genotypes.

3.RESULTS

The model parameters were estimated at 5% significance
level (Table 1). All models obtained acceptable fit statistics
to the data of the different treatments, yielding r

YY
 values

up to 0.9 and low standard errors (s
yx

) ranging between
3–7% (Table 2).

^

^

^ ^

=/

d = 10β0DBHβ1H2ß2(H-h)2ß3+ 
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The Kozak (1988) model presented the highest
correlation coefficient (r

YY
) values and the lowest values

of bias, indicating the most accurate model to fit the
data. The statistics in the precision of estimates, s

yx

(%), did not show a large variation throughout the

assessment. However, the Kozak (1988) variable exponent
model and the segmented model of Max and Burkhart
(1976) showed the most precise results, whereas the
compatible model of Demaerschalk (1972) presented
the lowest precision for the three genotypes.

Models Parameters Genotypes
G1 G2 G3


0

1.107340* 1.190890* 1.198089*
Garay (1979) 

1
0.414265* 0.296575* 0.246004*


2

0.895645* 0.961870* 0.982824*


3
0.525989* 0.275107* 0.232351*


0

0.743504* 1.303963* 1.085063*


1
1.079283* 0.781925* 0.888015*


2

0.995487* 1.009075* 1.003484*
Kozak (1988) 

1
-0.307557* -0.388695*       -0.047764*


2

-0.091382* -0.028682*       -0.047157*


3
0.741395* -0.149235*       -0.037372*


4

0.126891* 0.436131* 0.231334*


5
-0.372076* -0.092661* 0.032447*


1

0.905747* 0.917845* 0.866042*


2
0.026687* 0.063157* 0.069662*

Max and Burkhart (1976) 
1

-4.245083* -5.185282* - 4 . 1 816 3*


2
1.910249* 2.442356* 1.867851*


3

-1.550061* -2.074024* - 1 . 8 0 3 6 9 *


4
 541.005660*  87.561162*        89.320141*


0

0.030710* 0.081341* 0.034373*
Demaerschalk (1972) 

1
1.011851* 0.958780* 0.924798*


2

-0.327240* -0.673794*        -0.547186*


3
0.632890* 0.658029* 0.592764*

Table 1 – Parameter estimates of four non-linear taper models for comparison with three eucalyptus genotypes.
Tabela 1 –  Estimativa dos parâmetros dos quatro modelos de afilamento não-lineares ajustados para três genótipos de

eucalipto.

Onde: * = Significant at 5% probability; 
k
, 

k
 = Estimated Model Parameters.

Model Genotype Fit statistics

r
YY

s
yx 

(%) Bias (%) Bias (cm) s2
bias

MAD (cm)

Garay (1979) G1 0.995 4.577 0.080ns 0.011ns 0.396 0.462
G2 0.995 4.890 - 0 . 3 5 2 * 0.043* 0.360 0.460
G3 0.994 5.363 - 0 . 3 4 9 * 0.044* 0.447 0.513

Kozak (1988) G1 0.997 3.934 0.017ns 0.002ns 0.293 0.395
G2 0.996 4.551 0.018ns 0.002ns 0.313 0.417
G3 0.994 4.995 0.037ns 0.005ns 0.389 0.460

Max and Burkhart G1 0.996 4.195 0.092* 0. 013 * 0.333 0.424
(1976) G2 0.995 4.883 - 0 . 3 7 2 * 0.046* 0.359 0.465

G3 0.994 5.085 - 0 . 3 5 6 * 0.044* 0.402 0.487

Demaerschalk (1972) G1 0.995 4.833 0.030ns 0.004ns 0.442 0.447
G2 0.993 5.795 - 0 . 0 9 7 * 0.012* 0.508 0.504
G3 0.992 6.143 0.001ns 0.001ns 0.589 0.520

Table 2 – Fit statistics of four non-linear models for three eucalyptus genotypes.
Tabela 2 – Estatísticas de Qualidade de Ajuste das quatro equações ajustadas para três genótipos de eucalipto.

