Weekly monitoring of the effects of conventional external beam radiation therapy on patients with head and neck, chest, and pelvis cancer by means of blood cells count*

Avaliação semanal dos efeitos da radioterapia externa convencional pela contagem dos leucócitos e plaquetas de pacientes portadores de câncer nas áreas de cabeça e pescoço, tórax e pelve

Maria da Salete Fonseca dos Santos Lundgren¹, Maria do Socorro de Mendonça Cavalcanti², Divaldo de Almeida Sampaio³

OBJECTIVE: To evaluate the necessity of weekly monitoring by means of leukocyte and platelet counts of patients with head and neck, chest, and pelvis cancer submitted to conventional radiotherapy. MATERIALS AND METHODS: A hundred and one adult patients with cancer of head and neck (n = 11), chest (n = 35) and pelvis (n = 55), submitted to radiotherapy were assessed by means of leucocyte and platelet counts on a weekly basis, with a comparison between the results before and during the treatment and in correlation with the area treated, patient’s sex and age group. RESULTS: The most significant decrease in leucocytes was observed in the fourth week, when lymphocytes, total leucocytes, neutrophils, monocytes and platelets presented a decrease of 53.5%, 26.8%, 19.4%, 22.2% and 14.6%, respectively, in comparison with the values found before the beginning of the therapy. Geometric means for pelvis during the treatment were lower than those for chest, and head and neck. Lymphocytes demonstrated to be more sensitive to radiation therapy. No alteration was found in leucocyte or platelet counts in correlation with patients’ sex or age. CONCLUSION: Based on the results of the present study, weekly leucocyte and platelet counts do not seem to be useful in the assessment patients submitted to conventional radiotherapy for localized cancer. Keywords: Leucocyte count; Complete blood count; External beam radiotherapy; Radiotherapy toxicity.

INTRODUCTION

The series of alterations occurring in the hematopoietic system during and after conventional external beam radiation therapy covering localized areas of the bone marrow is similar to the alterations occurring during the whole bone marrow irradiation. However these alterations do not occur immediately and may arise weeks or even months following the radiotherapy[1,2]. In the case of localized radiotherapy, the

* Study developed at Instituto de Radioterapia Waldemir Miranda, Recife, PE, Brazil.
1. Master in Medical Sciences, Head for the Radiotherapy Unit at Hospital Universitário Oswaldo Cruz, Recife, PE, Brazil.
2. PhD in Biological Sciences, Coordinator for Post-Graduation at Universidade de Pernambuco, Recife, PE, Brazil.
3. PhD in Hematology, Hematologist at Centro de Hematologia de Pernambuco (Hemope), Recife, PE, Brazil.

The results of the present study were analyzed through the effects of variables such as patients’ sex, mean age, and area treated on the blood counts results, utilizing generalized estimation equations (GEE). All of the patients included in the sample of the present study signed a term of free and informed consent. The study was approved by the Committee for Ethics in Research of the Institution.

RESULTS

Leukocyte and platelet counts (606 blood counts) of 101 adult patients (69 women and 32 men), with ages ranging between 29 and 85 years (mean age = 59.3 years, standard deviation = 12.6 years) were evaluated. All of the patients with tumors of head and neck (n = 11; 10.9%), chest (n = 35; 34.6%) and pelvis (n = 55; 54.5%), were submitted to conventional external beam radiotherapy. Relative and absolute values corresponding to the geometric means of total leukocytes, neutrophils, eosinophils, lymphocytes, monocytes, and platelets before the radiotherapy (pre-treatment) and during the treatment (first, second, third, fourth and fifth weeks) of the patients with cancer of head and neck, chest, and pelvis submitted to conventional external beam radiotherapy. Relative and absolute values corresponding to the geometric means of total leukocytes, neutrophils, eosinophils, lymphocytes, monocytes, and platelets before the radiotherapy (pre-treatment) and during the treatment (first, second, third, fourth and fifth weeks) of the patients with cancer of head and neck, chest, and pelvis submitted to conventional external beam radiotherapy. Relative and absolute values corresponding to the geometric means of total leukocytes, neutrophils, eosinophils, lymphocytes, monocytes, and platelets before the radiotherapy (pre-treatment) and during the treatment (first, second, third, fourth and fifth weeks) of the patients with cancer of head and neck, chest, and pelvis submitted to conventional external beam radiotherapy.

| Table 1 Absolute and relative variations of geometric means of total leukocytes, neutrophils, eosinophils, lymphocytes, monocytes and platelets, before and during the treatment with conventional external beam radiotherapy. |
|-------|-------|-------|-------|-------|-------|-------|
| Blood cells | Pre | 1st | 2nd | 3rd | 4th | 5th |
| Total leukocytes | 6864.6 | 5847.4 | 5671.5 | 5436.8 | 5027.9 | 5182.7 |
| Relative variation* | 100.0% | 85.2% | 82.6% | 79.2% | 73.2% | 75.5% |
| Neutrophils | 4118.1 | 3696.4 | 3696.2 | 3621.6 | 3321.0 | 3401.1 |
| Relative variation | 100.0% | 89.8% | 89.8% | 87.9% | 80.6% | 82.6% |
| Eosinophils | 190.1 | 176.5 | 196.9 | 214.0 | 189.4 | 191.7 |
| Relative variation | 100.0% | 92.8% | 103.6% | 112.6% | 99.6% | 100.8% |
| Lymphocytes | 1908.5 | 1284.9 | 1091.2 | 941.0 | 888.2 | 957.3 |
| Relative variation | 100.0% | 67.3% | 57.2% | 49.3% | 46.5% | 50.2% |
| Monocytes | 347.6 | 294.9 | 301.9 | 314.2 | 270.3 | 282.7 |
| Relative variation | 100.0% | 84.8% | 86.8% | 90.3% | 77.8% | 81.3% |
| Platelets | 252.4 | 241.1 | 221.3 | 216.4 | 215.6 | 230.4 |
| Relative variation | 100.0% | 95.5% | 87.7% | 85.7% | 85.4% | 91.3% |

