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ABSTRACT – Ecological restoration mitigates the negative eff ects of fragmentation and habitat loss. This 
practice allows the conservation of key species, such as Ocotea porosa, a tree native to the Araucaria Forest 
and extremely endangered. A key point in restoration projects is the source of seeds, as well as guidelines for 
collection. When carried out under technical criteria, the collection allows the maintenance of genetic diversity 
and adaptive potential in restoration plantations. Given the importance of seed source, genetic diversity, and 
adaptive potential, this study aimed to defi ne areas and criteria for collecting seeds by characterizing the 
demography, genetics, and reproductive phenology of an O. porosa population. A plot of 16 hectares was 
installed in the municipality of Passos Maia, Santa Catarina, Brazil, and a demographic survey of trees with 
diameter at breast height (DBH) > 15 cm was carried out. Indices of diversity and internal genetic structure 
(IGS) were estimated using allozyme markers. The reproductive phenology of 67 individuals was evaluated 
during 8 months. The studied population showed a high density of individuals (10.7 ind. ha-1) with normal 
diametric distribution. The phenological pattern of the species is regular, seasonal, and annual. The evaluated 
population showed high genetic diversity, high fi xation index, and signifi cant IGS up to 80 meters away. Based 
on these results, the evaluated fragment can be used as a seed collection area. It has high genetic diversity, 
density, and area size suffi  cient to contain several demes. In addition, it is highly recommended that the matrices 
be at least 80 meters apart to avoid the eff ects of signifi cant IGS. 

Keywords: Araucaria Forest; Ecological restoration; Spatial genetic structure.

AUTOECOLOGIA, DIVERSIDADE E ESTRUTURA GENÉTICA INTERNA DE Ocotea 
porosa (NEES & MART.) BARROSO: SUBSÍDIOS PARA A COLETA DE SEMENTES

RESUMO – A restauração ecológica é uma forma de mitigar os efeitos negativos da fragmentação e perda 
de habitat. Essa prática permite a conservação de espécies-chave, como Ocotea porosa, uma árvore nativa 
da Floresta com Araucária e extremamente ameaçada de extinção. Um ponto fundamental em projetos de 
restauração é a fonte de sementes bem como as diretrizes para a coleta. Quando realizada sob critérios técnicos, 
a coleta permite a manutenção da diversidade genética e potencial adaptativo nos plantios de restauração. 
Diante do exposto, o objetivo do presente estudo foi caracterizar aspectos da demografi a, genética e fenologia 
reprodutiva de uma população de O. porosa, visando gerar informações para defi nição de áreas e critérios para 
a coleta de sementes. Foi instalada uma parcela de 16 hectares no munícipio de Passos Maia, Santa Catarina 
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e realizado levantamento demográfi co de árvores com Diâmetro à Altura do Peito (DAP) > 15 cm. Foram 
estimados índices de diversidade e de estrutura genética interna (EGI), utilizando-se marcadores isoenzimáticos. 
A fenologia reprodutiva de 67 indivíduos foi avaliada durante 8 meses. O fragmento estudado apresentou uma alta 
densidade de indivíduos (10,7 ind. ha-1), com uma distribuição diamétrica similar a normal. O padrão fenológico 
da espécie é sazonal regular e anual. A população avaliada apresentou uma alta diversidade genética, elevado 
índice de fi xação, além de uma EGI signifi cativa até 80 metros de distância. Conclui-se que o fragmento avaliado 
pode ser utilizado como área de coleta de sementes. O mesmo possui alta diversidade genética, densidade e 
tamanho de área sufi ciente para conter várias demes. Além disso, é altamente recomendado que as matrizes 
tenham no mínimo 80 metros de distância entre si, evitando os efeitos da EGI signifi cativa.

Palavras-Chave: Floresta de Araucária; Restauração ecológica; Estrutura genética espacial.

1. INTRODUCTION

The Atlantic Forest biome is a global hotspot 
of biological diversity that has become increasingly 
vulnerable as a result of signifi cant losses through 
selective logging, fragmentation, and deforestation 
(SOS Mata Atlântica 2020). To mitigate the eff ects 
of habitat loss and fragmentation in this biome, 
restoration initiatives have intensifi ed across various 
forest types found in the Atlantic Forest. For instance, 
the Brazilian Pact for Atlantic Forest Restoration, 
launched in 2009, aims to promote the restoration of 
15 million hectares of forest by the year 2050 (Melo 
et al. 2013), having already recovered approximately 
0.67 and 0.74 million hectares of forest between 2011 
and 2015 (Crouzeilles et al. 2019).