Where, r
vY

 = correlation coefficient; s
yx

 = standard error of estimate; s²
bias

 = bias variance; MAD = mean absolute deviation;* = significantly
different from zero at 5% probability by one sample t-test; ns = significantly equal to zero at 5% probability by one sample t-test.

^

^
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We tested bias using a one-sample t-test at 5%
significance level to verify its equality from zero (Table 2).
This test evaluates the significant difference between
the calculated or resulted bias (mean error) and a mean
value equal to 0 (null hypothesis), considering bias
or error variance (s2

bias
) and repetitions of each case

(Islam et al., 2009). This assessment resulted in non-
significant values of bias for all treatments in Kozak
(1988). In contrast, the bias in the segmented model
of Max and Burkhart (1976) is statistically different
from zero for all cases.

The bias consists in a good statistic for accuracy
assessment, but it should be interpreted carefully. For
example, the resulting predictions in a modeling process
can overestimate certain regions of the dataset, whereas
underestimation can occur in other sections. The resulting
values of bias can move closer to zero given that opposite
trends cancel each other. To overcome this impasse,
Muhairwe (1999) suggested MAD for a more correct
interpretation of prediction errors. In the present study,
MAD values vary between 0.4 and 0.6 cm. For G1, the
sigmoid model of Garay (1979) showed the highest
MAD values. Similarly, the compatible model of
Demaerschalk (1972) presented the highest values for
G2 and G3. High values of these statistics indicate
a broader range of error dispersion of estimates.

The analysis of residual dispersion of the models
tested (Figure 1) showed errors along the different
sections of the stem, given that the largest and smallest
diameter can be found at the bottom and top of the
stem, respectively. The compatible model of Demaerschalk
(1972) presented the greatest dispersion of errors for
all treatments. The sigmoid model of Garay (1979)
presented the greatest diameter estimate error for G1,
whereas good performances could be observed for
G2 and G3. For all treatments relative to the compatible
and sigmoid models, the segmented model of Max and
Burkhart (1976) and the Kozak (1988) variable exponent
model showed better potential for diameter prediction,
especially for the largest diameter, and concentrating
the errors closer to zero. The good fit of the two models
can be observed in the graphical representation of
case percentage per residue classes (Figure 1), where
they presented the highest percentage of cases around
the classes of 0%.

Despite the large number of errors in diameter
prediction, the compatible model of Demaerschalk (1972)
did not show the same inaccuracy in predicting the

total volume of trees for all genotypes (Table 3). The
compatible model along with the Kozak (1988) variable
exponent model showed the most accurate predictions
for individual volume in all size classes. For G3 and
G4, all models underestimated the small trees, and the
most excessive negative bias is presented by the
segmented model of Max and Burkhart (1976) and the
sigmoid model of Garay (1979).

Given that the variable exponent taper equation
had outperformed the estimation of diameters and
individual volumes, and its operational convenience
of fitting in the segmented models, the Kozak (1988)
variable exponent model was chosen for further tests
of treatment effects on the tree bole.

A model identity test was used to compare the
stem profiles of the treatments estimated by Kozak
(1988). Table 4 summarizes the comparison results. The
effect of the genotype was observed among the treatments
as shown in the resulting significant values.

The difference found in the stem form in all
treatments suggests that a single model can be used
in a management plan for wood assortments. However,
the model parameters must be calculated for each
treatment, i.e., for each genotype, a specific equation
must be used.

4.DISCUSSION

The sigmoid model of Garay (1979) has shown
satisfactory results, although not the best performance,
for modeling tree stems of eucalyptus, Pinus, and teak
plantations (Nogueira et al., 2008; Leite et al., 2011;
Campos et al., 2014; Andrade, 2014). The sigmoid model
of Biging (1984) was also highlighted in stem taper
studies as shown in Soares et al. (2011) for natural
forests in Brazil. The successful performances of sigmoid
equations are attributed to their derivation from biological
growth models, where the proposed taper equations
attempt to establish the same relation on trunk narrowing
from ground to the tree top.