* Percentages based on pre-therapy count.
The geometric means of the number of monocytes presented a significantly decreasing trend along the treatment period, but there was no significant variation in relation to the patients’ sex, age range and area treated (Figure 4).

The geometric means of the number of platelets presented a significantly decreasing trend along the treatment period. However, this trend discontinued in the third week of treatment (Figure 5). There was no significant variation of geometric means of the number of platelets in relation to the patients’ sex, age range and area treated.

The geometric means of the number of eosinophils present no statistically significant variation along the treatment period in relation to the patients’ sex, age range and area treated.

DISCUSSION

In the present study the total leukocytes, eosinophils, neutrophils, lymphocytes, monocytes and platelets counts were analyzed, considering that these are the cells described as radiation-sensitive, and therefore a decrease in their values is expected as a result of radiotherapy. Erythrocytes were not evaluated, considering that no decrease is expected in their values because of the compensatory capacity of these cells, with increase in their proliferation, releasing mature cells into the peripheral blood and maintaining their levels within the normal parameters.

Also, a statistically significant decrease was observed in the total leukocytes, neutrophils, lymphocytes, monocytes and platelets counts as from the first week of treatment, but eosinophils presented no statistically significant difference along the treatment period. Similar results have been found by other authors studying patients with cancer of head and neck, chest and pelvis submitted to conventional radiotherapy (6,11–14). An analysis of the geometric means of blood cells counts along the treatment period, demonstrated that lymphocytes presented the major decrease (53.5%) as compared with the pre-treatment value, in coincidence with the results obtained by Yang et al. (6) and Zachariah et al. (14), with a decrease ranging between 51% and 67%. Leukocytes presented a
26.8% decrease, similar to the decrease observed in those studies (between 14% and 30%). Neutrophils decreased 19.4% in the present study, and those authors reported a decrease ranging between 14% and 28%. Monocytes decreased 22%, but those authors did not report their values. Platelets decreased 14.6%, in coincidence with the value (12%) reported by Stutz & Slawson(11), Ampil et al.(12), Yang et al.(6), Blank et al.(13) and Zachariah et al.(14). The data observed in the present study, as well as those in the literature, demonstrate that lymphocytes are the most radiation-sensitive peripheral blood cells.

The highest decrease in the number of peripheral blood cells occurred in the fourth week of treatment, as compared with the pre-treatment. This finding also has been found by Zachariah et al.(14), in a study with 299 patients with cancer of head and neck, chest and pelvis submitted to conventional external beam radiation therapy, demonstrating the major decrease in the peripheral blood cells count in the third week after the beginning of the treatment. Differently, Yang et al.(6), in a study with 117 patients with cancer of head and neck, chest and pelvis submitted to conventional external beam radiation therapy, has observed that the major decrease in the peripheral blood cells count occurred in the first week of treatment. Studies in the literature have reported that the decrease in the peripheral blood cells counts starts in the first weeks of conventional external beam radiation therapy(11,15,16).

Besides the analysis of peripheral blood cells counts along the treatment period, the relation between peripheral blood cells counts and patient’s sex also was analyzed, and no statistically significant variation was found in the geometric means of the number of these cells. In the analysis of the peripheral blood cells count in relation to the patients’ age range, also no statistically significant variation was found in the geometric means of the number of peripheral blood cells, corroborating the findings reported by Yang et al.(6). Analyzing the variations in the peripheral blood cells counts in relation the area treated, the major decrease was found in the geometric means of total leukocytes, neutrophils and lymphocytes when the area treated was the pelvis, followed by chest and head and neck, possibly because of the amount of bone marrow present in the respective areas(17).

Yang et al.(6) have recommended a blood cells count prior the initiation of the radiotherapy and in the first week of treatment, and Zachariah et al.(14) recommend the blood cells count prior the initiation of the treatment, and in the first and third weeks after radiotherapy is initiated. The data found in the present study suggest that a leukocyte and platelet count should be requested prior the initiation of radiotherapy, and an additional test could be requested in the fourth week after initiation of the treatment.

CONCLUSION

The major decrease in leukocytes and platelets count occurred as from the third and particularly fourth weeks following the initiation of the radiotherapy. Weekly leukocytes and platelets counts do not seem to be useful in the assessment of patients submitted to conventional external radiotherapy for localized cancer. However, a baseline leukocyte and platelet count is recommended prior the initiation of the radiotherapy and in the first week during the treatment.

REFERENCES

Weekly monitoring of the effects of conventional radiotherapy