Regardless of the scale of restoration, access to 
a high-quality seed source is essential to increasing 
the likelihood of successful plantings (Sebbenn 2002). 
However, even though seeds form the foundation of 
many restoration programs (Gann et al. 2019), they 
are often a limited resource (Pedrini and Dixon 2020). 
Therefore, seed collection must be carried out based on 
technical criteria to ensure the maintenance of genetic 
diversity and the evolutionary potential of restored 
populations (Breed et al. 2018). To achieve this, it is 
crucial to develop recommendations that determine 
the minimum number of source trees (Montagna et 
al. 2018c), the minimum distance between source 
trees (Tarazi et al. 2010), the ideal collection season 
(Luna-Nieves et al. 2017), and density of source trees 
(Montagna et al. 2018b). Implementing these guidelines 
will permit the capture of samples representing the 
genetic variability of one or more populations, thereby 
reducing the potential risks of introducing non-
adapted genotypes and avoiding exogamy/endogamy 
depression (Stingemore and Krauss 2013).

The signature tree species of Santa Catarina, 
Ocotea porosa (Nees & Mart.) Barroso, more 
commonly known as “imbuia”, is a forest species 
belonging to the Lauraceae family. It is capable of 
reaching heights up to 20 meters and a diameter at 
breast height (DBH) of 50 to 150 cm (Meyer et al. 
2013). Valued in the timber industry, it has suff ered 
intense exploitation for decades (Reis et al. 2007), 
leading to a signifi cant reduction in its population. 
This has resulted in the inclusion of the species in 
state (Santa Catarina 2014), national (Brazil 2014), 
and international (Varty and Guadagnin 1998) lists 
of threatened species.

Considering the demand for seeds of species 
used in restoration, this study evaluated demography, 
phenology, internal genetic structure, and genetic 
diversity in a population of O. porosa. We raised 
three questions. First, does the studied population 
exhibit suffi  cient demographic density and genetic 
diversity for seed collection? Second, what is the 
minimum distance for seed collection? Third, what 
is the recommended period for seed collection? The 
answers to these questions will allow us to establish 
the necessary technical criteria and guidelines for seed 
collection, as well as the delineation of seed collection 
zones for O. porosa. Moreover, it is anticipated that 
the data garnered from this study will yield signifi cant 
implications for the conservation of this species.

2. MATERIALS AND METHODS

2.1. Study Area

The evaluated population is situated in the 
municipality of Passos Maia, located in the western 
mesoregion of Santa Catarina, Brazil (Figure 1). The 
forest fragment covers 227 hectares and is located on 
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private property, with 2,466 hectares acquired by the 
current owner in 1953. The region is within the Atlantic 
Forest biome and features vegetation characteristic of 
the phytogeographic domain of Mixed Ombrophilous 
Forest (Araucaria Forest).

2.2. Sampling

A demographic survey was conducted on a 
square plot measuring 400 x 400 meters, totaling 16 
hectares (Figure 1). All individuals classifi ed as adults 
(circumference at breast height > 41.7 cm, the smallest 
observed in a reproductive individual) were evaluated. 
Measured plants were tagged with an aluminum 
plate bearing a numerical identifi cation and mapped 
with geographic coordinates. For demographic data 
analysis, the average density of adult individuals per 
hectare and dominance (basal area) were obtained, 
along with a graph depicting size distribution.

2.3. Genetic Data Collection and Analysis

The collection of leaf material for genetic 
diversity characterization was performed on all 
171 adult individuals measured in the 16-hectare 
plot. Individuals were genotyped at the Laboratory 
of Developmental Physiology and Plant Genetics, 
Universidade Federal de Santa Catarina. Genetic 
characterization of the populations was carried out 
using isoenzymatic markers on starch gel (penetrose 
30-13%), following the recommendations of Alfenas 
(1998). The buff er-electrode system used was Tris-
Citrate pH 7.5 with the following isoenzymatic 
systems: malate Dehydrogenase (MDH, EC 1.1.1.37), 
superoxide Dismutase (SOD, EC 1.15.1.1), peroxidase 
(PRX, EC 1.11.1.7), shikimate dehydrogenase 
(SKDH, EC 1.1.1.25), phosphoglucomutase (PGM, 
EC 5.4.2.2), diaphorase (DIA, EC 1.8.1.4), glutamate 
oxaloacetate transaminase (GOT, EC 2.6.1.1), esterase 

Figure 1 – Study site located in Passos Maia, Santa Catarina, Brazil. 
Figura 1 – Local do estudo, situado em Passos Maia, Santa Catarina, Brasil.
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(EST, EC 3.1.1.1), glutamate dehydrogenase (GTDH, 
EC 1.4.1.2), and acid phosphatase (ACP, EC 3.1.3.2).