The compatible model of Demaerschalk (1972),
which is one of the most popular and widely used in
Brazil (Andrade, 2014), showed low ability for estimating
the diameter at the bottom of the stem in eucalyptus
trees, but performed well in individual tree volume
estimates. This result can be explained by the restrictions
on the parameters of the model, which leads to an
individual tree volume equation through integration
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Figure 1 – Distribution of residues of diameter estimates (cm) as a function of the observed diameters, and cases percentage
per residue classes of the estimated diameter for models of Garay (1979), Kozak (1988), Max and Burkhart (1976),
and Demaerschalk (1972).

Figura 1– Distribuição dos resíduos das estimativas de diâmetro, em cm, em função do diâmetro observado, e, percentagem
de casos por erro percentual das estimativas de diâmetros dos modelos de Garay (1979), Kozak (1988), Max
e Burkhart (1976) e Demaerschalk (1972), em árvores de eucalipto.



7

Revista Árvore. 2018;42(1):e420102

Evaluation of non-linear taper equations...

(Weiskittell et al., 2011). The generation of accurate
volume estimates was insufficient to achieve satisfactory
performance in describing the stem profile of the trees.
Nevertheless, Môra et al. (2014) used this compatible
model to yield estimates with a low bias for eucalyptus
trees aged 8 years.

The segmented model of Max and Burkhart (1976)
outperformed the variable exponent model of Kozak

(1988) in some sections of the stem. The performance
of the segmented model for diameter estimates was
not the most accurate, but showed better results than
the sigmoid and compatible models. Except for the variable
exponent model of Kozak (1988), the segmented model
of Max and Burkhart (1976) showed lower dispersion
of errors. Andrade et al. (2014) and Muhairwe (1999)
also confirmed in comparison with the exponential and

Table 4 – Parameter estimates of Kozak (1988) taper model for comparison of model equality of the genotypes and F
value for the identity test.

Tabela 4 – Estimativas dos parâmetros do modelo de Kozak (1988), para comparação da igualdade de tratamentos e correspondente
estatística F do teste de identidade.

Treatments
Estimates of Reduced Model Parameters

F(H
0
)


1


2


3


1


2


3


4


5

G1 × G2 × G3 1.126417 0.861247 1.005866  0.11343  0.05241 0.214200 0.180505  0.01327 14.58*
G1 × G2 1 .154825 0.843323 1.007321  0.16495  0.07089 0.497001 0.099817  0.06878 43.26*
G1 × G3 0.986572 0.936553 1 . 00 19 1  0.13347  0.08122 0.520698 0.098094  0.16346 23.48*
G3 × G5 1 .186154 0.836148 1.006253  0.16368  0.04264 0 . 0 2 7 6 5 0.279462  0.00504 30.27*

*Significant at 5% probability.

Centro Garay Kozak Max and Demaerschalk
de Classe

n
(1979) (1988) Burkhart (1976) 1972)

 (DBH) Bias RMSE Bias RMSE Bias RMSE Bias RMSE

 (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)

G1:
1 12  0.647 7.292 0.308 7.617 0.682 7.577 0.310 8.539
2 12 0.841 7.976 0.801 7.943 0.807 7.807 1.390 8.929
3 12  1.103 7.539 0.492 6.924 1.137 7.091 0.933 7.891
4 15 0.267 7.735 0.020 6.098 0.231 6.586 0.007 7.993
5 12  1.648 7.570 1.601 5.799 1.687 5.588 1.6930 8.419
6 7 1.868 9.011 1.462 7.855 1.828 8.020 1.941 9.888

G2:

1 11  8.156 18.306 3.619 10.873 8.220 18.172  9.060 15.170
2 13  5.593 12.661 1.498 8.749 5.625 12.111 0.623 13.346
3 14  2.898 12.246 1.337 11.619 2.908 11.937  0.083 14.183
4 14 1.281 8.606 0.618 7.073 1.880 8.332 1.251 7.399
5 14 0.619 8.107 0.536 7.007 0.621 6.302 0.605 7.938
6 7 1.140 5.262 0.210 4.527 1.144 5.686 0.946 4.7470

G3:

1 12  8.661 14.138 1.021 9.108 8.671 14.100 1.612 10.311
2 11  8.019 11.649 2.482 8.391 8.001 11.769 2.677 9.093
3 16  1.583 9.321 0.796 8.286 1.558 8.802 1.389 12.167
4 13  0.483 10.442 0.417 9.570 0.405 9.118 0.381 9.520
5 13 0.228 9.044 0.095 7.271 0.266 7.189 0.120 7.482
6 7 2.479 9.420 0.706 8.518 2.527 9.497 0.048 9.054

Table 3 – Validation statistics for individual tree volume (m³ per tree) by diameter at breast height classes.
Tabela 3 – Estatísticas de Validação para a estimativa do volume total (m³ por árvore) para cada classe de DBH.