Furthermore, intrapopulational genetic diversity 
of the sampled adult individuals was characterized 
using the following indices: average number of alleles 
per locus (Â), average number of eff ective alleles per 
locus (Â

e
=1/1-H

E
), number of alleles per polymorphic 

locus (Â
p
), observed heterozygosity (H

O
), expected 

heterozygosity (H
E
) according to the proportions 

proposed by the Hardy-Weinberg Equilibrium (Nei 
1978), and fi xation index ( f ). All indices were 
estimated using the software FSTAT (Goudet 2002) 
and GDA (Lewis and Zaykin 2001). The statistical 
signifi cance (p < 0.05) of the f values was determined 
through 1000 allele permutations among individuals.

Characterizing the spatial distribution of adult 
genotypes was conducted using the estimation of the 
coeffi  cient of coancestry between pairs of trees (θ

xy
), as 

described by Loiselle et al. (1995) and obtained using 
the SPAGEDI 1.4 program (Vekemans and Hardy 
2004). Confi dence intervals (95%) for each parameter 
were obtained through 10000 bootstrappings. The 
neighborhood size (N

b
) was estimated as N

b
= -(1-θ

1
)/b, 

where θ
1
 represents coancestry estimated for the fi rst 

distance class, and b is the slope of the regression curve 
of θ with respect to the logarithm of distance (up to 
520 m) (Vekemans and Hardy 2004). Based on N

b
 and 

individual density, the deme area (or neighborhood 
area) in hectares was estimated as deme = N

b
/density.

The coancestry group was calculated as             

                    (Lindgren and Mullin, 1998), 
where n is the number of sampled individuals, f is the 
inbreeding coeffi  cient for the parental population, and 
θxy is the coancestry coeffi  cient between individuals. 
Subsequently, the eff ective size (N

e
) was estimated 

as N
e
= 0,5/Θ (Cockerham, 1969). Based on eff ective 

size, the minimum viable area (MVA) for the genetic 
conservation of an O. porosa population was estimated 
according to Lynch (1996), taking N

e
 = 1000 as a 

reference point indicating suffi  cient mitigation of the 
eff ects of deleterious mutations. Thus, the minimum 
viable area is given by N

e(ref)
/(N

e
/n)d), where n is 

the sample size, and d is the density of reproductive 
individuals in the population.

2.4. Reproductive Phenology

Reproductive phenology was assessed monthly 
in 67 individuals between September 2021 and 

April 2022, using binoculars. The synchrony 
among population individuals was assessed using 
the presence/absence method, which indicates the 
percentage of individuals in each phenophase. 
Phenological events were classifi ed as asynchronous 
(<20% of the population individuals in the 
phenophase), slightly synchronous (20-60% in the 
phenophase), and highly synchronous (>60% in the 
phenophase) (Bencke and Morellato 2002).

The evaluation of reproductive phenophase 
intensity followed the criteria of Fournier and 
Charpantier (1978). The intensity of each phenophase 
was estimated using a semi-quantitative interval 
scale of fi ve categories (0 to 4): 0 corresponds to 
0%; (1) presence of the event in a range of 1 to 25%; 
(2) presence of the event in a range of 26 to 50%; 
(3) presence of the event in a range of 51 to 75%; 
and (4) presence of the event in a range of 76 to 
100%. Subsequently, the percentage of intensity was 
calculated according to Fournier (1974).

Relationships between the synchrony of assessed 
phenological events and climatological data (monthly 
averages of relative humidity, precipitation, mean 
temperature, maximum temperature, and minimum 
temperature) were investigated using Spearman's 
correlation. The level of signifi cance was verifi ed 
by a p-value < 0.05. Meteorological data were 
obtained from EPAGRI – Experimental Station of 
Ponte Serrada -SC. For statistical analyses and graph 
creation, R Studio 4.1 software was used.

3. RESULTS

3.1. Demographic Structure of Reproductive 
Individuals

In the 16 hectares, 171 reproductive individuals 
were measured, resulting in an average of 10.7 
reproductive individuals per hectare. All individuals 
recorded above 15 cm in DBH were reproductive. 
The average DBH per hectare was 48.8 cm, ranging 
from 15 to 110.5 cm. The measured basal area was 
2.2 m2 ha-¹. Considering the distribution in diameter 
classes (Figure 2), we found a higher frequency of 
individuals in the intermediate DBH classes (between 
35 cm and 65 cm), accounting for 69% of total 
individuals. The frequency of individuals decreases 
as the diameter classes increase, with the last four 
classes containing 4.8% of the individuals. It is 
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evident that the frequency of individuals per diameter 
class follows the trend of a normal distribution.

3.2. Genetic Diversity

In the studied population, 30 diff erent alleles 
were sampled. The average number of individuals 
analyzed per locus was 160. The mean number of 
alleles per polymorphic locus (Â

p
) was 3.22, while 

the mean number of alleles per locus (Â) was 3, 
diff ering by about 51% from the mean eff ective 
alleles per locus (Â

e
), which was 1.5. The genetic 

diversity (H
E
) found in the analyzed population 

was 0.3. This value substantially diff ered from the 
observed heterozygosity (H

O
), which was 0.181. 

This discrepancy between H
E
 and H

O
 resulted in a 

fi xation index ( f ) of 0.379, statistically diff erent 
from zero. From the fi xation index, the eff ective 
number of individuals was estimated to be 103, 
approximately 40% less than the total sample. 
Finally, the estimated MVA for genetic conservation 
of the population was 56.2 hectares.

3.3. Internal Genetic Structure

The analyzed population exhibits positive and 
signifi cant coancestry (θ

xy
) up to 80 meters between 

individuals (Figure 3). Additionally, starting from 260 
meters, the graph shows that coancestry values become 
negative and statistically diff erent from zero (p > 0.05). 
Based on coancestry data, a neighborhood size (N

b
) of 

116.5 individuals was estimated. Since the study site 

Figure 2 – Frequency distribution in diameter classes for reproductive individuals in a 16-hectare area of an Ocotea porosa population in 
Passos Maia, SC.

Figura 2 – istribuição de frequência em classes diamétricas para indivíduos reprodutivos em uma área de 16 hectares de uma população 
de Ocotea porosa em Passos Maia – SC.
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Figure 3 – Internal genetic structure for a population of reproductive Ocotea porosa individuals in Passos Maia, SC. Dashed lines represent 
the confi dence interval (95%). Solid line represents the mean values of coancestry.

Figura 3 – Estrutura genética interna para uma população de indivíduos reprodutivos de Ocotea porosa em Passos Maia - SC. Linhas 
tracejadas representam o envelope de confi ança (95%). Linha sólida representa os valores médios de coancestria.

Figure 4 – Phenophase activity (A) and phenophase intensity (B) for an Ocotea porosa population in Passos Maia, SC. 
Figura 4 – Atividade de fenofases (A) e intensidade de fenofases (B) para Ocotea porosa no Município de Ponte Serrada – SC.
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has a density of 10.7 reproductive individuals/ha, the 
estimated deme area was 10.9 hectares.

3.4. Reproductive Phenology

In all phenophases, synchrony levels exceeding 
60% were recorded (Figure 4A). The initiation of fl oral 
bud emergence occurred in September (Figure 4A) and 
reached peak synchrony in the same month. Similarly, 
fl owering began in September but peaked in November. 
The fi rst green fruits were observed in November, 
and peak synchrony occurred between December and 
January. Fruit maturation was recorded from January to 
April, with the highest synchrony in February.

Figure 4B shows the intensities of each 
reproductive phenophase assessed using the Fournier 
method. As also shown in Figure 4B, the fl oral bud 
event was most intense in September, while the 
intensity of fl owering reached its peak in October. 
Subsequent phenophases, i.e., unripe fruits and 
ripe fruits, had their peak intensities in January and 
February, respectively. The spearman correlation 
results were signifi cant only for the phenophases of 
unripe fruits versus maximum temperature (0.87), 
average temperature (0.93), and precipitation (-0.70), 
as well as the positive correlation between ripe fruits 
and minimum temperature (0.79).