Where: n = number of sampled trees by DBH class; MAD = mean absolute deviation; RMSE = root mean square error (RMSE was used
instead of s

yx
 because of the low number of observations for some DBH classes).
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segmented models that despite the satisfactory
performance of the segmented model of Max and Burkhart
(1976), it did not present the best performance, which
agrees with the results of the present work. Souza et
al. (2008) tested some segmented models for eucalyptus
trees and obtained the best results using the segmented
model of Max and Burkhart (1976). Muhairwe (1999)
confirmed that this model showed better results using
data (sample trees) containing a low range of DBH
and H, or even when the models were fitted by the
diameter class. The segmented model of Max and Burkhart
(1976) has the disadvantage of additional computational
demands on simultaneous fitting of equations and the
significant variation of the initial value of the parameters
found in literature.

The exponential model of Kozak (1988), which is also
called the variable exponent equation, showed great flexibility
to describe the stem form of the genotypes, yielding accurate
diameter and volume estimates. The successful performances
of Kozak (1988) in predicting the diameters are attributed
to the focus given by the author on the proposed equation,
which assumptions are centered in modeling the tree bole.
Kozak (1988) proposed a model whose restrictions determined
a fixed inflection point and considers the geometric form
variations along the stem, such as neiloid, paraboloid, and
conic form. Similar to Andrade (2014), working with eucalyptus
aged up to seven years, the performance of the estimates
by Kozak (1988) was better than the compatible and sigmoid
models. The good performance of this model could be associated
with the size of the sample trees. The assumed inflection
point (0.25 of the total height) was the assigned value chosen
by the author of the equation in the original work for large
trees in Canada. Modeling the stem taper of native eucalyptus
trees in Australia, Muhairwe (1999) confirmed a better fit
of the Kozak (1988) model to large trees in accordance with
this study, and encourages the use of these equations for
subsequent studies. Although the inflection point is fixed
to eucalyptus and Pinus trees, this value may vary and
should be changed for other tree species with previous

estimation of the rate over the dataset.

The models of Max and Burkhart (1976) and Kozak
(1988) showed the best performances for modeling the
largest diameters, i.e., the diameter at the base region
of the stem tree. Souza et al. (2008) elucidated that
based on the occurrence of the greatest deformation
of the stem in a tree with an abrupt change of geometric
form, a consequent variation in the stem diameter values
occurs. Bias related to small values of diameter estimates

can be tolerated because of its negligible effect on
commercial volume calculus. However, when related
to larger diameters, bias has an increasing effect and
should be accounted for in cases where these diameters
occur in relevant commercial sections (Figueiredo Filho
et al., 1996).

Even if the parameters in Kozak (1988) were not
restricted to generate a volume equation similar to the
compatible models, the variable exponent model showed
the most accurate individual tree volume estimates
in this comparison. Goodwin (2009) in a study listing
advantages and disadvantages of the taper models,
points to the low ability of Kozak (1988) for modeling
small trees of some species. Therefore, it is suggested
that for the recognition of the variable exponent model
as a reference to the stem taper of the eucalyptus trees,
its accuracy on the estimate age classes can be evaluated,
similar to Figueiredo Filho et al. (2015) for Araucaria
angustifolia in southern Brazil.

5.CONCLUSION

The variable exponent model of Kozak (1988) was
the model that fitted stem taper data in the most suitable
manner, presenting the most accurate estimates for
diameter and individual tree volume.

Based on Kozak (1988), it was possible to conclude
that the genotype has a significant effect on the stem
taper of eucalyptus trees, which must be considered
when estimating the model parameters.
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