4. DISCUSSION

4.1. Demographic Structure of Reproductive 
Individuals

The evaluated population exhibited a density of 
reproductive individuals consistent with most values 
reported in the literature, specifi cally those considering 
the inclusion of DBH ≥ 15 cm. According to data from 
the Forest and Floristic Inventory of Santa Catarina 
(Montagna et al. 2018a), the average density of O. 
porosa populations in Santa Catarina (SC) is 12.8 ind.ha-

1, a value similar to that reported by Schaaf et al. (2006) 
(9.2 ind.ha-1). However, various publications by Klein  
on the fl ora and vegetation of Santa Catarina described 
the understory of Araucaria Forest in the plateau region 
as extensively dominated by O. porosa (Klein 1974), 
reaching up to 90% in abundance (Klein 1960).

The reduction in density values can be attributed 
to historical exploitation of the species. As reported 
by Klein (1979), Santa Catarina developed under the 
strong infl uence of the timber industry, especially 

after World War II, and O. porosa was the most 
exploited species. The present study was conducted 
on private property, which, according to the owner, 
was the site of a sawmill prior to 1953. This timber 
activity continued until the mid-1990s, after which 
the fragment remained "untouched." Nonetheless, 
the presence of sawmills was common in this region, 
giving evidence of exploitation into the mid-20th 
century (Moretto 2017).

4.2. Genetic Diversity

The estimated results indicate that the evaluated 
population possesses high genetic diversity (H

e
 = 0.3) 

when compared to the average for long-lived perennial 
woody species (0.149) (Hamrick and Godt 1990). 
Based on results reported by other authors (Tarazi et al. 
2010; Reis et al. 2012), high levels of genetic diversity 
are expected for species of the Ocotea genus. The 
observed heterozygosity is considered low, indicating 
an excess of homozygotes. The fi xation index ( f ) is 
considerably higher than fi xation indices reported in 
other studies on the Ocotea genus (Tarazi et al. 2010; 
Montagna et al. 2018), suggesting a deviation in the 
frequency of heterozygotes from what is expected 
under Hardy-Weinberg equilibrium.

Intensive historical exploitation and distribution 
in severely anthropogenic environments are factors 
contributing to the high f value (Reis et al. 2012), 
a trend described for other species (de Sousa et al. 
2020; Mariot et al. 2020). For example, in a study of 
six plant species, Lauterjung et al. (2019)   concluded 
that heavily exploited species in the past exhibited 
concerning genetic indices. Another factor that may 
have infl uenced a high f value is the signifi cant 
genetic structure found in the evaluated population 
(Bittencourt and Sebbenn, 2009; Meirmans 2015).

The high estimated and signifi cantly positive 
fi xation index resulted in a reduction in the N

e
. 

However, even with the reduction in N
e
, the estimated 

minimum viable area (56.2 ha) was smaller than the 
size of the studied fragment (227 ha), as well as the 
property (2,466 ha). Therefore, based on a reference 
size of 1,000 individuals (Lynch 1996) and the 
estimated N

e
, the study site is capable of supporting 

a minimum number of individuals able to suffi  ciently 
mitigate the eff ects of genetic drift and allow for 
seed collection. Similar results were described by 
Montagna et al. (2018b) for two populations of O. 
catharinensis in the state of Santa Catarina.

^

^

^

^

^
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4.3. Internal Genetic Structure

Signifi cant IGS has been reported for the genus 
Ocotea in various studies, and with diff erent spatial 
scales of signifi cance. Bittencourt (2007) found 
signifi cance within 0-19 meters, Tarazi et al. (2010) 
within 0-80 meters, and Montagna et al. (2018b) within 
0-60 meters. In contrast, Kageyama et al. (2003) found 
no signifi cant structuring. Expanding comparisons to 
the Lauraceae family, studies by Chung et al. (2000), 
Chung et al. (2003), and Hardy et al. (2005) showed the 
absence of signifi cant structuring. It should be noted 
that studies on IGS for Ocotea species tend to indicate 
genetic structuring that extends upward of 100 meters.

Several factors may contribute to the estimated 
IGS in the present study. The mating system of the 
species is mixed with a predominance of outcrossing, 
but O. porosa fl owers also exhibit self-compatibility, 
allowing for self-pollination. The reported pollination 
distance for the species is considered limited, 
primarily for short-fl ight insects such as Frankliniella 
gardeniae (Danieli-Silva and Varassin 2013). 
According to Wessinger (2021), this increases the 
likelihood of cross-pollination between fl owers on 
the same plant and between neighboring plants, 
leading to genetic structuring. Species pollinated by 
insects are more likely to exhibit genetic structuring 
compared to those pollinated by vertebrates (Melo 
and Franceschinelli 2016). Furthermore, a pattern 
of aggregated distribution (Bittencourt 2007) 
coupled with low population density (Montagna et 
al. 2018a) facilitates restricted gene fl ow to spatially 
close individuals, resulting in increased endogamy 
(Goncalves et al. 2022).

The estimated neighborhood size (116.5 
individuals) in the present study is higher than that 
reported by Bittencourt (2007) (62 individuals) and 
Montagna et al. (2018b) (44 and 48 individuals). On 
the other hand, the deme size measured in our study 
(10.9 hectares) is larger than that reported by Tarazi et 
al. (2010) (5 and 6 hectares) and Bittencourt (2007) (2.3 
hectares), but intermediate in relation to that described 
by Montagna et al. (2018b) (8.8 and 11.7 hectares). 
Although recommendations emphasize the importance of 
preserving large areas (Bittencourt 2007), the estimates 
of deme size demonstrate that even small fragments 
(<30 hectares) can contain more than one deme and, 
therefore, contribute to the species conservation.

4.4. Reproductive Phenology

The observed phenological pattern for the 
evaluated O. porosa population aligns with that 
found in other studies reporting on the reproductive 
phenology of the species. In spite of diff erences in 
the duration of phenophases, the overall reproductive 
cycle of O. porosa, as reported in the present study, 
is consistently corroborated in the literature, i.e., 
beginning in August (Bittencourt 2007) and ending 
in April (Seubert 2017). Variations in phenological 
pattern among individuals and populations of the 
same species are common in tree Lauraceae species 
dispersed by birds (Wheelwright 1986). Additionally, 
general consensus holds that the phenological pattern 
of O. porosa is considered regular and annual (Rêgo 
et al. 2006), and the results of the present study 
support these observations.

Although not detected through correlation 
analysis, it was observed that the onset of fl owering 
is related to an increase in temperature (average, 
maximum, and minimum) and precipitation. For 
example, the peak intensity of fl owering coincided 
with the month of highest rainfall (October). Studies 
conducted across diff erent formations in the Atlantic 
Forest domain have demonstrated a seasonal pattern 
for the fl owering period, with an increase in this 
phenophase during the transition from the colder, 
drier period to the warmer and rainier months, 
typically occurring between September and January 
(Funch et al. 2002; Cascaes et al. 2013). This happens 
because phenology is determined by climatic and 
physiological factors (Rodarte et al. 2007).

4.5. Seed Collection

The results of this research have important 
implications for seed collection in O. porosa 
populations. Despite the diff erence in estimated 
density (10.7 individuals.ha-1) from that reported by 
Klein (1974), who suggested a population reduction, 
the total area of the fragment is still large enough 
to maintain multiple demes and minimum viable 
populations. Furthermore, despite the positive and 
signifi cant fi xation index, the diversity values are 
considered high. Based on these results, it is reasonable 
to conclude that the studied population constitutes an 
important site for seed collection.

According to IGS results, seed collection 
should respect a minimum distance of 80 meters 
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between plants to reduce the chances of relatedness 
among parent plants. To maximize the capture of 
genetic diversity, it is recommended that seeds be 
collected from individuals separated by a minimum 
distance of 240 meters. Other factors, such as type 
of pollinator (short fl ight), dispersal, mating system 
(mixed), distribution (aggregated), and historical 
use (population reduction), reinforce the adoption of 
distance criteria for O. porosa seed collection.

Collecting seeds at the right time is important 
because fruits collected from the ground are more 
likely to contain old, moldy, or insect-infested seeds 
(Pedrini et al. 2020). Given this context and based on 
the results of reproductive phenology, it is reasonable 
to suggest that the recommended time for fruit 
collection would be between January and February, 
the period of peak fruit maturity.

5. CONCLUSION

The evaluated population has a high density of 
individuals, high genetic diversity, a high fi xation 
index, and signifi cant spatial genetic structure up 
to 80 meters apart. Based on these results, it can be 
concluded that the forest fragment can be used as a 
seed collection area for O. porosa. The recommended 
time for collection is between January and February. 
These results have relevant and novel implications 
for O. porosa seed collection practices, especially 
for ecological restoration purposes. Additionally, 
estimates of minimum viable area (MVA) and 
deme size are important indicators for O. porosa 
conservation, which is distributed in environments 
with intense anthropogenic activity.
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